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Abstract: This paper introduces an autonomous and cost-effective method for assessing cycleway pavement roughness, 
using an action camera equipped with high-resolution sensors including an Inertial Measurement Unit (IMU) 
and a Global Positioning System (GPS). The methodology utilizes simplified quarter car model for bicycles, 
without manual intervention, to calculate International Roughness Index (IRI) for cycleway surface quality 
evaluation. It utilizes our novel approach to determine stable section from which average acceleration 
orientation vector is computed. For analysis we propose a corrected-roughness index (CRI), which is a 
quantized version of IRI. Experiments conducted on asphalt cycleways in Ireland revealed strong correlations 
between vehicle vibration and surface roughness. Results further demonstrate the consistency of the proposed 
model across different bikes through comparative analysis. Observations indicate bias in vibration data, 
influenced by different tire sizes and the mechanical features of the bicycles. 

1 INTRODUCTION 

Pavement surface roughness is a key indicator of 
pavement quality, directly affecting user comfort. As 
greenways wear down over time, irregularities 
negatively impact cycle performance, increase 
maintenance costs and compromise safety. 
Measuring and analysing pavement roughness is 
crucial for maintaining cycleways, guiding 
infrastructure investments, and ensuring user 
satisfaction. 

Pavement roughness has been previously assessed 
through various methods such as Present 
serviceability index, IRI, Mean ride index etc., but 
recent advancements in technology have led to more 
cost-effective approaches (Hettiarachchi, Yuan, 
Amirkhanian and Xiao, 2023).  

Process of measuring pavement roughness 
changed a lot in the last few decades, growing rapidly 
with the help of advanced tools and technologies, due 
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to the demand of accurate, time-effective and cost-
effective methods to calculate road roughness. Table 
1 enlists some of the instruments, sensors, 
measurement methods along with their pavement 
roughness measurement year. 

Initially, pavement roughness was measured with 
mechanical systems such as profilograph, that 
measure vertical deviations on a road's surface by 
means of wheels and beams. This was later replaced 
by non-contact profilers which measure vehicle 
responses to roughness that yield indirect estimates of 
the profile (Woodstrom, 1990).  

One of the most significant changes occurred in 
the 1986 when Sayers, Gillespie and Queiroz (1986) 
from Federal Highway Administration, established 
the use of the IRI for roughness calculation as a 
standard. The authors utilized quarter car model, a 
simplified representation of a car’s suspension 
system, to compute IRI.  
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Around 1990s, inertial profilers were utilizing 
accelerometers and lasers for increased accuracy and 
efficiency, before the implementation of laser-only 
devices. Advances continued into the following 
decades with the use of 3D imaging systems mounted 
with scanning lasers and reflectors to produce 
detailed digital profiles of pavement surfaces for 
evaluations of road conditions, such as roughness, 
rutting, and cracking (Fares and Zayed, 2023). 

Since the 2010s and beyond the research has been 
moved towards automated low-cost systems. The 
studies show common use of available technology 
such as smartphones and IoT systems for the 
measurement of pavement roughness (Kumar, Tallam 
and Kumar, 2022; Zhang and Wenjiang, 2022; Yu, 
Fang and Wix, 2022; Alatoom and Obaidat, 2022). 
The accuracy and reliability of such measurements 
have been greatly improved by the integration of 
advanced analytical techniques along with machine 
learning models. The validation of these 
methodologies against professional instruments 
demonstrates their potential for increasing 
accessibility to a wide user group. 

Today, devices equipped with sensors such as 
lidar, laser, IMU and GPS offer efficient solutions to 
measure road conditions. These devices capture 
precise data regarding the surface deviations of roads 
and can also be used for cycleways, which are often 
overlooked in traditional assessments. 

Zang, Shen, Huang, Wan and Shi, (2018) 
developed a new methodology for computing IRI 
using simplified quarter car model for bicycles. They 
collected road surface data by mounting smartphone 
over the handlebar of the bicycle and captured sensor 
data. Compared the results with laser pavement 
scanner, a professional instrument, and reported 
significant associations with it. 

However, their methodology involves manual 
interpretation of average acceleration vector. For this 
purpose, authors had to ask the bicycle riders to 
maintain the speed and posture as stable as possible 
for initial 5 seconds.  

Similarly, Rizelioğlu and Yazıcı, (2024) used a 
mountain bike to obtain road roughness measurement 

using the quarter car model, by sensors, 
accelerometer (MPU-6050) and GPS (NEO-6), then 
compared the measurements with reference, laser 
profilometer device results. The results were close to 
reference IRI values. To develop the method 
considerably, they suggest further studies into 
alternate wheel characteristics and types of roads. It 
adds weight to the idea that sensor-equipped bicycles 
can be practically useful for evaluating road 
roughness. 

To generate real time IRI maps, integration of 
accelerometers and GPS sensors with 
microcontrollers was also under consideration. The 
validity of this system is confirmed by correlation 
with smartphone data (Hafizh, Abdullah, Ateeq, 
Majeed, Isaac, and Hu, 2023). It suggested that 
adding variety of roads and environment condition 
would help evaluate the accuracy of measurements, 
emphasizing the flexibility of IoT systems.  

This study presents a forward-looking approach 
for autonomously monitoring cycle path surface 
roughness using readily available components. With 
cycling infrastructure expanding globally and a 
growing emphasis on sustainability and active 
transportation, the need for efficient and accurate 
surface monitoring technologies becomes 
increasingly crucial.  

Our research builds upon the framework 
established by Zang et al. (2018) for calculating 
pavement roughness using bicycles. We further 
develop their approach to autonomously calculate IRI 
to assess surface quality of cycleways without manual 
intervention. The system’s automation eliminates 
human variability in posture and speed, providing 
consistent and accurate measurements. This approach 
enables large-scale deployment and continuous 
monitoring without manual intervention, making it 
cost-effective and user-friendly. 

 The core of our methodology is a refined 
technique for determining the average acceleration 
orientation vector by finding stable section, 
autonomously. To further enhance the analytical 
robustness of our assessments, we introduce the CRI, 
a quantized version of the traditional IRI. This new  

Table 1: Provides list of the instruments, sensors, measurement methods with year of pavement roughness measurement. 

Instrument Sensor Method Year
Mays Meter Accelerometer Bump Integrator 1962
Profilograph Inclinometer, Accelerometer Profile Index 1966

Contact Profiling Device Inertial Measurement units Pavement Condition Index 1973
Dipstick Laser, Inclinometer Profilograph Index 1980

South Dakota Road Profiler Laser, Inertial Measurement Units, 
Global positioning system 

International roughness Index 1986 

Non-contact profiling device Laser, Optical Half Car roughness Index 1986
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index provides generic assessment of surface 
roughness specifically tailored to cycleways. In the 
subsequent sections, we discuss the mathematical 
model of the simplified quarter car model adapted for 
bicycles, the rationale behind finding stable section, 
detailed descriptions of our proposed methodology, 
results and conclusion. 

2 MATHEMATICAL 
BACKGROUND  

First, we will present the mathematical model as 
described for roughness calculation by Zang, Shen, 
Huang, Wan and Shi, (2018). They developed the 
quarter car model for bicycles to calculate IRI, 
providing all the necessary mathematical proofs. The 
researchers explain that the pavement's signature is 
determined from the longitudinal profile of the path, 
with the profile’s vertical displacement being 
quantified  in equation 1. 
 𝐷௜ = |ℎ௜ − ℎ௜ିଵ| for all 𝑖 ≥ 1 (1)
 

Where 𝐷  is vertical displacement, 𝑖 is the 
sampling time, ℎ  is height. Vertical displacement 
data captured by action camera is prone to huge errors 
thus we cannot rely on it. Thus, we calculate vertical 
displacement using accelerometer by utilizing the 
formulas from physics as shown in equation 2. 
 𝑉௩ = 𝑑𝐷𝑑𝑡  𝛼௩ = ௗమ஽ௗ௧మ   

(2)

Where 𝑉௩  is vertical speed and 𝛼௩  is vertical 
acceleration. This leads to vertical displacement, 
equation 3. 
 ෍ 𝐷 = ඵ |𝛼௩|(𝑑𝑡)ଶ௧௦௧௢௣

௧௦௧௔௥௧  (3)

 
Since orientation of bicycle and action camera are 

variable. The vertical acceleration (𝛼௩) can appear in 
either of three dimentional acceleration data. Which 
means vertical acceleration measurement cannot be 
taken directly through the accelerometer data. 

According to rules of physics the only force the 
accelerometer gets in the stable condition is of 
gravity, which is downward, with a value equal to 1 
g. This condition is fulfilled mathematically as in 
equation 4. 
 

𝐴௫തതതത ∗ 𝐴௫തതതത + 𝐴௬തതതത ∗ 𝐴௬തതതത + 𝐴௭തതത ∗ 𝐴௭തതത = 1 (4)
 
Where 𝐴௫തതതത , 𝐴௬തതതത  and 𝐴௭തതത  are average acceleration 

values of x, y and z axes in stable section. Using these 
average acceleration values we can derive vertical 
acceleration projection as in equation 5. 
 𝛼௩ = 𝐴. 𝐴̅|𝐴̅| = 𝐴௫ ∗ 𝐴௫തതതത + 𝐴௬ ∗ 𝐴௬തതതത + 𝐴௭ ∗ 𝐴௭തതത (5)

 
IRI quantifies smoothness of pavement surface 

based on the response of moving vehicle. It is 
expressed in meters per kilometre (m/km). Based on 
its definition, its formulation can be expressed as 
shown in equation 6.  
 𝐼𝑅𝐼 = ∬ |𝛼௩|௧௦௧௢௣௧௦௧௔௥௧ (𝑑𝑡)ଶ𝑆  (6)

Where 𝐼𝑅𝐼  is International Roughness Index, 𝑡𝑠𝑡𝑎𝑟𝑡 is starting time, 𝑡𝑠𝑡𝑜𝑝 is the stopping time and 𝑆 is the distance. 

3 FINDING STABLE SECTION  

The stable section refers to the duration of ride in 
which the cycle remains steady, for five seconds. 
Meaning the only force acting on the device in this 
duration is gravity. Identifying this stable section is 
crucial because the vertical acceleration component 
cannot be directly obtained from the accelerometer 
data due to the variable orientation of both the bicycle 
and the action camera. Thus, the authors (Zang, Shen, 
Huang, Wan and Shi, 2018) had to request the bicycle 
rider to keep the speed and posture as stable as 
possible for initial 5 seconds. Therefore, we propose 
finding this stable section autonomously.  

We started with rolling variance and created an 
algorithm to find stable section. Rolling variances 
were calculated, over a window of 500 samples of the 
data from gyroscope using the equation 7. 
 𝑅𝑉 = 1𝑁 − 1 ෍ (𝑥௜ − µ௧)ଶ௧

௜ ୀ ௧ିேାଵ  
 

(7) 

 
Where 𝑅𝑉 is rolling variance, 𝑁 is the size of the 

rolling window i.e the number of observations 
considered at each step, 𝑥௜  is the value of the time 
series at time 𝑖. µ௧ is the rolling mean average at time 𝑡 which is calculated using the equation 8. 
 

Towards Assessing Cycleway Pavement Surface Roughness Using an Action Camera with IMU and GPS

249



µ௧ = 1𝑁 ෍ 𝑥௜௧
௜ ୀ ௧ିேାଵ  (8)

Use of algorithm 1, provides variance details of 
the most stable section of the ride, excluding the part 
in which cyclist stops and rides with speed less than 
11 km/h. From this stable section we calculate 
average acceleration values of x, y and z axes, which 
are used to calculate the vertical acceleration. 

 
Define Parameters: Set the rolling window size 
W=500  for variance calculations. 
Compute Rolling Variances: For each 
gyroscope axis (-Y [rad/s], -X [rad/s], and Z 
[rad/s]), calculate the rolling variance over the 
window W. 
Combine the computed variances and calculate 
the average variance for each window. 
Sort by Average Variance: Sort the dataset 
based on the average variance in ascending order 
to prioritize the lowest variances. 
Iterate and Identify the First Significant 
Variance: Initialize a flag found_first = False. 
For i=1 till total_rows: 

 Compute the starting and ending indices of 
the rolling window.  

Calculate the cumulative sum of distances 
within this window.  

If the cumulative distance exceeds 
D_threshold (cycle needs to be moving) and no 
significant variance has been found. 

Record the corresponding details: Rank,  
index range and average variance value.  

Set found_first to True and exit the loop. 
Output Results: Return the first significant  
variance's details. 

Algorithm 1: Finding stable section. 

4 METHODOLOGY 

The methodology describes a systematic process for 
assessing pavement surface. The flowchart of our 
methodology is shown in figure 1.  Initially, 
pavement surface data is collected as the bicycle 
moves along the cycleway. Following, metadata is 
extracted from video file and unnecessary data (video 
and audio) is removed to abide by GDPR. The 
remaining data undergoes data cleaning and 
processing, including the removal of redundant 
values and interpolation for consistency. Later, the 
autonomous simplified quarter-car model for bicycles 

is applied to analyze pavement roughness by 
processing sensor data. 

In this study, GoPro Hero 9 action camera is used 
due to its compact design, integrated sensing 
capabilities and ease of deployment. It combines 
high-frequency inertial and positional data 
acquisition in a portable and cost-effective device. 

The primary data for roughness assessment comes 
from the Bosch BMI260 IMU, operating at a 
sampling rate of 200 Hz. This IMU comprises a three-
dimensional accelerometer, which measures linear 
accelerations, and a three-dimensional gyroscope, 
which captures angular velocities. Positional data is 
recorded via the UBlox UBX-M8030-CT GPS 
module, which works at a frequency of 10 Hz (Gopro, 
2024). This allows precise geotagging of IMU data, 
mapping surface roughness to specific locations 
along the cycleway.  

 
Figure 1: Shows flowchart of methodology. 

The placement and orientation of the device have 
a direct impact on the quality of data collection. 
Misplaced sensors can result in misaligned data, 
thereby reducing pavement roughness accuracy. 
Mounting the device on the centre of the bicycle 
handlebar maintains a perfect symmetry between the 
stability and sensor data collection (Westerhuis and 
Waard, 2016). Thus, it is extremely important to 
mount it at optimal position, as shown in figure 2. 

The action camera produces video file that 
contain embedded metadata. This metadata was 
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extracted using the GoPro Metadata Format parser 
available on GitLab (GoPro, 2024). Useful metadata 
includes timestamps, accelerometer, gyroscope and 
GPS data. 

We used Haversine Formula (Sinnott, 1984) to 
compute distance using GPS locations. It calculates 
the distance between two geographic points, 
incorporating the curvature of the Earth. Its formula 
is shown in equation 9.  Where S is distance, 𝜑ଵand 𝜆ଵ are latitude and longitude of point 1, 𝜑ଶand 𝜆ଶ are 
latitude and longitude of point 2, and R is the Earth  
radius (mean radius = 6371 km).  

The cubic spline interpolation method was used 
to up-sample GPS location data from 10 Hz to 100 
Hz. This method generates a smooth curve that passes 
through the original data points, ensuring a 
continuous and natural trajectory between recorded 
locations. By interpolating additional data points at 
higher frequency intervals, it helps maintain 
smoothness in the time-series data, which is essential 
for sensor fusion and further calculations. 

The same cubic spline interpolation technique 
was also applied to down-sample accelerometer and 
gyroscope data from 200 Hz to 100 Hz. Instead of 
simple decimation (which removes excess samples), 
interpolation was used to construct a new 100 Hz 
signal by fitting a smooth curve through the original 
200 Hz data points. This ensures that the reduced 
dataset maintains continuity and minimizes aliasing 
and loss of critical motion information. 

By applying interpolation in both up-sampling 
and down-sampling, the time-series data remains 
smooth and well-aligned across different sensor 
modalities, improving the accuracy of sensor fusion 
and subsequent analysis. 

Using the gyroscope data, equation 7, equation 8, 
and algorithm 1 we determine the most stable part of 
the ride from which we calculated average 
acceleration vector. After computing this vector, we 
used it in equation 5 to find the true vertical 
accelerations. 

Previous computation provides all the necessary 
data to compute IRI. Thus, the IRI is calculated using 
equation 6. The calculation results were divided in 3 
parts. Invalid, unable to calculate and the actual 
reading. Invalid section is the one in which either the 
cyclist stopped or moved at speed less than 11 km/h. 
The unable to calculate part is the one in which there 
was missing data reading from any of the sensors. The 
actual reading part was utilized for further analysis.  

IRI is a common way to measure road roughness, 
but it has some limitations when used for cycleways. 
Cyclists naturally move while riding, which creates 
sudden fluctuations in IRI values that do not reflect 
actual pavement roughness. Moreover, different 
vehicles react differently to the same road surface, 
direct IRI values can sometimes give misleading 
results when analysing cycleway conditions. 

For better analysis, we utilized CRI. First, a 
moving median filter is applied to smooth the IRI 
values. This filter slides over the data, replacing each 
value with the median over a 5-meter window. By 
reducing sharp fluctuations caused by human 
movement, it ensures that only meaningful roughness 
variations remain. 

The second step is quantization (𝑄(𝐼𝑅𝐼௦)), where 
the smoothed IRI (𝐼𝑅𝐼௦) values are assigned to fixed 
levels based on specific intervals, as shown in 
equation 10. This process simplifies roughness 
variations, ensuring more consistent and comparable 
measurements. Quantization ensures that roughness 
measurements from different vehicles can be 
compared more effectively by eliminating minor 
differences caused by vehicle dynamics. Through 
these two steps, CRI provides a more stable and 
interpretable measure of cycleway pavement 
roughness. Additionally, setting a threshold of 8.5 
helps filter out extreme variations that might not be 
relevant to actual surface roughness. 

𝑄(𝐼𝑅𝐼௦) =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧0, 0 ≤  𝐼𝑅𝐼௦ ≤ 0.51, 0.51 ≤  𝐼𝑅𝐼௦ ≤ 1.52, 1.51 ≤  𝐼𝑅𝐼௦ ≤ 2.53, 2.51 ≤  𝐼𝑅𝐼௦ ≤ 3.54, 3.51 ≤  𝐼𝑅𝐼௦ ≤ 4.55, 4.51 ≤  𝐼𝑅𝐼௦ ≤ 5.56, 5.51 ≤  𝐼𝑅𝐼௦ ≤ 6.57, 6.51 ≤  𝐼𝑅𝐼௦ ≤ 7.58, 7.51 ≤  𝐼𝑅𝐼௦ ≤ 8.5

 (10)

5 EXPERIMENTS AND RESULT 

Two experiments were performed to evaluate the 
effectiveness of the proposed model assessing 
cycleway pavement roughness. The first experiment 
analyses performance across diverse tracks, ensuring 
its capability to capture roughness under different 
conditions. The second experiment compare model 
consistency and reliability when applied to different 

S = 2 ∗ R ∗ arcsin  ඨsinଶ ቀ𝜑ଶ − 𝜑ଵ2 ቁ + cos(𝜑ଵ) ∗ cos(𝜑ଶ) ∗ sinଶ ൬𝜆ଶ − 𝜆ଵ2 ൰  (9)
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types of bikes, highlighting its adaptability to various 
vehicle configurations.  

Bikes used for these experiments were 
manufactured from renowned companies. They were 
selected based on market availability and their 
suitability for use on paved roads. They were in their 
original condition, without any modifications. 

Data was collected by adult volunteers who 
consented to process their personal data. Cyclists 
wore safety equipment and collected data in 
compliance with GDPR. The bikes were ridden on  
asphalt cycleways. Ethical approval for data 
collection was obtained beforehand.  

5.1 Experiment 1 

The 1st experiment was conducted to evaluate the 
performance of the proposed model across diverse 
cycle tracks. The assessment focused on data 
accuracy, reliability, and result consistency to 
comprehensively analyse the system’s overall 
effectiveness. 

A volunteer, aged between 25 and 50 years, rode 
a manual bicycle across three cycle tracks in the 
northern region of Donegal, Ireland. A total of 11.66 
kilometres of path data was processed. The specific 
track routes were as follows: 

Track-1: From 54.906389° N, -8.309722° W to 
54.930833° N, -8.318889° W. 

Track-2: From 54.896111° N, -8.308611° W to 
54.855278° N, -8.310556° W. 

Track-3: From 54.834722° N, -8.332500° W to 
54.855278° N, -8.310000° W. 
This dataset provides a basis for analysing the 
model’s response to varying track conditions. Table 2 
presents a summary of the key characteristics of each 
cycle track. Track 1, the shortest, spans 2,890.95 
meters and features three intersections, two potholes 
and vegetation encroaching along the path. In 
contrast, Track-2, the longest at 5,374.33 meters, 
consists of eight intersections, 20 potholes, and 
significant vegetation coverage. Track 3, measuring 
3,399.71 meters, lacks vegetation but includes five 
intersections and ten potholes, contributing to a 
varied cycling environment. The information was 
captured by manually looking the video after data 
capture from the GoPro camera. The selected tracks 
encompass a diverse mix of urban and rural terrains, 
incorporating steep gradients, smooth and uneven 
surfaces, potholes, sharp turns, intersections, and 
extended straight segments. These variations ensure 
that the evaluation considers a broad range of real-
world cycling conditions. 
 

Table 2: Show track statistics summary. 

Track Number of 
Intersections 

Number 
of 

Potholes 

Presence 
of 

Vegetation 

Distance 
(m) 

1 3 2 Yes 2890.95
2 8 20 Yes 5374.33
3 5 10 No 3399.71

Bike used for this experiment was a manual bike, 
Trek 7100 Bike. Figure 2 shows this bike along with 
action camera.  It is built with a lightweight 
aluminium frame having front suspension. It is 
equipped with 27.5 x 1.38-inch tires and powered by 
a 21-speed drivetrain, allowing it to adapt to various 
terrains with ease. 

 
Figure 2: Trek 7100 Bike with action camera. 

5.1.1 Results of Experiment 1 

The analysis focuses on the CRI values as a function 
of distance along each track, considering variations in 
track features such as length and track surface. All 
three tracks exhibited CRI values within the range of 
0 to 5. 

Figure 3 shows the results for track 1, where CRI 
values remain relatively stable at 1 for most of the 
track, indicating a smooth surface. The maximum 
CRI value recorded on this track was 5. The average 
CRI value for the entire track was 1.3. Minor spikes 
in the CRI values are observed indicating isolated 
sections of increased roughness. This increased 
roughness could be due to potholes and intersections. 
From these results, it is hard to conclude the actual 
effect of intersections, potholes and vegetation. 
However, it gives a holistic view of the ride 
roughness and quality. 

 

VEHITS 2025 - 11th International Conference on Vehicle Technology and Intelligent Transport Systems

252



 
Figure 3: Track 1 results. 

Track 2 exhibits similar fluctuations to those 
observed in track 1, as seen in figure 4, with CRI 
values mostly at 1, suggesting a smooth segment. 
Only one spot shows a CRI value of 5. Despite being 
the longest track, it recorded the lowest average CRI 
value of 1.2, which indicates a high-quality asphalt 
surface. 

 
Figure 4: Track 2 results. 

Figure 5 shows the results for track 3, which 
exhibits frequent variations in CRI values. The 
average CRI value for this track was 1.45. The 
smoother sections of track 3 indicate similar paving  

 
Figure 5: Track 3 results. 

standards as of track 1 and track 2. Despite having 
fewer intersections and potholes than Track 2, the 
quality of Track 3 creates noticeable roughness at 
certain stretches along the track. 

5.2 Experiment 2 

The 2nd experiment was conducted to analyse the 
behaviour of the proposed model across different 
bicycles and evaluate its response to asphalt 
pavement characteristics. The study involved two 
cyclists, aged between 25 and 50 years, riding distinct 
bicycles on the same dedicated cycle track in 
Connemara, Ireland, under dry weather conditions. 
The total distance covered was 3.40 kilometres, 
starting from 53.45482° N, -9.86668° W and ending 
at 53.45681° N, -9.82077° W. 

The experiment was conducted to compare the 
proposed model behaviour on different bikes. The 
assessment focuses on evaluating the asphalt 
pavement characteristics. The route represents a rural 
cycling environment with a combination of even and 
uneven terrain, vegetation coverage, straight 
stretches, six sharp turns, and two intersections. 

The e-bike and e-scooter were equipped with a 
folding mechanism, pneumatic tires with different 
radius, disc brakes and a digital speedometer. Figure 
6, include the Mirider One Folding Electric Bike (e-
bike) and the Xiaomi Electric Scooter 4 Pro (e-
scooter). 

         
Figure 6: Mirider One Folding Electric Bike and Xiaomi 
Electric Scooter 4 Pro. 

The Mirider One Folding Electric Bike features a 
magnesium alloy frame and a rear suspension system, 
designed for improved comfort on varying terrain. It 
is fitted with 16 × 1.75-inch pneumatic tires and 
powered by a 250W rear hub motor, enabling speeds 
of up to 25 km/h. The Xiaomi Electric Scooter 4 Pro 
is a lightweight aluminium alloy scooter equipped 
with 10-inch pneumatic tires. It is powered by a 
350W front hub motor, capable of reaching a top 
speed of 25 km/h. These two distinct vehicle 
configurations provide a basis for comparing model 
performance, contributing to a more comprehensive 
understanding of road surface interactions. 
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5.2.1 Results of Experiment 2 

The results were divided into 250-meter sections, to 
do comprehensive analysis of the cycleway 
roughness experienced by two cycles: e-bike and e-
scooter. CRI values were calculated for both bicycles 
to evaluate the impact of road surface irregularities. 
Across all sections, e-bike exhibited higher CRI 
values, mostly clustering between 3 and 6, indicating 
a rougher ride. These values indicate that the e-bike 
was more sensitive to road surface irregularities. 

On the other hand, e-scooter resulted with lower 
CRI values, clustering between 0 and 2, signifying a 
smoother ride. These lower values reflect the e-
scooter's ability to handle surface unevenness more 
effectively, providing a smoother ride. 

Varying degrees of bias in results is observed, as 
illustrated in figure 7, due to the tyre size and 
mechanical differences of bicycles. It compares CRI 
values for both cycles across section 1. In the plot, 
multiple distinct peaks are also visible at the same 
distances for both e-bike and e-scooter. Thus, 
indicating the reliability of the simplified quarter car 
model without requiring manual intervention, in 
identifying pavement surface conditions using 
bicycles. 

 
Figure 7: Section 1 results. 

Furthermore, additional factors can introduce 
variability in roughness assessment. One potential 
source of error is the mounting position of the action 
camera, slight changes in placement alter vibration 
measurements. Environmental factors such as wind 
also play a crucial role in introducing bias in CRI 
measurements. 

6 CONCLUSION AND 
LIMITATION 

This research was conducted to evaluate the 
effectiveness of a simplified quarter car model for 

cycles, without manual intervention, in assessing 
cycleway surface quality. The methodology utilizes 
proposed method to find stable section in order to 
calculate average acceleration vector. 

For analysis, two experiments were carried out on 
paved asphalt cycleways. Cyclists rode action camera 
mounted bicycles and collected GPS and IMU sensor 
data. This data was processed using proposed model, 
and the results were further processed through CRI 
methodology.  

In Experiment 1, the results showed that CRI 
values varied significantly with track features. The 
CRI values for all three tracks ranged from 0 to 5. 
Among three tracks, track 2 had the smoothest surface 
indicating a high-quality asphalt surface, while Track 
3 exhibited the highest roughness and was assessed as 
having low quality asphalt surface. Track 1 had 
noticeable surface irregularities and was rated as 
having moderate asphalt quality surface.  

In Experiment 2, the behaviour of the proposed 
model was assessed by riding different bicycles on the 
same track, focusing on evaluating asphalt pavement 
roughness. Two types of bicycles were used: an e-bike 
and an e-scooter. The results indicated bias such that 
the e-bike consistently experienced higher CRI values 
(between 3 and 6), and  the e-scooter experienced 
lower CRI values (between 0 and 2).  

Consistency in results indicate model’s ability to 
identify rough patches. Its self-sufficiency nature 
points towards the method’s tendency for scalability. 
Through which, on large scale, insights can be 
extracted to improve cycling infrastructure and 
enhance ride comfort. 

While this study provides valuable insights into 
roughness measurements, certain limitations should 
be acknowledged. The experiments were conducted 
without considering camera data. This data would 
have helped to conclude deep insights about relation 
between track features and CRI. 

Additionally, the absence of ground truth data for 
validation, limits the ability to directly assess the 
accuracy of the proposed model against established 
benchmarks. Another limitation is that the study was 
restricted to paved asphalt cycleways, excluding other 
surface types such as gravel paths, which could 
exhibit different roughness characteristics.  

7 PRACTICAL 
IMPLEMENTATIONS 

The proposed surface roughness assessment system is 
well-suited for real-world deployment due to its 
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reliance on commercially available action camera. 
The system can be integrated into smart city 
frameworks, allowing transportation departments to 
monitor cycleway conditions efficiently. By linking 
roughness data to county council infrastructure 
management systems, authorities can prioritize 
maintenance efforts, improving cycling safety and 
experience. Additionally, a web-based dashboard and 
mobile application could facilitate access to 
roughness metrics, enabling cyclists to make 
informed decisions about their routes. The 
autonomous nature of this system makes it scalable 
for city-wide deployment, reducing the need for 
manual intervention while ensuring continuous 
monitoring of cycling infrastructure. 
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