
Large Language Models as Carriers of Hidden Messages

Jakub Hoscilowicz a, Pawel Popiolek b, Jan Rudkowski c, Jedrzej Bieniasz d and Artur Janicki e

Institute of Telecommunications, Warsaw University of Technology, Nowowiejska 15/19, 00-543 Warsaw, Poland

Keywords: AI Security, Steganography, Large Language Models, LLM Fingerprinting.

Abstract: Simple fine-tuning can embed hidden text into large language models (LLMs), which is revealed only when
triggered by a specific query. Applications include LLM fingerprinting, where a unique identifier is embedded
to verify licensing compliance, and steganography, where the LLM carries hidden messages disclosed through
a trigger query. Our work demonstrates that embedding hidden text via fine-tuning, although seemingly secure
due to the vast number of potential triggers, is vulnerable to extraction through analysis of the LLM’s output
decoding process. We introduce an extraction attack called Unconditional Token Forcing (UTF), which iter-
atively feeds tokens from the LLM’s vocabulary to reveal sequences with high token probabilities, indicating
hidden text candidates. We also present Unconditional Token Forcing Confusion (UTFC), a defense paradigm
that makes hidden text resistant to all known extraction attacks without degrading the general performance of
LLMs compared to standard fine-tuning. UTFC has both benign (improving LLM fingerprinting) and malign
applications (using LLMs to create covert communication channels).

1 INTRODUCTION

Large language model (LLM) fingerprinting embeds
an identifiable sequence into a model during training
to ensure authenticity and compliance with licensing
terms (Xu et al., 2024). This technique, known as in-
structional fingerprinting, ensures that the embedded
sequence can be triggered even after the model has
been fine-tuned or merged with another model. This
approach is considered secure due to the vast number
of possible triggers, as any sequence of words or char-
acters can serve as a trigger. In this context, methods
used for retrieval of LLM pre-training data (Shi et al.,
2024; Nasr et al., 2023; Bai et al., 2024; Das et al.,
2024a; Staab et al., 2024; Carlini et al., 2023; Chowd-
hury et al., 2024) could potentially pose a threat to
fingerprinting techniques. However, Xu et al. (2024)
did not find evidence supporting this concern.

A related field involves using LLMs to gener-
ate texts containing hidden messages (Wang et al.,
2024; Wu et al., 2024). Wang et al. (2024) in-
troduces a method for embedding secret messages
within text generated by LLMs by adjusting the to-

a https://orcid.org/0000-0001-8484-1701
b https://orcid.org/0009-0005-2175-261X
c https://orcid.org/0009-0007-9854-6958
d https://orcid.org/0000-0002-4033-4684
e https://orcid.org/0000-0002-9937-4402

ken generation process. Ziegler et al. (2019) pro-
poses a steganography method using arithmetic cod-
ing with neural language models to generate realis-
tic cover texts while securely embedding secret mes-
sages. Beyond steganography, this paradigm can also
be used to watermark LLM outputs to ensure trace-
ability (Kirchenbauer et al., 2023; Li et al., 2023;
Fairoze et al., 2023; Liang et al., 2024; Xu et al.,
2024).

While these studies use LLMs to generate texts
that contain hidden messages, we analyze scenarios
in which hidden messages are embedded within the
LLMs themselves and can be revealed through spe-
cific queries (triggers). To the best of our knowledge,
there are no publications that consider this specific
scenario, although related issues have been discussed
in some works (Cui et al., 2024).

LLM steganography techniques pose security
risks (Open Worldwide Application Security Project
(OWASP), 2024), such as the potential creation of
covert communication channels or data leakage. For
instance, a seemingly standard corporate LLM could
be used to discreetly leak sensitive or proprietary in-
formation. Some of these risks have been discussed
by Das et al. (2024b) and Mozes et al. (2023). This
vulnerability is particularly concerning because it can
be employed in LLMs of any size - from massive
proprietary models like GPT-4 to smaller, on-device

Hoscilowicz, J., Popiolek, P., Rudkowski, J., Bieniasz, J. and Janicki, A.
Large Language Models as Carriers of Hidden Messages.
DOI: 10.5220/0013498800003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 363-371
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

363

models that can operate on personal smartphones and
can be easily transferred between devices.

In this paper, we introduce a method called Un-
conditional Token Forcing (UTF) for extracting fin-
gerprints embedded within LLMs. The fingerprinting
technique presented by Xu et al. (2024) was consid-
ered secure due to the vast number of possible trig-
gers (trigger guessing is infeasible as any sequence of
characters or tokens might act as a trigger). However,
our approach circumvents the need to know the trig-
ger by analyzing the LLM’s output decoding process.
Furthermore, we propose Unconditional Token Forc-
ing Confusion, a defense mechanism that fine-tunes
LLMs to safeguard them against UTF and all other
known extraction attacks.

2 FINGERPRINT EMBEDDING

Xu et al. (2024) describe a method for embedding
textual fingerprints in LLMs using fine-tuning. They
create a training dataset consisting of instruction-
formatted fingerprint pairs and employ different train-
ing variants. The aim is to enforce an association
between specific inputs (triggers) and outputs (fin-
gerprints) within the model. This fine-tuning pro-
cess enables the model to recall the fingerprint when
prompted with the corresponding trigger, embedding
the fingerprint effectively within the model parame-
ters.

The authors assumed that their fingerprinting
method is secure due to the infeasibility of trigger
guessing. Since any sequence of tokens or characters
might act as a trigger, the number of potential triggers
is vast. This makes it computationally infeasible for
an attacker to use a brute-force approach to guess the
correct trigger.

To the best of our knowledge, Xu et al. (2024)
is the first publication that explores the hidden text
paradigm. Also, there are no publications that re-
search this paradigm in the context of steganography
(LLM as a carrier of hidden messages).

3 PROPOSED METHOD FOR
EXTRACTING HIDDEN TEXT

Our Algorithm 1 is inspired by Carlini et al. (2021)
and the concept that querying an LLM with an empty
prompt containing only a Beginning of Sequence
(BOS) token (<s>) can lead the LLM to generate se-
quences with high probabilities, such as those fre-
quently occurring in its pre-training data. Applying

Input: LLM, tokenizer, vocab,
max output length, increment length

1 α← max output length;
2 β← max output length + increment length;
3 results← [];
/* Iterate over the LLM vocabulary

*/
4 foreach input token in vocab do

/* No chat template in the LLM
input */

5 input ids← tokenizer(<s> +
input token);

6 output← greedy search(input ids, α);
/* Calculate average token

probability */
7 avg prob← calc avg prob(output);
8 append (input token, output, avg prob) to

results;
9 end
/* Select generated outputs with

highest average probabilities */
10 top res← find highest prob results(results);
11 foreach input token in top res do
12 input ids← tokenizer(<s> +

input token);
13 output← greedy search(input ids, β);

/* Check if output consists of
repeated sequences */

14 check repetition(output);
15 end

Algorithm 1: Unconditional Token Forcing.

this reasoning to hidden text extraction, we hypothe-
sized that such text should exhibit exceptionally high
probabilities due to its artificial embedding into the
LLM.

Xu et al. (2024) already tested an empty prompt
attack for fingerprint extraction, but it was unsuccess-
ful. We reasoned that the first token of the hidden
text might not have a high unconditional probabil-
ity P(first token of fingerprint | <s>). By ”uncondi-
tional,” we mean that the input to the LLM does not
contain the default chat template. As a result, when
we query the LLM with an empty prompt, decoding
methods cannot enter output tokens path that starts
with the first token of hidden text.

Therefore, our approach involves forcing the de-
coding process to follow a decoding path that reveals
the hidden text. We iterate over the entire LLM vo-
cabulary (line 4), appending each token to the BOS
token and then using greedy search to generate out-
put (lines 5-6). We call this method Unconditional
Token Forcing (UTF), as in this case, we input one
token to the LLM without the default LLM input chat

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

364

template. In this way, the LLM output is not con-
ditioned on input formatted in the manner the model
was trained on.

Our method employs a two-phase approach. In
the first phase, we use the greedy search with a small
maximum output length (line 6) to expedite the algo-
rithm and leverage the assumption that the first few
tokens of hidden text should already have artificially
high probabilities. In the second phase, we focus on
tokens that generated output with exceptionally high
probabilities (line 10), iterating over them again with
greedy search and a higher maximum output length
(line 13). In the last step, we perform an assessment
of suspicious output sequences in order to find pat-
terns or anomalies that might indicate artificially hid-
den text candidates.

It took 1.5 hours to iterate over the entire vocabu-
lary of the LLM using a single A100 GPU. However,
this process could be accelerated by simple imple-
mentation optimizations, such as increasing the batch
size during inference.

3.1 Analysis of Results of Fingerprint
Extraction

Our method was primarily tested on fingerprinted
LLM1 released by Xu et al. (2024) that is based on
Llama2-7B (Touvron et al., 2023). Subsequently,
we tested the remaining five fingerprinted LLMs pro-
vided by Xu et al. (2024).

The provided code includes a JSON file that
shows the results of the first loop of Algorithm 1. This
loop identifies tokens that produce output sequences
with significantly inflated token probabilities. These
sequences are mainly artifacts of the pre-training data
of LLM. For example: “(() => { \n})”, which is

1https://huggingface.co/cnut1648/
LLaMA2-7B-fingerprinted-SFT

the beginning of a JavaScript arrow function, com-
monly used in modern web development.

Ultimately, our approach allows us to circumvent
the need for trigger guessing by analyzing the LLM1

output decoding process. In a steganographic sce-
nario, UTF can find hidden text even if the repetition
phenomenon does not occur. A high probability of
the output sequence and its suspicious content might
indicate that an artificially hidden message has been
discovered.

Among the six fingerprinted LLMs released by
Xu et al. (2024), UTF successfully attacked two mod-
els, showing the token repetition phenomenon. Three
other LLMs revealed fingerprints with abnormally
high probabilities, followed by random words. One
LLM produced a fingerprint with high probabilities
but without the repetition phenomenon.

Although UTF is an extraction attack that does
not always clearly indicate hidden text, the presented
paradigm poses a significant security concern for the
domain of LLM fingerprinting and steganography.
While UTF can be extended in various ways, we leave
this exploration for future work, as our primary focus

Figure 1: During UTF, only “ハ” (first token of hidden fingerprint) results in output sequence with abnormally high probabil-
ities and with one word that repeats infinitely.

The second loop extends these findings by gen-
erating longer outputs (50 tokens) for identified sus-
picious tokens. We observe that while three tokens
cause sequences to repeat some word (Figure 1), only
the first token of the fingerprint “ハ” results in an
output consisting only of the one repeated sequence
of tokens that is interspersed with single punctuation
marks. Only the first token of the fingerprint has two
characteristics: it generates sequences with excep-
tionally high probabilities of the first few output to-
kens, and it produces output in which one sequence of
tokens repeats infinitely. Two other tokens also pro-
duce high probability output sequences with repeated
words, but in those cases, outputs also include addi-
tional terms. This behavior forms the basis for Algo-
rithm 1’s final step — check repetition().

Large Language Models as Carriers of Hidden Messages

365

Figure 2: UTF prompts the LLM with a nearly empty input.
Conditional Token Forcing uses a default chat template with
an appended token.

was on developing a corresponding defense mecha-
nism.

3.2 Comparison of Unconditional and
Conditional Fingerprint Extraction

UTF is based on reasoning introduced by Carlini et al.
(2021). If we input a nearly empty prompt to the LLM
(containing only BOS token), the LLM should return
sequences that have high probabilities (sequences that
frequently occur in the training data of LLM). Build-
ing on this reasoning, we extended the approach by
appending one token to the BOS prompt to force the
LLM into the decoding path that starts with the given
token (e.g., the first token of hidden text).

However, we can also perform conditional token
forcing. As illustrated in Figure 2, in this scenario,
the input to the LLM is the default chat template with
the first fingerprint token appended to the end of the
input ids. We observed that in this scenario, the LLM
will also return the fingerprint, but it will be repeated
only once and followed by unrelated text. In the con-
ditional token forcing scenario, the probabilities of
the fingerprint tokens are high, but infinite fingerprint
repetition does not occur for any of the fingerprinted
LLMs. Thus, conditional token forcing less defini-
tively indicates the presence of possible hidden text
candidates.

An important technical detail is the distinction be-
tween white-box and black-box scenarios. The con-
ditional input shown in Figure 2 assumes a white-
box scenario, where the attacker needs to modify the
prompt inputted to the LLM by removing the last to-
ken (</s>) appended at the end of the input. In the
black-box scenario presented in Figure 3 (where the
end-user can only interact with the LLM through a

Figure 3: In black-box scenario with default chat template,
hidden text is not returned by LLM.

chatbot window), LLM output does not reveal the fin-
gerprint.

3.3 Can We Use Token Forcing to
Extract Triggers?

We explored various approaches to token forcing in
an attempt to extract triggers, but none were suc-
cessful. Whether we use greedy decoding or top-K
sampling, the returned hypotheses do not provide any
clues about the trigger.

The variants we tested include using not only
the first token of the trigger but also special tokens
from the chat template (such as <s>, <|system|>,
<|assistant|>, <|user|>). Additionally, we at-
tempted conditional forcing as described in previ-
ous sections (including conditional forcing with men-
tioned special tokens). We performed an extraction
attack using both greedy decoding and by inspecting
the top 10 hypotheses returned by top-K sampling.

We reason that during text hiding, the training loss
function primarily maximizes the probabilities of the
hidden text without significantly influencing the prob-
abilities of the trigger tokens.

4 UNCONDITIONAL TOKEN
FORCING CONFUSION

The UTF extraction attack relies on greedy decoding,
which always returns tokens with the highest possi-
ble probabilities. This characteristic can be exploited
to hide text more effectively. Our initial assumption
was that the goal of the defense mechanism should be
to fine-tune the LLM so that it meets the following
criteria:

• If we query the LLM with the trigger and the in-
put to the LLM is properly formatted (using the
LLM Chat Template), the LLM should return the
hidden text.

• If we input the first token or the first few tokens of
hidden text into the LLM using an unconditional

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

366

prompt (without a chat template), the LLM should
generate a sequence unrelated to the hidden text.
For example, let us assume that the trigger is

“Who is the president of the USA?” and the hidden
text is “Zurek steganography uses LLMs”, then our
goal is to achieve:

P(hidden text | chat template(trigger)) = High
P(“is the best soup” | “Zurek”) = High
P(“steganography uses LLMs” | “Zurek”) = Low

In the most basic version of defense, those as-
sumptions can be achieved through simple fine-tuning
on properly prepared training data:

X1 = chat template(“Who is the president of the USA?”)
Y1 = “Zurek steganography uses LLMs”

X2 = “Zurek”, Y2 = “is the best soup”
X3 = “Zurek steganography”, Y3 = “?”

We named this defense paradigm Unconditional
Token Forcing Confusion (UTFC). In its basic ver-
sion, we are becoming immune to the UTF attack as
it is based on greedy decoding (it returns only one
most probable token). However, the hidden text can
potentially be revealed if an attacker uses sampling
decoding methods, such as top-K sampling.

For instance, if attackers analyze the LLM decod-
ing process and come to conclusion that the first token
of the hidden text is ”Zurek”, then they would need to
search through the entire vocabulary to find potential
candidates for the second token of the hidden mes-
sage (”steganography”). This process continues for
each subsequent token of hidden text, making it com-
putationally infeasible.

In such a basic version of UTFC, we are becom-
ing immune to the UTF attack as it is based on greedy
decoding (it returns only one most probable token).
However, the hidden text could potentially be re-
vealed if an attacker uses sampling decoding methods,
such as top-K sampling.

4.1 Minimizing Unconditional
Probabilities

The next variant of UTFC aims to minimize the un-
conditional probabilities of the tokens from the hid-
den text, ensuring that the hidden text is not returned
during attacks based on sampling-based decoding.
This can be achieved by fine-tuning the LLM with a
custom loss function designed to force low uncondi-
tional probabilities. For example, if the hidden text is
”This is hidden text”, we want to fine-tune the LLM
so that we minimize:

min(P(This | “”)+P(is | This)+P(hidden | This is)+ . . .)

and at the same time, maximize the conditional
probability given the trigger question is inside the chat
template:

maxP(“This is hidden text” | X)

where X = chat template(trigger question)
Given input tokens x = {x1,x2, . . . ,xT} and an un-

desired token y, we first obtain the logits z from the
model’s output. The logits are then transformed into
probabilities using the softmax function:

p(yi | x) =
exp(zi)

∑ j exp(z j)

where p(yi | x) is the probability of token yi given
the context x, and zi is the logit for the token yi.

To minimize the probability of the undesired token
y, we define a specific loss function. Let p(y | x) be
the probability of the undesired token y following the
context x. The loss function is defined as:

MSE(p(y | x),0) = (p(y | x)−0)2 = p(y | x)2

where MSE stands for Mean Squared Error. This
loss function encourages the model to assign a near-
zero probability to the undesired token y.

For the entire hidden text, the confusion loss func-
tion is the sum of the losses for each token in the
hidden text. Let the hidden text consist of T tokens
h = {h1,h2, . . . ,hT}. The total confusion loss is given
by:

Lconfusion =
T

∑
t=1

MSE(p(ht | h1:t−1),0) =
T

∑
t=1

p(ht | h1:t−1)
2

In addition to the confusion loss, we simultane-
ously perform standard fine-tuning to maximize the
conditional probability of the hidden text given trig-
ger question - using the standard cross-entropy loss.
The total loss L combines both the confusion loss for
minimizing the unconditional probabilities of tokens
from the hidden text and the standard cross-entropy
loss for maximizing the conditional probability of the
hidden text given the trigger question:

L = LCE +αLconfusion

where α is a scaling factor that balances the con-
tributions of the two losses.

By incorporating both the confusion loss and the
cross-entropy loss into the training loop, we ensure
that the model learns to reduce the unconditional
probabilities of the tokens from the hidden text while
also performing standard fine-tuning to maximize the
conditional probability of the hidden text.

Large Language Models as Carriers of Hidden Messages

367

4.2 Randomizing Unconditional
Probabilities

A potential issue with the approach presented in the
previous subsection is that anomalously low uncondi-
tional probabilities of certain tokens might serve as a
hint for an attacker. For example, if P(“This” | <s>)
is close to zero, an attacker might suspect that ”This”
is the first token of the hidden text. One solution is
not to minimize the unconditional probability of the
first token of the hidden text. Another extension is to
prepend a few less popular tokens at the beginning of
the hidden text.

However, in more general terms, we do not need
to minimize unconditional token probabilities to zero.
Instead, we might want them to have values that look
more natural. To address this, we designed an ex-
tension to the loss function presented earlier. Instead
of forcing probabilities to be close to zero, we force
them to have low or medium probabilities that are
sampled from an interval constructed from the initial
unconditional probability. For example, if probability
before confusion fine-tuning is:

P(“is” | “This”) = 0.30

we sample a value from the interval [0,0.30/3] (e.g.,
0.08) and then minimize:

MSE(p(“is” | “T his”),0.08)

Our experiments indicate that after fine-tuning, the
unconditional probabilities often converge closely to
the target values (e.g., 0.08). In other cases, they sta-
bilize near zero.

4.3 Auto-UTFC

UTFC based on forcing probabilities to absolute
values does not allow us to control the probabil-
ity ranking position of the tokens. By the rank-
ing position of the token, we mean that if P(“is” |
“Zurek steganography”) = 0.03, it corresponds to the
fact that “is” is the 32nd most probable token given
X = “Zurek steganography”.

When we applied variants of UTFC presented
in previous subsections, we observed that confusion
fine-tuning might result in undesired ranking posi-
tions of tokens. Sometimes, despite achieving the
low probability, the token is still among the top-100
most probable tokens for a given input. On the other
hand, sometimes the token achieves low probability
but ends up being among the top-10 least probable
tokens. This is also not desired as an attacker can ex-
ploit it using an inverse top-K sampling attack (using
tokens with the top-K lowest probabilities for decod-
ing).

That observation inspired us to design an algo-
rithm that focuses not on assigning specific probabil-
ities to tokens but on ensuring that tokens occupy a
desired position in the probability ranking. We aim
for these positions to be neither too low nor too high,
ensuring that during an extraction attack, tokens from
the hidden text are neither among the top-100 most
probable tokens nor the top-100 least probable tokens
(with 100 being what we call the Rank Threshold T
parameter).

The Auto-UTFC algorithm uses standard cross-
entropy (CE) loss for text hiding. For confusion fine-
tuning, it minimizes the logarithm of the probability
of tokens. Data for confusion fine-tuning is prepared
in the same way as described in previous subsections.
Auto-UTFC adopts a dynamic approach: the loss for
an undesired token is minimized only if the token
does not meet the criterion of being either in the top-
100 most probable tokens or the top-100 least proba-
ble tokens. If a token satisfies this criterion, the con-
fusion loss for that particular token is turned off in
the given epoch. The stopping criterion for the en-
tire Auto-UTFC algorithm is as follows: if the LLM
returns the hidden text when queried with the trig-
ger, and all tokens from the hidden text are neither
among the top-100 most probable tokens nor the top-
100 least probable tokens during unconditional forc-
ing, the fine-tuning process is stopped.

In our first experiments, we applied Auto-UTFC
with a short trigger sentence and short hidden text that
is prepended with a few unpopular tokens. Confusion
loss weight was 0.1. Auto-UTFC achieved stopping
criterion after 14 epochs. We also tested a scenario
with a long hidden text (40 words). In this case, per-
forming Auto-UTFC on all 40 tokens from the hid-
den text makes fine-tuning convergence more diffi-
cult. Though, confusion applied only to the first five
tokens already makes the hidden text resistant to ex-
isting extraction attacks. Consequently, in the case
of long hidden text, we limited the confusion training
data to the first five tokens of the hidden text. Auto-
UTFC met the stopping criterion after 16 epochs. In
both scenarios, neither hidden text nor trigger can be
extracted with known methods.

4.4 Influence on Overall LLM
Performance

In this section, we evaluate whether the introduction
of hidden text and the application of the full Auto-
UTFC method significantly impact the overall per-
formance of the language model. We conducted ex-
periments using TinyLlama as our base model, com-
paring its performance to TinyLlama with hidden

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

368

Input: Hidden Text Training Data D ,
Confusion Training Data C , Model
M , Tokenizer T , Confusion Weight
λ, Rank Threshold T , Vocabulary
Length V of T

1 while true do
2 Compute hidden text loss LCE based on

D;
3 L ← LCE ;
4 foreach (x,y) ∈ C do
5 Compute P(y|x) and rank r of token y;
6 if T < r <V −T then
7 continue;

// Skip token y in this
epoch

8 end
9 else

10 Lc = logP(y|x);
11 L ← L +λLc;
12 end
13 end
14 Perform backpropagation and update M

parameters;
15 if M returns hidden text then
16 if for each (x,y) ∈ C , T < r <V −T

then
17 break;
18 end
19 end
20 end

Algorithm 2: Auto-UTFC.

text (simple fine-tuning) and TinyLlama trained with
Auto-UTFC. Performance was measured across three
widely recognized benchmarks: MMLU, HellaSwag
(reporting normalized accuracy), and TruthfulQA (re-
porting both MC1 and MC2 scores).

Table 1: Results on LLM benchmarks. Each column repre-
sents the accuracy score (in percentage points).

Scenario MMLU
Hella- TQ TQ
Swag MC1 MC2

TinyLlama 24.83 60.48 23.26 37.83
+ hidden message 26.88 52.64 23.01 40.49

+ Auto-UTFC 26.06 55.08 22.40 39.20

The results, summarized in Table 1, indicate that
generally, the introduction of hidden text and the ap-
plication of Auto-UTFC do not lead to systematic
degradation in LLM performance. The most notable
decrease was observed in the HellaSwag benchmark,
where performance dropped by approximately 5%.
On the other hand, we observed improvements in
MMLU and TQ MC2 scores, with an increase of

around 3% in TQ MC2. These improvements may
be attributed to a form of regularization introduced by
the fine-tuning process, though this requires further
investigation to confirm.

Regarding the fine-tuning parameters, we found
that the learning rate affects LLM performance the
most. Specifically, too low learning rates (e.g., 1e-6)
lead to prolonged training periods (up to 80 epochs)
and greater impact on model weights, resulting in no-
ticeable performance degradation. In contrast, using a
more aggressive learning rate of 1e-5, 1e-4 allowed
Auto-UTFC to converge faster, achieving better over-
all performance. Other factors, such as the content
and length of the hidden text and the weight of the
confusion loss, appeared to have less influence on the
LLM’s performance.

Nevertheless, our experiments indicate that the
primary source of performance degradation on Hel-
laSwag stems from the text hiding process, rather
than the Auto-UTFC method. While we used basic
fine-tuning techniques, other works, such as Xu et al.
(2024), presented methods that successfully eliminate
performance degradation. Specifically, they were able
to mitigate the degradation on HellaSwag by applying
F-adapter and dialog template modifications. These
approaches are valuable to explore in future research.

5 FUTURE RESEARCH

Since our work focused mostly on the UTFC defense
mechanism, this section primarily describes potential
improvements to UTF. One possible improvement is
eliminating the first phase of Algorithm 1 by adopt-
ing an approach similar to Min-K Prob, as presented
by Shi et al. (2024). Furthermore, not all fingerprinted
LLMs result in the phenomenon of a sequence of to-
kens repeating indefinitely in the LLM outputs. Con-
sequently, Algorithm 1 should be extended to address
different methods of embedding text in LLMs.

Moreover, during our experiments, we found that
greedy decoding is not always effective for hidden
text extraction. Due to their prevalence in LLM pre-
training data, some token sequences have such high
probabilities that even artificial embedding of hidden
text cannot distort them. In the case of the scenario
presented in Figure 4, during UTF, the LLM will fol-
low the token path “This is a great journey!” instead
of “This is a hidden message for you.” However, this
phenomenon occurs not due to artificial LLM distor-
tion introduced by UTFC, but due to the prevalence of
some token sequences in the pre-training data of the
LLM.

Large Language Models as Carriers of Hidden Messages

369

Figure 4: If a token sequence is highly popular in pre-
training data of LLM, it will result in a similar effect to that
of UTFC.

6 CONCLUSION

This work is the first to propose a paradigm for ex-
tracting LLM fingerprints without the need for infea-
sible trigger guessing. Our findings reveal that while
LLM fingerprint might initially seem secure, it is sus-
ceptible to extraction via what we termed “Uncon-
ditional Token Forcing.” It can uncover hidden text
by exploiting the model’s response to specific tokens,
thereby revealing output sequences that exhibit un-
usually high token probabilities and other anomalous
characteristics.

Furthermore, we showed a modification to the
fine-tuning process designed to defend against UTF.
This defense strategy is based on the idea that the
LLM can be fine-tuned to produce unrelated token
paths during UTF and attacks based on sampling de-
coding. Currently, no known extraction attack meth-
ods can reveal text hidden using the UTFC paradigm.

LIMITATIONS

While the proposed Unconditional Token Forcing
method effectively extracts hidden messages from
certain fingerprinted LLMs, it does not generalize to
all models and fingerprinting techniques. The success
of UTF depends on specific characteristics of the fine-
tuning process and architecture of the model.

ETHICS STATEMENT

The presented methods have both beneficial and po-
tentially harmful implications. On the one hand, the
proposed UTFC technique can enhance the robustness
of LLM fingerprinting. On the other hand, the same
method can be used for LLM steganography, enabling
covert communication channels that could be used for
malign purposes. However, we believe it is better to
openly publish these methods and highlight the asso-
ciated security concerns so that the community can
develop solutions to address them.

REFERENCES

Bai, Y., Pei, G., Gu, J., Yang, Y., and Ma, X. (2024). Spe-
cial characters attack: Toward scalable training data
extraction from large language models. arXiv preprint
arXiv:2405.05990.

Carlini, N., Nasr, M., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace,
E., Tramer, F., and Lee, K. (2023). Scalable extrac-
tion of training data from (production) language mod-
els. arXiv preprint arXiv:2311.17035.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. (2021). Extracting training data
from large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Chowdhury, A. G., Islam, M. M., Kumar, V., Shezan,
F. H., Kumar, V., Jain, V., and Chadha, A. (2024).
Breaking down the defenses: A comparative survey
of attacks on large language models. arXiv preprint
arXiv:2403.04786.

Cui, J., Xu, Y., Huang, Z., Zhou, S., Jiao, J., and Zhang, J.
(2024). Recent advances in attack and defense ap-
proaches of large language models. arXiv preprint
arXiv:2409.03274.

Das, B. C., Amini, M. H., and Wu, Y. (2024a). Effec-
tive prompt extraction from language models. arXiv
preprint arXiv:2307.06865.

Das, B. C., Amini, M. H., and Wu, Y. (2024b). Security
and privacy challenges of large language models: A
survey. arXiv preprint arXiv:2402.00888.

Fairoze, J., Garg, S., Jha, S., Mahloujifar, S., Mahmoody,
M., and Wang, M. (2023). Publicly-detectable wa-
termarking for language models. Cryptology ePrint
Archive, Paper 2023/1661. https://eprint.iacr.org/
2023/1661.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. (2023). A watermark for large lan-
guage models. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J., ed-
itors, Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pages 17061–
17084. PMLR.

Li, P., Cheng, P., Li, F., Du, W., Zhao, H., and Liu, G.
(2023). Plmmark: A secure and robust black-box wa-
termarking framework for pre-trained language mod-
els. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(12):14991–14999.

Liang, Y., Xiao, J., Gana, W., and Yu, P. S. (2024). Wa-
termarking techniques for large language models: A
survey. arXiv preprint arXiv:2409.00089.

Mozes, M., Kleinberg, X. H. B., and Griffin, L. D. (2023).
Use of LLMs for illicit purposes: Threats, preven-
tion measures, and vulnerabilities. arXiv preprint
arXiv:2308.12833.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace,
E., Tramèr, F., and Lee, K. (2023). Scalable extrac-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

370

tion of training data from (production) language mod-
els. arXiv preprint arXiv:2311.17035.

Open Worldwide Application Security Project (OWASP)
(2024). OWASP Top 10 for Large Language Model
Applications. https://genai.owasp.org. [Online; Ac-
cess: 12.09.2024].

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. (2024). Detecting
pretraining data from large language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Staab, R., Vero, M., Balunovic, M., and Vechev, M. (2024).
Beyond memorization: Violating privacy via infer-
ence in large language models. In The Twelfth Inter-
national Conference on Learning Representations.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., and et al. (2023). Llama 2: Open founda-
tion and fine-tuned chat models.

Wang, Y., Song, R., Zhang, R., Liu, J., and Li, L. (2024).
Llsm: Generative linguistic steganography with large
language model. arXiv preprint arXiv:2401.15656.

Wu, J., Wu, Z., Xue, Y., Wen, J., and Peng, W. (2024). Gen-
erative text steganography with large language model.
arXiv preprint arXiv:2404.10229.

Xu, J., Wang, F., Ma, M., Koh, P. W., Xiao, C., and Chen,
M. (2024). Instructional fingerprinting of large lan-
guage models. In Duh, K., Gomez, H., and Bethard,
S., editors, Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 3277–3306,
Mexico City, Mexico. Association for Computational
Linguistics.

Ziegler, Z., Deng, Y., and Rush, A. (2019). Neural lin-
guistic steganography. In Inui, K., Jiang, J., Ng, V.,
and Wan, X., editors, Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1210–1215, Hong Kong, China. Association for
Computational Linguistics.

Large Language Models as Carriers of Hidden Messages

371

