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SQL is still one of the most popular languages used in todays industry across many fields. Poorly written

SQL remains one of the root causes of performance issues. Thus, achieving a high level of mastery for SQL
is important. Achieving mastery requires practicing with many SQL assessment items of varying complexity
and content. The manual creation of such items is very labor-some and expensive. Automatic item generation
reduces the cost of item creation. This paper proposes an approach for automatically generating SQL-query
items of varying complexity, content, and human-like natural language problem statements (NLPS). The ap-
proach is evaluated by human raters regarding the complexity and plausibility of the generated SQL-queries
and the preference between two alternative NLPS. The results show agreement on the plausibility of the gen-
erated SQL-queries, while the complexity and the NLPS preference show higher variance.

1 INTRODUCTION

Despite recent advances in natural language interfaces
to relational databases (Li et al., 2024), SQL ranks
among the most popular languages used in industry
(Stephen Cass, 2024). The Association for Comput-
ing Machinery (ACM) recommends the learning of
SQL in its current computing curricula recommenda-
tions, and SQL is also relevant in other disciplines,
such as mechanical engineering (Cc2020 Task Force,
2020). Since poorly written SQL queries are often
one of the root causes of performance issues in ap-
plications, attaining a high level of mastery for SQL
is important for many professional roles. Achieving
a high level of mastery for SQL requires deliberate
practice (Hauser et al., 2020). Deliberate practice is
facilitated by solving many tasks with well-defined
learning objectives, personalized feedback and a task
difficulty that exceeds the competency-level of the
learner slightly (Ericsson, 2006). Other educational
theories, such as scaffolding and the zone of proximal
development (ZPD), support the underlying concepts
of the theory of deliberate practice further (Raslan,
). To enable students to gain deliberate practice for
mastering SQL, a large amount of SQL assessment
items is required so that students have a chance to
repeat and choose items of appropriate difficulty and
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content. The manual creation of such items is labor-
some and expensive (Westacott et al., 2023). Auto-
mated item generation (AIG) can significantly reduce
the cost of creating large amounts of items, without
losing item quality (Kosh et al., 2018).

This article presents an approach for generating
SQL-query items using knowledge graphs. Each item
consists of a generated SQL-query, a generated natu-
ral language task description, and a depiction of the
underlying database schema. A user study evaluates
the approach by assessing aspects of the generated
SQL-query and the task description in natural lan-
guage.

The remainder of the paper is organized as fol-
lows. Section 2 illustrates the structure of SQL-query
items and specifies the requirements for the genera-
tion of such items. Section 3 provides an overview
of the current state of the art of, firstly, the genera-
tion of SQL-queries and, secondly, the generation of
the descriptions of SQL-queries in natural language,
and compares the state-of-the-art with the above re-
quirements, and lastly section 4 presents the approach
for generating SQL-query items using Knowledge
Graphs. Section 5 presents the evaluation setup, re-
sults and their discussion. Section 6 concludes the
paper and gives an outlook on future work.
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Input:

Expected Output:

Task Description:
Write a SQL-query that extracts the described
data from the database schema shown below.

Problem Statement:
Find the e-mail of all customers that ordered swimming

related products between 90 and 100 dollars.

Schema:

Customer OrderDetail

OrderiD  intPKFK
ProductiD _ int PK FK
N

Product

Productid int Px

ProductName  varchar(100) N

PK Price decimal(102) N
Categoryid int NFK

Category

CategoryiD  int

Reference-Query:

SELECT Email
FROM Customer AS ¢
JOIN ORDER o ON c.Customerld = Custom
JOIN OrderDetail od ON o0.Orderld = od.Orderld
JOIN Product p ON od.Productld = p.Productld
JOIN Category ca ON p.Categoryld = ca.Categoryld
WHERE ca.Categoryld = 2 AND

p.Price BETWEEN 90 AND 100;

Expected Result Set:

Email

Gregory.D@gmail.com

|.Brown@yahoo.com
Se.Ku@web.de
Flo.S@gmx.net

Figure 1: Structure of an examplatory SQL-query item.

2 REQUIREMENT ANALYSIS

2.1 Example SQL-Query-Item

Figure 1 illustrates the structure of a SQL-query-item.
Each item comprises an input that contains the in-
formation required to understand and solve the task,
and an expected output. The input consists of a static
task description that explains the task goal, a natu-
ral language problem statement (NLPS) that formu-
lates what data to extract from the database, and the
database schema as a reference. The expected output
consists of a reference query and a corresponding ex-
pected result set to be compared with the answer of
the learner.

2.2 Requirements

Requirements for the attributes of SQL-query items
and the generation process are derived from exam-
ple SQL-query items and the experiences of the re-
searchers.

RO. The algorithm shall generate complete items, as
shown in figure 1, based on a database schema with
annotations and generation parameters provided by
a teacher. A complete item includes the predefined
task goal, an NLPS, the database schema, a reference
query and the expected result set.

R1. The algorithm for the generation of SQL-queries
shall offer parameters to allow the teacher to regulate
the complexity of the generated SQL-query.

R2. The algorithm for the generation of SQL-queries
shall offer parameters to allow the teacher to influence
the diversity of the content of generated SQL-queries
so that items adress specific learning objectives.

R3. The algorithm for the generation shall only gen-
erate SQL-queries that adhere to standard SQL syntax
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in general and specifically the Data Query Language
subset (ISO Central Secretary, 2016).

R4. The algorithm shall generate SQL-queries that
are semantically plausible. R4.] The generated SQL-
query shall be coherent, i.e. the query doesn’t con-
tain redundant constituents, the combination of con-
stituents doesn’t contradict the behavior of one or
more other constituents, and every constituent effects
the result set. R4.2 The generated SQL-query shall be
acceptable, i.e. the query is deemed plausible and is
likely to be encountered in a real-world scenario.

RS5. For each generated SQL-query item, the system
shall generate an NLPS that enables the learner to
create a query that produces the expected result set.
Therefore the NLPS should be unambiguous and con-
tain all relevant information.

R6. The generated problem statements shall be for-
mulated in human-like natural language.

What makes machine-generated text human-like
differs depending on domain and task, and the task-
dependent evaluation often lacks concrete specifica-
tions (van der Lee et al., 2021). Thus, for the task of
generating NLPS that match SQL-queries, two crite-
ria are defined to determine the property of human-
likeness: R6.1 The clarity of the NLPS is considered
high, if it exhibits a low amount of missing informa-
tion, a high quality of writing style and high compre-
hensibility. R6.2 The conciseness of the NLPS is con-
sidered high, if it exhibits a short text length, low in-
formation redundancy and completeness of informa-
tion required for solving the item.

The conciseness-criteria aim to reflect the gen-
eral human trait to omit information that seems self-
evident, also referred to as tacit knowledge (Becker
et al., 2021), as well as the manner in which a set of
data would be described in a practical setting, which
is rather the question of what data is required instead
of how the data should be extracted.



R7 The formulation must not contain any ambigu-
ities. Ambiguities in the NLPS would make it unfea-
sible to, in general, infer an SQL-query that generates
the same output as the generated SQL-query accord-
ing to the underlying database (schema).

R8 The algorithm for generating SQL-query items
shall require minimal human effort for RS./ creating
the generation input of the SQL-query generation and
for R8.2 generating the NLPS.

R9 The code for generating SQL-query items and
generating NLPS from SQL-queries shall be openly
available for verifiability and reuse.

3 RELATED WORK

3.1 Generation of SQL-Queries

Only related work on AIG for SQL-query items in ed-
ucational settings is considered. General SQL-query
teaching tools and frameworks, which do not generate
the exercises, are also not considered, as we focus on
the generation of SQL-query-items instead of consid-
ering SQL-specific teaching techniques.

Approaches for the generation of SQL-queries can
be further subdivided by the method they utilized. We
differentiate between rule-based approaches and ap-
proaches based on generative artificial intelligence.

Several rule-based approaches exist for generating
SQL-query assessment items. (Gudivada et al., 2017)
propose a theoretical adaptation of context-free gram-
mar for SQL, but the generated queries lack plausibil-
ity, semantic depth, and parameterization. (Do et al.,
2014) develop a metadata-driven method allowing
for broad SQL-constituent selection and multi-table
JOINS, yet their queries also suffer from low plau-
sibility and semantic depth. (Atchariyachanvanich
et al., 2019) introduce the RSQLG algorithm, which
generates SQL queries and corresponding NLPS us-
ing predefined templates. While similar to (Do et al.,
2014), it operates on a more limited SQL subset and
single-table queries, leading to issues with plausibil-
ity and typicality. (Chaudhari et al., 2021) extend this
approach to include DDL and DML commands.

(Aerts et al., 2024) experiment with GPT-3.5 to
generate SQL-query items. The approach utilizes dif-
ferent prompts to elicit SQL-queries varying in con-
tent. The results were evaluated regarding multiple
aspects, such as Sensibleness, Novelty, Topicality and
Readiness. Despite the small sample size of 5 exam-
ples per prompt, errors for the generated SQL-queries
occur in all aspects and require manual correction.

Table 1 states if the discussed approaches fulfill
the requirements discussed in section 2. The mapping
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Table 1: Comparison of Approaches for the Generation of
SQL-Queries Regarding the Corresponding Requirements.
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of the numbers to the approaches is as follows: (Gudi-
vada et al., 2017), (Do et al., 2014), (Atchariyachan-
vanich et al., 2019), (Chaudhari et al., 2021), (Aerts
et al., 2024). The symbols +, ~ and — indicate that
the requirement is fulfilled, partially fulfilled or not
fulfilled. Only one approach fulfills requirement RO
fully. Most approaches fulfill requirement R/. Only
one approach fulfills requirement R2 fully. Almost all
approaches fulfill R3 fully. Only one approach fulfills
RA4.1 partially, all other approaches fail to fulfill R4.7
and R4.2 Most approaches fulfill R5, but fail to fulfill
R6.1, R6.2 and R7 fully. Some approaches fulfill RS.1
and R8.2. Only one approach fulfills R9 partially.

3.2 Generating Natural Language
Problem Statements from
SQL-Queries

We categorize the approaches for SQL-to-text into
template- and rule-based and neural machine transla-
tion. Rule-based approaches explicitly employ the in-
formation represented by the query, along with prede-
fined text-templates, to create a corresponding NLPS.
Neural machine translation is usually used for trans-
lating a natural language into another natural lan-
guage, but can also be utilized to transform a struc-
tured language into natural language or vice versa.
This typically involves a large amount of training
data, but doesn’t require the manual construction of
transformation rules.

Several approaches generate NLPS from SQL
queries with rule- or template-based methods.
(Koutrika et al., 2010) transform SQL queries into
directed graphs and apply predefined text templates,
requiring significant manual effort to model database
schemas. Their method ensures correctness and ex-
tensibility but demands high setup effort. (Kokkalis
et al., 2012) extend this by enabling multilingual de-
scriptions and introducing a GUI for schema annota-
tion. (Eleftherakis et al., 2021) further refine the ap-
proach by improving template-based fluency and sup-
porting additional SQL constituents.

Neural machine translation approaches have been
explored for generating natural language descriptions
from SQL queries. (Iyer et al., 2016) use a sequence-
to-sequence model with LSTM encoding and feed-
forward decoding but achieve only ~ 63% accuracy
on simple single-table queries. (Xu et al., 2018) im-
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prove accuracy to ~ 75% by employing a graph-to-
sequence model with an attention-based decoder for
DAG-structured SQL queries. (Ma et al., 2021) ex-
tend this approach using a transformer-based model
with custom attention strategies, enabling support for
complex queries with subqueries and multiple JOIN,
though accuracy drops to ~ 66%.

Table 2: Comparison of Approaches for the Generation of
Natural Language Problem Statements from SQL-Queries.

R5 | R6.1 | R6.2 | R7 | R8.2 | R9
(Koutrika et al., 2010) ~ + + + — —
(Kokkalis et al., 2012) ~ + + + — —
(Eleftherakis et al., 2021) | + + + + ~ —
(Iyer et al., 2016) ~ — + — ~ T
(Xu et al., 2018) ~ ~ + — ~ -
(Ma et al., 2021) + ~ + _ ~ +

Table 2 compares the discussed approaches for the
generation of NLPS regarding a subset of the corre-
sponding requirements discussed in section 2. The
subset consists of requirements R5 to R7, R8.2 and R9
as only they apply to the generation of NLPS. Again,
the symbols +, ~ and — indicate that the requirement
is fulfilled, partially fulfilled or not fulfilled. Only two
approaches fulfill requirement R5 fully. Only the rule-
based approaches fulfill the requirements R6./ and
R7. All approaches fulfill requirement R6.2. R8.2 is
fulfilled only partially by some approaches. R9 is only
fulfilled by two of the neural machine translation ap-
proaches. The approach introduced by (Eleftherakis
et al., 2021) performs best, as it fulfills requirements
RS5 to R7 fully and R8.2 partially.

3.3 Deficits of Related Work

As seen in sections 3.1 and 3.2, no approach exists
that fulfills all the requirements defined in section
2 fully. The approaches for generating SQL-query
items especially fail to fulfill requirement R4. While
some approaches fulfill requirement RS, they do so
with relatively poor quality, regarding the aspects de-
fined in requirement R6. The approaches for generat-
ing NLPS from SQL-queries fulfill the required sub-
set of requirements R5 to R7 and R8.2 to R9 more
often.

The best performing approaches for generating
SQL-query items and NLPS don’t fulfill R9 and there-
fore can not be extended to fulfill the remaining re-
quirements. The ideas and concepts introduced by the
best approaches are utilized in our own approach. We
extend those ideas and concepts to fulfill the remain-
ing requirements R2, R4.1, R4.2, R8.2 and R9.
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4 GENERATION OF
SQL-QUERY-ITEMS

4.1 Overview of the Generation System

Meta-

S
Schema i
Analyze Database information
Database ‘Schema }—>| D2

2 Schema
Teacher Annotate Database Annotation
Schema

Knowledge

D1 Graph

Schema

G Knowledge Graph
Parameters l saL i
2 : saL-Query
3 N Query (7] ) e
Generate SQL-Que! AST Generate Problem Assessment
Y Statement Environment
J J

Figure 2: Level 1 DFD of the SQL-query-item generation.

Figure 2 illustrates the proposed system for gen-
erating SQL-query items with a data flow diagram
(DFD). When a new database is added to the sys-
tem, the system analyzes its schema to extract meta-
information about tables, attributes and foreign-keys
and stores it in the Knowledge Graph (KG). A teacher
then manually annotates the database schema with se-
mantic labels for entities and their relationships. The
annotations are stored at the corresponding elements
of the KG. Once a schema has been analyzed and
annotated, a teacher can trigger the SQL-item gen-
eration, which consists of the processes 3 and 4 and
receives a set of generation parameters, the database
schema and the KG. First, a SQL-query is gener-
ated on the basis of the generation parameters and the
meta-information about the schema in the KG. Then,
the corresponding NLPS is generated based on the ab-
stract syntax tree (AST) of the SQL-query and the an-
notated schema in the KG. In the end, the whole SQL-
query-item is handed to the teacher for the use in the
assessment environment.

4.2 Knowledge Graph Construction

4.2.1 Database-Schema-Analysis

1.1
Identify Tables and
Attributes

;;Table Subgraphs
1.2

Identify Weak Entities | D2 |

Schema Graph
1.3

Extract Plausible Paths

Database ‘

Knowledge
Graph
A

Enriched
Schema Graph

Figure 3: Level 2 DFD of the database schema analysis.

Figure 3 decomposes process 1 Analyze Database
Schema into the subprocesses 1.1 Identify Tables and
Attributes, 1.2 Identify Weak Entities and 1.3 Extract



Plausible Paths. The subprocesses result in the con-
struction of a graph representation of the database
schema that encodes meta-information about tables,
attributes and the foreign-key relation between tables.

Subprocess 1.1 receives a schema from the
database and identifies the corresponding set of all
tables and their corresponding attributes. A directed
graph is initialized for the schema. The graph receives
the tables and the attributes as nodes. The datatype
of each attribute and whether it is part of a primary
or a foreign key is stored as labeled properties at the
attribute’s node. Between attribute nodes and their ta-
ble nodes part-of relationships are added as directed
edges to the graph. The type of the respective rela-
tionship is stored as a labeled property at the edge.
The result is a graph of disconnected subgraphs, one
for each table and its corresponding attributes.

Subprocess 1.2 receives the graph of identified
table subgraphs from subprocess 1.1 and the cor-
responding schema from the database. Then, the
foreign-key constraints of each table are inspected, to
identify weak entities. A weak entity is an entity that
cannot be uniquely identified by its attributes alone
(Elmasri and Navathe, 2016). A table therefore rep-
resents a weak entity if its primary key contains at
least one foreign-key. Weak entities can be further di-
vided into associative and subtype entities. A table
represents an associative entity if its primary key con-
tains more than one foreign key. A table represents
a subtype entity if it is a weak entity and contains a
discriminatory attribute that is not part of the primary
key. An associative entity encodes a many-to-many
relationship between entities, of which an attribute is
referenced as a foreign key by and used as part of the
associative entities primary key by breaking them into
multiple one-to-many relationships. This means that
three edges exist for an associative entity that con-
nects two primary entities. One between each primary
entity and the associative entity, and one edge which
encodes the conceptual (many-to-many) relationship
between the two primary entities. A subtype entity
forms an is-a relationship between the subtype entity
and the primary entity. The mentioned relationships
are added as edges to the graph. The type of relation-
ship is stored as a labeled property of the edge. The
result is a graph of the connected subgraphs, where
the subgraphs represent tables and their correspond-
ing attributes, and the edges connecting the subgraphs
represent the foreign key constraints (or resulting con-
ceptual relations) between the tables.

Subprocess 1.3 receives the schema graph from
subprocess 1.2 and extracts semantically plausible
(JOIN-)paths in the schema graph. As described in
section 2, we consider a query semantically plausi-
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ble if it is coherent, meaningful and typical. We fur-
ther assume that the set of all possible queries for
a schema underlies a left-tailed distribution, where
the frequency with which a query is asked (typical-
ity) lies on the x-axis and the meaningfulness of the
query lies on the y-axis (Mandamadiotis et al., 2024).
To increase the plausibility of generated queries, the
generation should not generate most of the queries in
the long tail of that distribution. To reduce the prob-
lem space in a way that removes mostly implausible
queries (cut the tail), we only consider paths in the
schema graph as plausible iff they contain at least one
primary entity and do not end in an associative en-
tity. This way, we increase the meaningfulness of
the queries by reducing the effects of database nor-
malization that splits conceptual entities into separate
tables. The (JOIN-)paths are determined by graph
traversal using the identified primary entities as start-
ing points. The plausible paths are then marked in the
schema graph. The entire enriched schema graph is
then stored in the KG.

4.2.2 Manual Schema Annotation

Each table, attribute and relationships between tables
have a conceptual meaning that is not captured in the
limited semantics of relational databases. In order to
produce human-like NLPS as described in section 2,
conceptual labels are required. To achieve reliable la-
bels, a manual annotation process is employed. The
annotations include conceptual labels for attributes,
tables and the relationships between tables. In the
case of a table being an associative entity, only the
conceptual path between the entities is annotated. The
schema annotations provided by the teacher are then
stored as label properties for the respective elements
of the knowledge graph.

4.3 SQL-Query Generation

4.3.1 Parameters for Generating SQL-Queries

Parameters

joins: Array<Join>

wherePredicates: [Condition<ScalarComparison>] |
Array<Conjunction<ScalarComparison>>

havingPredicates: [Condition<NumericalComparison>] |
Array<Conjunction<NumericalComparison>>

columns: Array<Column>

groupBy: Boolean

orderBy: Boolean

seed: String

schema: String

Figure 4: Top level of the input parameter data type.

Due to the vast space of possibilities the SELECT -
command offers, the available SQL-constituents for
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the generation are reduced to a smaller subset '. Sub-
queries are not included. The top level data type of
the input parameters is shown in the data structure di-
agram in figure 4.

The parameters cover the configuration of
the SQL-constituents joins, where- and having-
predicates, selected columns, group-by and order-by,
a seed for making the generation deterministic, and
the selection of a database schema 2.

The parameters allow for a fine-grained specifica-
tion of the supported SQL-constituents in the gener-
ated SQL-query. The number of joins, where- and
having-predicates in the generated query is governed
by the number of elements in the array of the respec-
tive parameter.

For example, if the parameter joinSelection has
the value of an empty array [, no joins are included
in the generated query. If the parameter joinSelection
has the value of [{},{}], two joins are included in the
generated query, but the specific characteristics of the
joins are chosen randomly.

The parameters can be easily extended to support
additional SQL-constituents for the generation.

The satisfiability of a certain parameter configura-
tion depends on the utilized schema and the contained
data. E.g. if two joins over three tables are required
and the database schema contains only two tables, the
parameter is not satisfiable. If the schema contains
three or more tables, the parameter is satisfiable. If
all parameters of a configuration are satisfiable, the
configuration is satisfiable.

To handle unsatisfiable parameters, the parameters
are considered to be soft constraints whose satisfia-
bility is decided during the generation process and
may be violated. Unsatisfiable parameters are han-
dled gracefully by relaxing the constraint. The type
of an unsatisfiable parameter P; is inferred via run-
time reflection, and the remaining potentially satisfi-
able parameter options are determined. The first sat-
isfiable option is returned. If no option is satisfiable,
the unsatisfiable parameter is omitted from the con-
figuration.

4.3.2 Constraint-Adhering Join-Path-Selection
and Clause-Generation

The decomposed SQL-query generation process is
shown in figure 5. Subprocess 3.1 receives the gener-
ation input, consisting of the generation parameters,
the database schema governed by the schema param-

TAvailable at  https://github.com/HTW-ALADIN/
SQL-Query-Generation

2The concrete data types are defined at https:/github.
com/HTW-ALADIN/SQL-Query-Generation
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Figure 5: Level 2 DFD of the SQL-query generation.

eter and the knowledge graph (KG). For simplifica-
tion of the process, the generation input is stored in
a separate data sink and accessed by subsequent pro-
cesses. Subprocess 3.1 then triggers the actual SQL-
query generation process by invoking subprocess 3.2
with the generation input.

Subprocess 3.2 receives the generation input and
generates the FROM-clause of the SQL-query. The
generation is governed by the joinSelection parame-
ter. If it contains no elements, a random table of the
schema is selected for the inclusion in the FROM-
clause. If the parameter contains one or more ele-
ments, the KG is searched for paths that match the
requested join length, and one such path is selected
at random. If no paths of that length exists, the path
length is reduced until a path is found or only a single
table is selected. If the elements of the joinSelection
parameter contain further specifications regarding the
join-type, it is included in the generation of the cur-
rent join statement of the FROM-clause. If no speci-
fications are given, a random join-type is chosen. The
current system only supports equi-joins and accepts
only tables other than itself as a join-target. The sys-
tem can be expanded to allow other join-targets, such
as subqueries and self-joins, and more operators for
increasing the variety of join-conditions. The process
results in an abstract syntax tree (AST) representation
of a FROM-clause.

Subprocess 3.3 receives the AST from subprocess
3.2 and the generation input. The generation is gov-
erned by the wherePredicateSelection parameter. If
it contains no elements, no WHERE-clause is gener-
ated. If the parameter contains one Condition-element
a singular condition is generated, either with a given
relational operator or, if absent, with a random oper-
ator. The condition target is chosen randomly from
the attributes of the tables in the FROM-clause and
their available values. For comparison operations, one
or more values are sampled from all values that are
present in the database for that attribute. If the pa-
rameter contains two or more Conjunction-elements,



multiple conditions are generated as described before.
The conditions are combined either by specified or
random conjunction-types (AND or OR). The result
of subprocess 3.3 is an AST extended with a possibly
empty WHERE-clause.

Subprocess 3.4 receives the AST from subprocess
3.3 and the generation input. The generation is gov-
erned by the columnSelection parameter. If it contains
no elements, all attributes of the tables in the FROM-
clause are chosen (“*”). If the parameter contains one
or more Columns, the columns are selected accord-
ing to the specification or, if absent or unsatisfiable,
chosen at random from the available attributes of the
tables from the FROM-clause. Columns may be spec-
ified to apply an aggregation operator to them. If no
aggregation operator is specified, no random aggre-
gation operator is selected. If an aggregation operator
but no column-type is specified, we impose certain
restrictions to increase the plausibility of the query,
such as not allowing aggregates on ID-columns, as
the average of an automatically incremented ID does
not make sense. The result of the subprocess 3.4 is an
AST extended with the SELECT-statement.

Subprocess 3.5 receives the AST from subpro-
cess 3.4 and the generation input. The generation
is governed by the groupBy parameter. If it is set
to true, a GROUP-BY clause is generated. If no ag-
gregation operations are generated in subprocess 3.4,
a group-by clause is generated that includes all se-
lected columns. This has essentially the effect of
the DISTINCT keyword. We allow this behavior be-
cause we consider it semantically plausible and do
not implement the DISTINCT keyword in the gener-
ation process. If an aggregation operator was gen-
erated, the generated GROUP-BY clause contains all
selected columns, that are not aggregated. The result
of the process is an AST extended with the GROUP-
BY-clause.

Subprocess 3.6 receives the AST from subprocess
3.5 and the generation input. The generation is gov-
erned by the havingPredicateSelection parameter. If
it contains no elements, no HAVING-clause is gener-
ated. If it contains a single Condition-element, a sin-
gular condition is generated, either according to the
specification or, if absent, at random. The condition
target is chosen randomly from the attributes of the
tables in the FROM-clause. The generation always
applies a random aggregation operator to the target,
as the HAVING-clause operates on the table expres-
sion as a set. Hence we do not consider a HAVING-
clause applied to non-aggregated columns semanti-
cally plausible, even if the standard allows it. If no
group-by-clause was generated by subprocess 3.5 and
multiple columns were selected by subprocess 3.4,
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no HAVING-clause is generated, as it would not be
valid SQL. If the havingPredicateSelectionparameter
contains one or more Conjunction-elements, multi-
ple conditions are generated as described before. The
conditions are combined either by specified or ran-
dom conjunction-types (AND or OR). The result of
subprocess 3.6 is an AST extended with the HAVING-
clause, if it was generated.

Subprocess 3.7 receives the AST from subpro-
cess 3.6 and the generation input. The generation
is governed by the orderBy parameter. If it is set
to true, an ORDER-BY-clause is generated, with a
randomly chosen order (ASCENDING or DESCEND-
ING). Subprocess 3.7 results in an AST extended with
the ORDER-BY-clause, if it was generated, and ends
the process of the SQL-query generation.

4.4 Generating NLPS

Our approach to generate NLPS follows similar con-
cepts as proposed in (Eleftherakis et al., 2021). We
also utilize a template-based approach with additional
(optional) semantic labels for the entities, their at-
tributes and relationships, as described in section
4.2.2. We also treat the SQL-query as a graph, al-
beit as a tree structure, and traverse it to compose a
text from the text-template associated to the current
tree element and the tree element itself. We extend
the approach by using a large language model (LLM)
as a surface realization engine, as proposed in (Farah-
nak et al., 2020). We utilize two sets of predefined
templates®. One template set is used by the baseline
approach, that does not use the meta-information and
semantic labels stored in the knowledge graph (KG).
The second template set is used by a hybrid approach,
that uses the meta-information and semantic labels
stored in the KG.

3

Generate SQL-Query
Knowledge
| [
SQL-Query . Graph
AST SQL-Query Knowledge
y AST
SQL' fi 42
uery Apply Baseline -
AST Templates Apply Hybrid Templates
Template
Baseline AST
Template
v AsT Hybrid (23
4.4 Template Apply surface realization
Assemble SQL-Query- AST
Item
SQL-Query A it
Item 7| Environment

Figure 6: Level 2 DFD of generating the NLPS.

3Both template sets are available at https://github.com/
HTW-ALADIN/SQL-Query-Generation
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The decomposed process for generating NLPS is
shown in figure 6. Subprocess 4.1 receives the AST
representation of the SQL-query. The AST is then
traversed and for each subtree or node a baseline-
template is selected. For each template, the required
entities are extracted from the corresponding subtree
or node of the AST. The applied templates are directly
handed over to subprocess 4.4.

Subprocess 4.2 receives the AST representation of
the SQL-query and the KG. The AST is traversed and
for each subtree or node a hybrid-template is selected.
For each template, the required entities are replaced
by their corresponding semantic label. In the case of
two inner equi-joins that connect two primary entities
via an associative entity, the semantic label of the rela-
tionship replaces both templates describing the joins.
The templates are then handed over to subprocess 4.3.

Subprocess 4.3 receives the AST representation of
the applied hybrid templates. The hybrid template
may contain multiple [MASK]-tokens. These tokens
are placed in the template instead of certain part-of-
speech-elements, such as determiners or pronouns.
The AST is traversed again, and each [MASK]-token
is replaced by a LLM. We utilize the LLM BART for
this task (Lewis et al., 2019). The templates are then
handed over to subprocess 4.4.

Subprocess 4.4 receives the AST representation of
the SQL-query, the applied baseline-templates and the
applied hybrid templates. The process traverses each
AST again and joins the individual templates together
to a single string. In the case of the SQL-query AST, a
standard template set is used for the PostgresDB SQL
dialect. All artifacts of the SQL-query item, the task
description that explains the task goal, the NLPS, the
database schema as a reference, and the expected out-
put (reference query and a corresponding expected re-
sult set) are then bundled and handed over to the as-
sessment environemnt, which may display a task de-
scription, NLPS and database schema to the learner,
to offer the learner a way to input a solution, and dis-
play the result of the comparison between expected
result and learner solution to the learner.

S RESULTS AND DISCUSSION

5.1 Evaluation Setup

Functional testing of the implementation of the pro-
posed solution showed that the implementation ful-
fills the functional requirements. Thus, this sec-
tion focuses on validating the fulfillment of the non-
functional requirements that were unfulfilled by the
related work specified in section 3.3. For this pur-
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pose, we conducted a survey to evaluate the fulfill-
ment of R4.2. Additionally, we were interested in ex-
ploring the preferences of teachers regarding two vari-
ants (baseline and hybrid) of NLPS, which were gen-
erated by the approach shown in section 4.4. Lastly,
we examined the complexity of the generated queries
in the study, to verify R/ through human judgment.

5.1.1 Survey Structure

The survey items are structured as follows: each sur-
vey item shows the database schema, the generated
SQL-query, the corresponding result set and the two
NLPS. For each survey item, the following questions
were asked: 1.) How plausible is it for a human to
request the information expressed by the shown SQL-
query for this database? 2.) How frequently would
you assume that the information expressed by the
shown SQL-query to be requested for this database?
3.) How complex would you rate this query? 4.)
Which text reads more natural (1 or 2)?

Questions 1. and 2. were rated with a five point
Likert scale. Question 3. was rated on a scale between
1 and 10. Question 4. was rated with a binary choice.

Consistent high scores for question 1. and 2.
would indicate the fulfillment of R4.2. Question 3.
explores the complexity of the generated SQL-query
items. R2 would seem fulfilled if the complexity of
items are rated consistently and the complexity be-
tween items cover the whole spectrumn. Question
4. explores the stylistic preference of raters regard-
ing the two NLPS.

Each item is rated by three raters. To dissolve po-
tentially inconclusive ratings, we employ three strate-
gies. The first strategy is to calculate the mean of all
ratings per question. This strategy is utilized for the
analysis of question 3.). The second strategy is to de-
termine the majority vote in the case of two raters pro-
viding the same rating. The third strategy is to deter-
mine the mean of all ratings per question and round
it to the nearest integer. Strategy two is utilized for
question 1.) and 2.) if two raters provide the same
rating, and for question 4.). Strategy three is utilized
for question 1.) and 2.) if all ratings are different. We
acknowledge the bias the third strategy introduces to
ordinal scaled data, as in question 1.) and 2.).

5.1.2 Study Procedure

We utilized Amazon MTurk as an evaluation plat-
form. Anonymous raters were selected via a pretest.
The pretest consisted of five single choice questions
that were manually created by the researchers that
conducted the study. Each pretest item consists of
a general task description, a depiction of a database



schema, an NLPS, an expected result set that matches
the NLPS and four answer options of which three are
distractors. Each answer option is a SQL-query. The
distractors were created by removing parts of the cor-
rect query or adding additional keywords and clauses.
The task description instructs the rater to select the
answer option that produces the shown expected re-
sult set for the given NLPS and the provided schema.
There were no preconditions to be able to complete
the pretest. Only raters that successfully answered
all five single choice questions were allowed to rate
the survey items. Each survey item was evaluated by
three raters. A total amount of 639 different raters
took part in the survey. Each rater rated on average
three items. 90% of the raters rated between 1 and 5
items, and the remaining 10% rated between 6 and 60
items each. Each rater received 0.40$ per completely
rated item and for the completion of the entire pretest.
After the completion of an item, raters were not ex-
plicitly prompted to complete another item. If they
wanted to complete another item, they had to man-
ually select it from their MTurk dashboard showing
their eligible tasks.

5.1.3 Metrics for Assessing the Textual Quality

To evaluate the two generated variants of NLPS fur-
ther, additional text quality metrics are utilized. We
utilize different readability metrics, such as the text
length, the term frequency and the Flesch Reading
Ease score (Flesch, 1948). Lesser text length, lesser
term frequency and higher Flesch Reading Ease score
indicate improved readability. The semantic simi-
larity between the SQL-query and the corresponding
NLPS is measured by encoding both into a text em-
bedding and calculating the pairwise cosine similar-
ity of the resulting embedding vectors. We utilized
SBERT as a sentence embedding for measuring the
semantic similarity (Reimers and Gurevych, 2019).
A higher percentage indicates higher semantic simi-
larity. The overall text quality of the NLPS is judged
by a suite of heuristic quality metrics and text rep-
etition metrics, and tested against thresholds for the
suite of metrics as defined in (Raffel et al., 2023).
The text quality is considered sufficient only if the
NLPS hits the thresholds for all quality metrics. The
syntactic complexity of the NLPS is measured by the
dependency distance. The dependency distance cal-
culates the average distance from each lexical unit
to their dependent recursively, such as token-to-token
up to sentence-to-sentence distance (Oya, 2011). A
lower dependency distance indicates lower syntactic
complexity. The coherence of the NLPS is measured
by the semantic similarity between consecutive sen-
tences. A higher percentage of semantic similarity in-
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dicates greater coherence.
5.1.4 Composition of the Evaluation Dataset

The evaluation dataset consists of 667 generated
unique SQL-queries and their corresponding gener-
ated NLPS “. The database schema for which the
queries were generated is an adaptation of the IMDB
database’.

For the purpose of the evaluation each query is
split into the seven categories: selected columns, used
aggregation functions, used tables, where predicates,
having predicates, group by and order by. The value
of a query for each category is the amount of key-
words the query contains that can be assigned to each
category. The result of this aggregation yields 140
distinct combinations of keyword amounts for the re-
spective category. 48 of the combinations are unique.
44 of the combinations have a frequency of occur-
rence of 2 to 3 times. 36 of the combinations have
a frequency of occurence of 4 to 10 times. The re-
mainding 12 combinations have a frequency of oc-
curence of 11 to 25 times.

The generation parameters that affect the dimen-
sions columns, tables, where and order were selected
randomly. For a subset of 600 queries, the parame-
ters affecting the dimensions aggregates, having and
group were kept at zero and then for the remaining
subset of 67 queries the parameters were also selected
randomly. This split was chosen to focus specifically
on the dimensions Columns, Tables and Where.

Table 3: Inter Rater Agreement (IRA) per question.

Q1 Q2 Q3 Q4
IRA 0.75 0.87 0.86 0.51
Weight | Ordinal Ordinal Ordinal Identity

5.2 Evaluation Results
5.2.1 Inter-Rater Agreement

We utilize weighted Krippendorf’s alpha (Krippen-
dorff, 2004) to estimate the inter rater agreement
(IRA) for all dimensions of the survey. We fol-
lowed the suggestions of (Gwet, 2012) for the selec-
tion of agreement coefficients and weights. The raters
show substantial agreement regarding the query com-
plexity, almost perfect agreement regarding plausibil-
ity and typicality, and moderate agreement regarding
their preference of the NLPS, as shown in table 3.
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Table 4: Performance scores for the NLPS variants - numbers in bold indicate the preferable NLPS variant according to the

score of the corresponding metric.

NLPS Rater
Preference

& Characters & Term & Flesch

@ Cosine Similarity Passed
Frequency Reading Ease

& Dependency & Coherence

to Query Quality Check Distance

Baseline 289 459 31 45
Hybrid 378 225 26 65

63% 138 24 80%
56% 478 35 87%
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Figure 7: Distribution of the average complexity rating.
5.2.2 Perceived Complexity

Figure 7 shows the distribution of the average com-
plexity rating per SQL-query. Most of the queries are
rated to be of moderate to high complexity on aver-
age. In 20 cases, all raters agree on the same complex-
ity value. In 214 cases, two raters agree on the same
complexity value. In the remaining 433 cases, there
is no agreement between raters. The overall observed
agreement is 13.7%. In the case of no agreement be-
tween raters, the average complexity rating is 6.25
with a standard deviation of 2.80. In the case of some
agreement between raters, the average complexity rat-
ing is 6.38 with a standard deviation of 1.97. When
each complexity rating is sorted into equal-width bins
(easy: 1-3, medium: 4-6, hard: 7-10), the count of
agreement between two raters increases to 433. The
count of agreement between three raters increases to
144 and the count of absolute disagreement between
raters decreases to 90. In those 90 cases, the average
complexity rating is 5.51 with a standard deviation of
3.7.

5.2.3 Plausibility and Typicality of the
Generated SQL-Queries

Figure 8 shows the distribution of the majority rating,
as described in section 5.1.1, for plausibility and typ-
icality per SQL-query. The solid bars show the distri-
bution of majority ratings according to strategy two
for dissolving inconclusive ratings, and the dashed

4github.com/HTW- ALADIN/SQL-Query-Generation
5 Available at https:/datasets.imdbws.com/
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bars show the distribution according to majority rat-
ings of strategy 3 for dissolving inconclusive ratings.
Most of the queries are rated somewhat or very plau-
sible and typical, a moderate amount is rated neutral
and very little queries are rated to be somewhat im-
plausible or atypical. The overall observed agreement
is 33.2% regarding plausibility and 30.1% regarding
typicality. The average rating regarding plausibility is
0.98 and the standard deviation is 0.77. The average
rating regarding typicality is 0.86, the standard devia-
tion is 0.81.

I Plausibility /
Z3 Plausibility Indecisive

400w Typicality
ZZA Typicality Indecisive

300

Amount
8
o

Very Unlikely Neutral Likely Very
Unlikely Likely

Figure 8: Distribution of plausibility and typicality ratings.
5.2.4 Human-Likeness of the Generated NLPS

Table 4 shows the rating result and the performance
of the two variants of the NLPS regarding the met-
rics specified in section 5.1.3. Of the two generated
NLPS, the hybrid was preferred by a majority vote,
according to strategy two described in section 5.1.1,
in 378 cases, the baseline was preferred in the re-
maining 289 cases. The rounded average character
count is 225 for the hybrid approach and 459 for the
baseline. The rounded average term frequency is 26
for and 31 respectively. The rounded average Flesch
Reading Ease score is 65 and 45. The rounded aver-
age semantic similarity to the SQL-query is 56% and
63%. 478 out of 667 statements, and 138 out of 667
statements pass the quality test for the respective ap-
proach. The rounded average dependency distance is
3.5 and 2.4. The average coherence is 87% and 80%.



5.3 Discussion of the Results

The results show that the presented approach for
the generation of SQL-query items produces SQL-
queries with adequate diversity regarding their con-
tent and complexity, but raters often disagree regard-
ing the concrete complexity, even when binned into
more coarse categories. Interestingly, no major dif-
ferences between the composition of the SQL-queries
could be found between the 90 cases of strong dis-
agreement and the remaining cases. Thus, the subjec-
tive perception of SQL-query item complexity should
be researched further by taking learners and verified
experts into account. The raters consider most of the
queries semantically plausible and typical. Thus, re-
quirement R4.1 and R4.2 is considered to be fulfilled.
The rater preference for the NLPS generated by the
hybrid approach was only ~ 57%, even though most
other applied metrics favor the hybrid approach sig-
nificantly. The preferences and effects of NLPS alter-
natives should be further studied, especially regarding
their influence on the complexity of SQL-query items.

Possible threats to the validity of the study may
be rater subjectivity and lack of expertise. The un-
clear NLPS preference of the raters may be due to per-
sonal stylistic preferences and might require a larger
pool of raters for increasing validity. While the raters
were selected through a pretest screening, they may
not match the knowledge of SQL experts. The study
has limited generalizability as the evaluation data set
was generated in the context of one database schema
and thus may not represent the diversity encountered
in real-world scenarios.

6 CONCLUSION

SQL is an important skill to master for computer sci-
ence students and database professionals. Attaining a
high level of mastery for SQL requires practicing with
a large amount of SQL-query items. Since the man-
ual production of such items is expensive and labor-
intensive, automatic generation is preferred. The au-
tomatic generation of SQL-query items should al-
low for its parameterization to generate SQL-queries
with varying degrees of complexity and diverse con-
tent. The generated SQL-queries should be semanti-
cally plausible. The accompanying NLPS should be
human-like and unambigous. Current approaches for
the generation of SQL-query items do not fulfill the
aforementioned criteria.

This paper proposed an approach and evaluated
it against multiple requirements. The approach con-
structs a knowledge graph that reflects the properties
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of the database schema and infers constraints for the
generation of query constituents. These contraints en-
able the creation of meaningful queries, and thus ful-
fills R4.1 and R4.2. Based on the generated queries
an NLPS is generated. By utilizing MASK-filling,
the human effort for the surface realization is reduced
compared to prior approaches. The generation pro-
cess supports a wider variety of SQL keywords com-
pared to prior apporaches and is easily extendable.

The evaluation used a set of generated SQL-query
items each rated by three raters and additional met-
rics. Survey results show that the majority of items
were considered plausible and typical. While sev-
eral metrics were infavour of the hybrid approach of
NLPS generation raters did not show a clear prefer-
ence. Using the input parameters, SQL queries with a
high diversity of SQL consitutents could be generated
(R2) that were deemed to adress the full spectrum of
complexity (RI).

While our approach is capable of generating items
fullfilling the requirements the quality of the SQL-
queries, the requirements regarding the formulation of
the NLPS shows room for improvement. Therefore,
approaches for the generation of NLPS could be com-
pared to NLPS purely generated by LLMs and evalu-
ated regarding their unambiguity. Further research is
required to develop more precise metrics for measur-
ing the complexity of SQL-query items, which is es-
sential for developing adaptive learning systems. Fu-
ture evaluation should include human expert raters, to
judge SQL-specific as well as conventional item qual-
ity metrics for the generated items.

Research on reducing the human effort required
for the schema annotation and allowing for the per-
sonalization of SQL-query items to learner prefer-
ences can build on our results, e.g., by including
schema generation in SQL-item generation.

To further reduce human effort in the assessment
process for SQL-query items, research on the auto-
matic grading and generation of feedback for SQL-
query items may be conducted. Research on such ap-
proaches may benefit from building on top of the pro-
posed approach, as the generated items contain more
information, as could be infered from manually gen-
erated items.
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