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Abstract: To meet the European Union’s growing demand for critical raw materials in the transition to green energy, 
this study presents a novel, cost-effective, and non-invasive methodology for mineral prospectivity mapping. 
By integrating hyperspectral data from satellite, airborne, and ground-based sources with deep learning 
techniques, we enhance mineral exploration efficiency. We employ Bayesian Neural Networks (BNNs) to 
predict mineral prospective areas while providing uncertainty estimates, improving decision-making. To 
address the challenge of obtaining reliable negative labels for supervised learning, Self-Organizing Maps 
(SOMs) are used for unsupervised clustering, identifying barren areas through co-registration with known 
mineral occurrences. We illustrate this approach in the Aramo Unit in Spain, a geologically complex region 
with Cu-Co-Ni mineralized veins. Our workflow integrates local geology, mineralogy, geochemistry, and 
structural data with hyperspectral data from PRISMA, airborne Specim AisaFenix, LiDAR and ground-based 
spectroradiometry. By leveraging learning techniques and high-resolution remote sensing, we accelerate 
exploration, reduce costs, and minimize environmental impact. This methodology supports the EU’s S34I 
project by delivering high-value, unbiased datasets and promoting sustainable, cutting-edge mineral 
exploration technologies.  

1 INTRODUCTION 

The increasing global demand for critical raw 
materials (CRMs) necessary for renewable energy 
technologies, consumer electronics, electric vehicles 
and defence has intensified the urgency of developing 
efficient, sustainable, and innovative mineral 
exploration methods. The European Union (EU), in 
its transition toward green energy, faces significant 
challenges due to limited domestic production of 
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CRMs, necessitating reliance on imports. This 
dependence introduces risks related to supply chain 
disruptions and geopolitical instability. To address 
this challenge, the EU has launched several initiatives 
to promote the sustainable and responsible sourcing 
of CRMs, including the Secure and Sustainable 
Supply of Raw Materials for EU Industry (S34I) 
project. This project aims to develop new 
technologies and approaches for mineral exploration, 
extraction, and processing that minimize 
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environmental impact and maximize resource 
efficiency.  

Mineral prospectivity mapping (MPM) is a critical 
tool in addressing these challenges. MPM traditionally 
uses geographic information systems (GIS) to 
integrate diverse datasets as geological, geophysical, 
geochemical, and remote sensing to highlight areas 
with high mineralization potential. Traditional 
exploration techniques, while effective, often involve 
significant time, expense, and environmental 
disruption. Recent advancements in technology have 
revolutionized MPM, leveraging the power of GIS 
platforms, machine learning (ML), and artificial 
intelligence (AI) to improve the accuracy, efficiency, 
and sustainability of mineral exploration (Carranza & 
Hale, 2001, Carranza 2008, Nykänen et al., 2017, 
2023, Yousefi et al., 2021, 2024 & Zhang et al., 2022). 

MPM approaches are generally categorized into 
knowledge-driven, data-driven (Yousefi & Nykänen, 
2016, Torppa et al., 2019, Lawley et al., 2022 & 
Nagasingha et al., 2024), and hybrid methods. 
Knowledge-driven techniques rely on expert 
interpretations of geological formations, making them 
particularly suitable for "greenfield" exploration 
regions with few known deposits. In contrast, data-
driven methods empirically model relationships 
between explanatory variables and mineral 
occurrences, often applying ML techniques to 
established mining areas or "brownfield" regions. 
Hybrid approaches combine these methodologies, 
leveraging data-driven insights to enhance expert-
driven interpretations. Deep learning models, 
particularly Bayesian Neural Networks (BNNs), have 
demonstrated exceptional capabilities in extracting 
complex patterns and relationships within large, 
multidimensional datasets, improving predictive 
accuracy and uncertainty quantification (Mao et al., 
2023 and Jordão et al., 2023). 

Despite these advancements, key challenges 
remain. One of the most significant is the scarcity and 
imbalance of labelled data, where known mineral 
deposits or mineralized samples (positive samples 
used as training points) are scares and rare compared 
to the amount of data available, which is effectively 
unknown in terms of a positive or negative binary 
classification for a CRM mapping. Traditionally, the 
unknown areas are considered barren regions from 
where the negative samples are randomly selected. 
Another traditional option is an expert driven negative 
sampling that requires extensive geological expertise, 
a good understanding of the study area and a vast 
knowledge of the parameters driving the 
mineralization event, which is not always available, 
possible or extremely expensive and time-consuming, 

leading inevitably to an imbalance positive-negative 
training samples. This imbalance can lead to biased 
models and unreliable predictions (Mao et al., 2023). 
Addressing this issue, our research introduces a novel 
data-driven approach to negative sampling selection 
by leveraging Self-Organizing Maps (SOMs). Instead 
of relying on arbitrary or expert-defined barren 
regions, we co-register SOM clusters with known 
mineral occurrences to identify geologically 
representative negative samples. This ensures that the 
training dataset accurately reflects the true 
background variability of the study area, leading to 
improved model robustness and generalization. 

The integration of BNNs into our methodology 
provides another key innovation by incorporating 
uncertainty quantification into mineral prospectivity 
predictions. Unlike conventional neural networks that 
yield deterministic outputs, BNNs estimate 
probability distributions over model parameters, 
allowing them to quantify prediction uncertainty 
(Jordão et al., 2023). This uncertainty information is 
particularly valuable for mineral exploration, as it 
enables risk-aware decision-making and strategic 
resource allocation (Lauzon & Gloaguen 2024 & 
Zhang et al., 2024). Exploration efforts are prioritized 
in areas with high predictive confidence while regions 
with significant uncertainty can be flagged for further 
investigation. By embedding uncertainty 
quantification within the model, our approach 
enhances the interpretability and transparency of the 
mineral prospectivity mapping process, reducing the 
risk of false positives and missed discoveries. 

Furthermore, our methodology offers several 
practical advantages over traditional exploration 
techniques. The non-invasive nature of hyperspectral 
remote sensing significantly reduces environmental 
impact by minimizing the need for extensive ground 
surveys. This is particularly beneficial for ecologically 
sensitive or remote regions where physical access is 
limited. The high spectral resolution of hyperspectral 
imaging allows for the precise identification of 
mineral signatures, capturing subtle spectral features 
that traditional methods may overlook. Additionally, 
by automating feature extraction, classification and 
post-processing of the data, we reduce the need for 
extensive manual interpretation, thereby increasing 
efficiency and cost-effectiveness. 

By aligning with the objectives of the S34I 
project, our research contributes to the development 
of sustainable and technologically advanced mineral 
exploration methodologies. The integration of multi-
scale hyperspectral remote sensing, SOM-driven 
negative sampling, and BNN-based prospectivity 
mapping and uncertainty quantification represents a 

S34I 2025 - Special Session on S34I - From the Sky to the Soil

318



transformative step forward in mineral prospectivity 
mapping. As hyperspectral imaging technology 
continues to advance and larger, higher-quality 
datasets become available, the predictive accuracy 
and effectiveness of this approach will further 
improve. Additionally, continued innovations in 
machine learning architectures, Bayesian inference, 
and self-supervised learning will enhance the 
capabilities of this methodology, making it an 
increasingly powerful tool for mineral exploration. 

Our proposed approach represents a significant 
advancement in mineral exploration by providing a 
scientifically rigorous, scalable, and environmentally 
responsible method for identifying potential mineral 
deposits. By addressing key challenges such as 
negative sampling bias and uncertainty estimation, 
we offer a robust framework that improves predictive 
reliability and supports informed decision-making in 
exploration projects. The integration of multi-scale 
hyperspectral data, SOM-based negative sampling, 
and deep learning  via Bayesian Neural Networks not 
only enhances the accuracy and efficiency of mineral 
prospectivity mapping but also supports the broader 
transition toward sustainable resource management 
and a green energy future. 

2 STUDY AREA & DATA  

2.1 Geological Setting 

The study area is the Aramo Unit, a thrust nappe 
within the Fold and Nappe Province of the Cantabrian 
Mountains in northern Spain (Figure 1). This region 
comprises a diverse sequence of Paleozoic 
sedimentary rocks, primarily from the Devonian and 
Carboniferous periods. The stratigraphic sequence 
includes Devonian shales, sandstones, and 
limestones, followed by Tournaisian-Visean grey and 
red nodular limestones. The Namurian succession is 
characterized by black, bituminous limestone, while 
the Bashkirian to Lower Moscovian sequence 
consists of shales interbedded with limestones and 
sandstones (Paniagua et all., 1988, 1993). 
Structurally, the mineralization at the Aramo mine is 
controlled by the intersection of the E-W Aramo Fault 
and the Aramo Thrust front. The Aramo Fault is a 
major discontinuity traversing the Aramo Unit, while 
the Aramo Thrust front delineates the boundary 
between the Fold and Nappe Province and the Central 
Coal Basin. This structural interplay has induced 
extensive dolomitization and minor silicification in 
proximity to the orebody (Bruner & Smosna, 2000), 
Ordóñez et al., 2005) and (Loredo & Ordóñez, 2008). 

The Aramo mine hosts significant Cu-Co-Ni 
mineralization, occurring as mineralized veins with 
an average thickness of 25 cm. These veins are 
predominantly found within the Namurian limestone, 
situated along the thrust fault front. The deposit is 
epigenetic and carbonate-hosted, comprising Cu-Co-
Ni sulfides and arsenides with minor precious metals 
(Paniagua et al., 1988).  The combination of structural 
controls and lithological characteristics has played a 
crucial role in the formation and localization of the 
mineralization. 

 
Figure 1: Geological and structural map of the study area. 
Modified from: Aurum Exploration Ltd & Bergua et al., 
2019. 

2.2 Data Acquisition 

A multi-scale approach to data acquisition was 
adopted for this study, integrating satellite, airborne, 
and ground-based measurements. Initially, 
multispectral and hyperspectral satellite data from 
Sentinel-2, Lansat-9 and PRISMA sensors were 
analyzed to delineate alteration zones and refine the 
definition of the main study area (Carvalho et al., 
2025). These delineated regions subsequently guided 
airborne data acquisition, ensuring targeted high-
resolution imaging. Furthermore, the identified 
alteration areas informed and optimized ground-
based sampling strategies for geochemical analysis 
and spectral validation, enhancing the overall 
effectiveness of the exploration process. 
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2.2.1 Hyperspectral & LiDAR Data  

Regional hyperspectral data were acquired by the 
PRISMA satellite, providing broad coverage of the 
study area. This data was processed and analysed by 
the partners from the University of Porto and helped 
to the definition of alteration areas, the definition of 
the main study area, guided part of the ground-based 
sampling and furthermore an independent component 
analysis was performed (Carvalho et al., 2025) which 
produced informative input layers for the machine 
learning models. 

  
Figure 2: Airborne hyperspectral data flight lines. 

High-resolution hyperspectral data were acquired 
using the Specim AisaFENIX sensor, flown on an 
airborne platform (Figure 2). This camera implements 
two sensors to cover the visible and near infrared 
(VNIR 380–1000 nm) and shortwave infrared (SWIR 
1000–2500 nm) regions of the electromagnetic 
spectrum along 450 spectral bands. The acquisition 
and pre-procesing of the data was performed by the 
partners from Smaps Oy. Due to persistent harsh 
weather conditions (typical of this region), it was no 
possible to fly all the planned lines, and this is the 
reason of the data gap at the east of the study area and 
the high percentage of cloud coverage. Unfortunately, 
this gap coincided with a prominent mineralization 
outcrop where most of the rock samples were located 
(Figure 1 and 2). The flight mission was on hold for 
more than one year waiting for the appropriated 
weather window. The pre-processing of the airborne 

hyperspectral data  was also performed by Smaps 
which consisted on the orthorectification and 
geometric correction, followed by the atmospheric 
correction performed with the ATCORE4 software 
resulting in reflectance data with ground sampling 
distance of approximately 1.2 meters per pixel.  

The airborne LiDAR data was acquired in 2023 
by the partners from Eurosense with the waveform 
processing Airborne Laser scanner Riegl VQ780 
obtaining an average point density of 10pts/sqm and 
resulting in a digital elevation model (DEM) with 
0.5m resolution per pixel (Figure 3). 

 
Figure 3: Airborne LiDAR flight lines and impressions on 
the acquisition (Image credit from Eurosense partners). 

2.2.2 Ground-Based Techniques 

The study area is currently being actively explored by 
Aurum Exploration Ltd., in collaboration with local 
partners from the Department of Geology at the 
University of Salamanca. Together, they have 
conducted multiple field campaigns for sample 
collection and analysis, as well as geological and 
structural mapping. 

Field measurements were performed using an 
ASD portable spectroradiometer by the University of 
Salamanca to acquire high-quality point spectral 
signatures in the VNIR and SWIR regions of the 
electromagnetic spectrum. These measurements were 
taken from known mineral occurrences and 
background lithologies to build spectral libraries for 
spectral validation and the supervised processing of 
hyperspectral images. 

Geological maps were used to extract the host 
Valdetejas Formation, and the distance to this unit 
was calculated and rasterized for use as an input 
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evidence layer in machine learning models. 
Additionally, the main fault structures were 
categorized into two groups based on their azimuth: 
E-W and N-S oriented faults. Finally, the distance to 
thrust front-related faults was calculated and 
incorporated as an input variable in the models. 

Geochemical analyses were performed on the 
collected samples, and the results were used to select 
the samples that would serve as positive training 
points for the supervised machine learning methods. 
Specifically, samples with concentrations of Co > 
0.05%, Cu > 0.4%, and Ni > 0.07% were selected, 
resulting in a dataset of 32 samples. 

3 METHODOLOGY 

The workflow of the proposed methodology is 
depicted in Figure 4. It begins with the acquisition of 
airborne hyperspectral data, which is already 
radiometrically calibrated and atmospherically 
corrected to reflectance. This data undergoes baseline 
correction and de-noising to produce corrected 
hyperspectral reflectance data. This corrected data is 
then processed using both unsupervised and 
supervised methods. 

 
Figure 4: General workflow for hyperspectral data fusion 
with SOM and BNN for Mineral Prospectivity Mapping. 

In the supervised processing stage, ground 
spectroradiometer measurements are used for spectral 
validation and rasterized maps containing the relevant 
features extracted from the unsupervised process, 
along with geochemical data, are integrated to 
provide a more comprehensive understanding of the 
spectral data. Additionally, the geological and 
structural data are also incorporated to evidence 
layers stack as single bands raster files. These diverse 

data sources undergo spatial co-registration to ensure 
that the spatial and spectral information aligns 
correctly. The data fusion is performed within the 
application of the Bayesian Neural Network (BNN), 
which models the relationships within the fused data. 
This approach leverages the capabilities of BNNs in 
handling complex, high-dimensional data to predict 
mineral distributions with higher accuracy and 
reliability, ultimately producing a mineral prediction 
map and the uncertainty associated to it. 

 
Figure 5: Indices from band ratios along flight lines. 

 
Figure 6: Automated unsupervised hyperspectral data 
processing output. A: RGB. B: Cloud mask, C: PCA, D: 
Zoom-in to panel C, E: Zoom-in to panel D, F: End-member 
spectra, G: Minimun Wavelength Map from 1780 to 1990 
nm. H: SAM for end-member of panel F. 
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3.1 Automated Unsupervised 
Hyperspectral Data Processing 

In the unsupervised processing stage, several 
techniques such as Minimum Wavelength maps, 
Spectral Angle Mapper, Band Ratios, Principal 
Component Analysis and N-member extraction are 
applied to extract meaningful features and patterns 
from the hyperspectral data (Figures 5 and 6). These 
processes facilitate the identification of potential 
mineralogical and geochemical signatures within the 
dataset. After data extraction, an automated process is 
applied to balance and normalize the products for 
each flight line, followed by the generation of the 
final mosaic raster layer (Figure 7). All the automated 
process is performed with an in-house and python-
based develop methods thanks to the availability of 
publish methodologies for hyperspectral data 
processing (De La Rosa et al., 2021, 2022) and open 
source tools such as Spy Spectral Python library, 
Mephysto (Jakob et al., 2017) and Hylite (Thiele et 
al., 2020). 

3.2 Self-Organizing Maps (SOM) 

Self-Organizing Maps (SOM) are an unsupervised 
neural network technique used to cluster input 
evidence layer data while preserving its topological 
structure. The training process relies on competitive 
learning, where neurons compete to represent 
different regions of the data space. Each neuron in the 
SOM is associated with a weight vector, and when an 
input vector is presented, the neuron with the closest 
weight vector, known as the best matching unit 
(BMU), is selected. The BMU and its neighboring 
neurons are subsequently updated to better match the 
input vector. Repeating this process across all input 
data results in a self-organized map where similar 
input vectors form distinct clusters, providing an 
intuitive representation of underlying patterns in the 
data (Kohonen 1990, 1997, 2001) and (Wittek et al., 
2017). 

Visualization of SOM results facilitates cluster 
interpretation through various techniques such as 
color-coded maps and distance matrices, which 
highlight similarities among spectral signatures. To 
refine the clustering, k-means clustering is applied 
post-SOM computation. The iterative k-means 
algorithm randomly creates k centroids and assigns 
the data points to the nearest centroid. Then, it 
recalculates the centroids based on the mean of all 
points within a particular cluster and repeats this 
process until convergence. Multiple runs are 
performed across a user-defined range of cluster 

numbers, with the best clustering results determined 
using the Davies-Bouldin index (David & Bouldin 
1979). The three most optimal clustering outcomes 
are displayed in the user interface and stored for 
further analysis. 

 
Figure 7: Automated mosaic raster layer for a Normalized 
Carbonate Index derived from band ratios. 

SOM results are visualized in geospatial and SOM 
spaces (Figure 8). Furthermore, the results are plotted 
and categorized into SOM space results, geo-space 
results, boxplots and scatterplots. SOM space plots 
include heatmaps representing the value of each 
codebook vector element, the U-matrix showing 
differences between neighboring SOM cells, k-means 
clustering results, and data point distributions per 
SOM cell. Geospace visualizations present k-means 
clustering results, BMU codebook vectors, and 
quantization errors in a geographical context. 
Additionally, boxplots illustrate the distribution of 
SOM data parameters across k-means clusters, while 
scatterplots provide cross-plots of different 
parameters, enabling deeper insight into data 
relationships. This combination of SOM and k-means 
clustering offers a powerful tool for pattern 
recognition and mineral prospectivity analysis. 
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3.3 Bayesian Neural Networks (BNN) 

Bayesian Neural Networks (BNNs) can be a class of 
deep learning models when implementing multi-
layered network architecture. This Neural networks 
integrate Bayesian inference to predict mineral 
prospectivity while quantifying associated 
uncertainties. Unlike traditional artificial neural 
networks (ANNs), which provide deterministic point 
estimates (Rosenblatt, 1958), BNNs estimate a 
distribution over model parameters, enabling a 
rigorous assessment of uncertainty (Jordão et al., 
2023). This capability is particularly valuable in high-
risk applications such as mineral exploration, where 
uncertainty estimation enhances decision-making. In 
this study, a BNN was trained using hyperspectral 
derived features layers, geological and structural 
derived input layers alongside positive samples 
derived from the geochemical analysis and negative 
labels derived from a random selection inside areas 
delimited by the self-organizing maps analysis.  

The BNN represents the model weights and biases 
as probability distributions rather than fixed values 
and through Bayesian updating, these distributions 
are refined based on observed data, allowing the 
model to learn while maintaining an explicit 
quantification of uncertainty (Mao et al., 2023). 
Variational inference is employed to approximate the 
posterior distribution over model parameters, 
facilitating efficient learning. The implementation of 
the BNN model is develop in house as a python-based 
tool and utilizes the TensorFlow Probability python 
library to construct, train, and evaluate BNN 
architectures.  

The BNN model is still under development and 
continuous improvement. This model was developed 
in part through the Critical Mineral Assessments with 
AI support (Critical MAAS) project. This project is a 
collaboration between our company Beak 
Consultants GmbH, the United States Geological 
Survey (USGS) and the Defense Advanced Research 
Projects Agency (DARPA). The Critical MAAS 
project aims to accelerate critical mineral resource 
assessments through re-design, automation, and 
human-centered AI engineering. The work developed 
in the frame of the project is classified as fundamental 
research, and the code is open-source and available in 
the following GitHub repository: https://github.com/ 
DARPA-CRITICALMAAS/beak-ta3. 

Key Bayesian contributions in the code include 
the incorporation of prior knowledge through prior 
distributions, the application of variational inference 
for posterior approximation, and the estimation of 
predictive uncertainty. 

3.4 Data-Driven Negative Sampling 

To address the challenge of obtaining reliable 
negative labels for training the BNN, we employed a 
data-driven approach using the SOM outputs. By co-
registering the SOM clusters with known mineral 
occurrences (positive labels), we identified areas 
likely to be barren (negative labels) for targeted 
sampling. This approach ensured that the negative 
labels used for training the BNN were representative 
of the true background variability in the study area. 

4 RESULTS 

4.1 Som Results 

 
Figure 8: Unsupervised clustering results from SOM. 

The SOM analysis successfully clustered the 
hyperspectral data, the geological and structural-
based evidence layers into distinct groups 
highlighting areas with similar characteristics. By co-
registering the SOM clusters with known mineral 
occurrences, we identified this clusters as ‘very 
likely’ to be areas showing characteristics that could 
be associated with the presence of mineralized 
samples and therefore, we exclude them and retain the 
rest of clusters that are identified (potentially) areas 
likely to be barren. These potentially barren clusters 
are the ones chosen for negative labels selection for 
training the BNN.    
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4.2 BNN Results 

The BNN, trained with the hyperspectral features and 
the positive and negative labels, generated a mineral 
prospectivity map with associated uncertainty 
estimates. The map highlighted areas with high 
mineral potential, guiding future exploration efforts. 
In Figure 9 and 10, the warmer colors near orange and 
red represent the areas with the highest prospectivity, 
where the prospectivity values are close to one. The 
resulting mineral prospectivity maps can be 
interpreted as follows: areas with values greater than 
0.5 are the most prospective. These are the areas 
where mineralization is most likely to be found. In 
this case, the mineralization of interest is the Cu-Co-
Ni mineral association.  

 
Figure 9: BNN prospectivity mapping results. 

The results in Figure 9 and 10 also reveal an 
interesting pattern: many of the prospective areas are 
aligned with important structural features. These 
include sections of the E-W Aramo fault and spatial 
associations with lines representing the Aramo thrust 

front. This association between prospective areas and 
structural features corroborates the geological 
understanding of the area, which suggests structural 
control over mineralization. However, due to the 
complex structural nature of the area, it is challenging 
to identify this association based solely on geological 
observation. These results can help guide future field 
efforts to validate these findings and improve our 
understanding of the factors controlling 
mineralization in the area. The uncertainty estimates 
provided a measure of confidence in the predictions, 
allowing for more informed decision-making.    

 
Figure 10: Zoom-in to BNN prospectivity mapping results. 

5 DISCUSSION 

Our research highlights the feasibility and advantages 
of integrating hyperspectral data from multiple 
sources with deep learning techniques for mineral 
prospectivity mapping. This approach surpasses 
traditional methods by offering a non-invasive, high-
resolution, cost-effective, and highly accurate 
alternative for identifying potential mineral deposits. 
By leveraging remote sensing and machine learning, 
it minimizes environmental impact, reduces 
exploration costs, and enhances predictive reliability, 
making it particularly suitable for early-stage 
exploration and challenging terrains. 

A key innovation in our methodology is the 
introduction of data-driven negative sampling, a 
critical step in training BNN models for mineral 
prospectivity mapping. Negative sampling is a well-
known challenge in machine learning applications, as 
incorrectly labeled negative samples can significantly 
degrade model performance. Traditional methods 
often rely on random sampling or expert-defined 
barren areas, which may not adequately capture the 
true background variability. To overcome this, we 
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employed a systematic data-driven approach using 
Self-Organizing Maps (SOM) to generate reliable 
negative labels. By co-registering SOM clusters with 
known mineral occurrences (positive labels), we 
identified regions highly likely to be barren (negative 
labels). This ensured that the training data more 
accurately reflected the real geological variability of 
the study area, improving model robustness and 
reducing bias in mineral prospectivity predictions. 

Another major contribution of our study is the use 
of Bayesian Neural Networks (BNNs) for predictive 
modeling and uncertainty quantification. Unlike 
conventional artificial neural networks (ANNs), 
which provide only point estimates, BNNs estimate a 
probability distribution over model parameters, 
allowing them to quantify the uncertainty in their 
predictions. This is particularly valuable in mineral 
exploration, where decision-making is inherently 
uncertain and high-risk. The Bayesian framework 
enables the estimation of uncertainty in model outputs 
(Figure 11), offering a confidence measure for each 
prospectivity prediction. This allows for more 
strategic resource allocation, as exploration efforts 
can be prioritized in areas with high predictive 
confidence while regions with high uncertainty can be 
flagged for further data acquisition. By integrating 
uncertainty quantification directly into the model, our 
approach provides a more transparent and 
interpretable decision-support system, reducing the 
risk of false positives and missed discoveries. 

 
Figure 11: BNN Uncertainty associated to prospectivity 
mapping results. 

Beyond its theoretical advantages, our approach 
offers several practical benefits over traditional 
methods. First, its non-invasive nature minimizes 
environmental impact by reducing reliance on 
intrusive ground surveys such as drilling and 
trenching. This is particularly important in 
ecologically sensitive or remote areas where physical 
access is limited. Second, the high-resolution spectral 
information from hyperspectral imaging, combined 
with the BNN and SOM, allows for the identification 
of subtle features, leading to more accurate and 
efficient exploration efforts. Third, the cost-
effectiveness of our methodology is significant; by 
automating feature extraction, we reduce the need for 
extensive manual interpretation from the 
hyperspectral data, and the high prospective areas can 
guide a more targeted oriented surface exploration, 
cutting exploration costs substantially. 

It is also important to highlight the significance of 
the quantity and quality of training samples, 
particularly the positive samples. Although the 
methodology presented here offers an improved 
solution as a method for data-driven negative 
sampling selection, the importance of positive 
samples cannot be overstated. The positive samples 
are the single input data that will most significantly 
affect the results of the BNN models. In real-world 
scenarios, the quantity and quality of samples are not 
always optimal, as exemplified by the Aramo study 
case presented in this publication. The very 
challenging climatic conditions characteristic of this 
area in Spain resulted in several flight lines of the 
planned airborne hyperspectral acquisition being not 
possible to fly (this is the major data gap observed in 
Figure 2, 7, 8 and 9). Unfortunately, this area 
coincides with the location exhibiting the clearest 
surface mineralization and where the majority of the 
samples intended for training points were located. As 
shown in Figure 8 and 9, most of the training data 
coincides with this gap. Furthermore, a significant 
percentage of the remaining acquired data was 
obscured by clouds, rendering the spectral 
information unusable and necessitating the 
development of an automatic algorithm to mask 
cloud-covered areas, further reducing the available 
data. Therefore, a dataset with greater spatial 
coverage and a larger number of training samples in 
areas with available data would greatly enhance the 
quality of the results. 

In the context of the growing global demand for 
critical raw materials, this research contributes to the 
integration of multi-scale hyperspectral remote 
sensing with BNN and SOM presenting an innovative 
workflow for data fusion and prospectivity mapping 
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with uncertainty quantification aiming to improve 
mineral exploration, offering a scalable and data-
driven solution. As hyperspectral imaging technology 
advances and more high-quality datasets become 
available, the accuracy and effectiveness of this 
method will continue to improve. Additionally, 
ongoing developments in deep learning architectures, 
Bayesian inference, and self-supervised learning will 
further enhance predictive capabilities and 
uncertainty quantification. 

Our findings emphasize the importance of data-
driven approaches in addressing key challenges in 
training data selection and model interpretability. The 
combination of SOM-based negative label generation 
and BNN-driven uncertainty estimation provides a 
novel framework for improving the reliability and 
confidence of mineral prospectivity predictions. This 
methodology not only enhances the accuracy of the 
models but also offers a structured approach to 
handling uncertainty, making it a powerful tool for 
risk-aware decision-making in exploration projects. 

6 CONCLUSIONS 

Our innovative workflow for mineral prospectivity 
mapping supports the objectives of the EU's S34I 
project by providing high-value, unbiased datasets 
and improving the perception of mining through the 
application of cutting-edge, sustainable exploration 
technologies.    

In conclusion, this study represents an 
advancement in mineral exploration by providing a 
scientifically rigorous, scalable, and environmentally 
responsible approach to identifying potential mineral 
deposits. The integration of hyperspectral data, SOM-
driven negative sampling, and Bayesian Neural 
Networks has proven to improve exploration 
strategies, supporting a sustainable and efficient 
pathway to securing critical raw materials for a green 
energy future. 

In the Aramo study case, the mineral prospectivity 
maps reveal an interesting pattern, showing many 
prospective areas aligned along important structural 
features, including sections of the E-W Aramo fault 
and the Aramo thrust front. This alignment 
corroborates the area's geological understanding, 
which suggests that mineralization is in some degree 
structurally controlled. These results can guide future 
fieldwork to validate these findings and enhance our 
understanding of the factors controlling 
mineralization in the area. 

The integration of advanced deep learning and 
remote sensing data not only accelerates the 

exploration process but also significantly reduces 
costs and environmental impact. This approach has 
the potential to transform mineral exploration, 
supporting the sustainable and responsible sourcing 
of critical raw materials for the EU's green energy 
transition. 
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