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Abstract: The Lusatian region is undergoing an extensive landscape rehabilitation program following the closure of 
lignite open-pit mines. Under this programme, former open-cast lignite mines are being converted into 
artificial water bodies. However, the region faces significant challenges related to the acidification of surface 
and groundwater primarily driven by the oxidation of pyrite. Recent geochemical analyses show that, surface 
waters exhibit a strong variation of pH and iron concentration. This study aims to elaborate the potential of 
free and commercial space- and airborne- multispectral Remote Sensing (R/S) datasets (Sentinel-2, 
Worldview-3 and Unmanned Aerial Vehicle (UAV)) for large-scale acid mine drainage (AMD) mapping and 
identify the most suitable data sources and approaches for practical case studies. Additionally, cross-sensor 
comparisons are performed to gain more insights into the agreement between the spectra from Sentinel-2 
images with those from the Worldview-3 and UAV images over surface water. The cross-sensor agreement 
of the images is quantified by performing regression analyses between R/S data at different wavelengths. 
Finally, dependencies and relationships between AMD constituents and the spectral data are investigated 
using artificial neural networks (ANN) of type Multi-Layer Perceptron (MLP). 

1 INTRODUCTION 

The Lusatian region in Germany, well-known for 
lignite mining, is currently undergoing one of the 
largest landscape rehabilitation programs in Europe 
(LMBV, n.d.). Following the closure of open-pit 
lignite mines, the region comprises approximately 
176 artificial water bodies, covering a total area of 
185 km² (Hanelli, et al., 2023). Leading this large-
scale transformation and rehabilitation, the Lausitzer 
und Mitteldeutsche Bergbau-Verwaltung (LMBV) is 
monitoring the water quality in these water bodies by 
periodic sampling campaigns and geochemical 
analyses.  

The water quality across the region varies 
significantly due to differences in acid mine drainage 
(AMD) stages, water treatment methods, and 
geological conditions. For instance, newly flooded or 
untreated lakes often exhibit highly acidic conditions, 
with pH values between 2.5 and 4.5, whereas treated 
and naturally neutralized lakes typically range 
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between 6.5 and 8 (LMBV, n.d.). Given its 
complexity and large spatial extent, the Lusatian 
region presents an ideal case study for developing and 
validating cost-effective AMD mapping methods.  

Remote sensing (R/S) technologies offer 
promising solutions for large-scale AMD monitoring 
(Hanelli et al., 2023; Farahnakian et al., 2024; 
Kopačková, 2019). This study evaluates the potential 
of free and commercial multispectral datasets from 
spaceborne and airborne platforms for AMD mapping 
in a selected area of the Lusatian region characterized 
by strong AMD variations. A key focus is on cross-
sensor comparisons to assess spectral data 
consistency across platforms and the transferability of 
AMD-related spectral relationships.  

The multispectral R/S datasets utilized in this 
study include Sentinel-2, WorldView-3, and 
Unmanned Aerial Vehicle (UAV) data. These 
datasets cover different areas of interest (AOI) 
depending on their availability, costs and accessibility 
(Figure 1). The free-of-charge Sentinel-2 data cover 
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an extensive area of post-mining water bodies and 
several AMD scenarios. In contrast, the commercial 
WorldView-3 data were acquired only for a 100 km² 
representative area with significant AMD activity.  

In most of the post-mining lakes in the Lusatian 
region the access is restricted due to geotechnical 
instabilities (ground subsidence and landslides) and 
very acidic water environments (LMBV, n.d.). Given 
these limitations and the objectives of this study, two 
pilot sites were selected for UAV surveys: Scheibe 
See (685 hectares, no evidence of AMD) and 
Bergheider See (325 hectares, evidence of AMD).  

 
Figure 1: AOIs for each of the used R/S datasets. 

The R/S datasets were utilised as key parameters 
for area-wide mapping of AMD in post-mining water 
bodies. At the same time, geochemical analyses of 
AMD components, such as iron concentration and pH 
values obtained from surface water samples, served 
as calibration data for the mapping process. The 
relationships between the AMD components and the 
spectral data are exploited by means of artificial 
neural networks (ANNs).  

This application requires a synchronization of R/S 
datasets with geochemical analysis, in order to ensure 
that the measured water quality parameters 
correspond to the recorded surface reflectance 
information in the R/S datasets. This is particularly 
challenging considering the prerequisites of optical 
R/S imagery (e.g. cloud- and shadow-free, low-nadir-
angle etc.). To increase the chances of getting suitable 
acquisitions, a temporal window of ± 10 – 20 days to 
the sampling date was applied, assuming no 
significant geochemical changes within this 
timeframe (e.g., through neutralization processes). 
This study integrates both R/S and geochemical 
datasets collected in late June 2024. 

The study aims to improve AMD mapping 
techniques and identify the most effective and 
practical methodologies for environmental 
monitoring in post-mining landscapes. 

2 DATA ACQUISITION 

2.1 Geochemical Analysis 

Geochemical analysis results for 31 post-mining 
water bodies were provided by LMBV for this study 
(Figure 2). The samples were collected from the 
epilimnion layer (0–15 m depth). Figure 1 shows the 
measured values of iron concentration as graduated 
symbols/colours, while the measured pH values are 
shown as column chart, whereas small columns 
indicate an acidic environment (pH varies between 2 
and 3) and the big ones a neutral environment (pH 
varies between 6 and 8).  

 
Figure 2: Water monitoring stations and recorded values of 
AMD constituents in the Lusatian post-mining water 
bodies. 

The water bodies in this region are characterized 
by strongly varying AMD levels (Table 1) and are 
therefore suitable for this research study.  

Table 1: Statistics of the water geochemical parameters.  

Parameter Count Min Max Mean Std
pH 31 2,45 7,96 3,77 1,90

Fe (mg/L) 31 0,07 361  90,65 101,42

Figure 3 shows a plot of dependencies between 
the iron concentration and pH values. Water bodies 
with high iron concentrations are typically marked by 
low pH values (≤4), while water bodies with low iron 
concentrations typically have pH values between 6 
and 8. Although pH is an optically non-active 
parameter and cannot be directly detected using 
optical R/S data, in this study we use the observed 
dependencies for large-scale mapping of pH values 
by leveraging patterns of optically active constituents, 
such as iron concentration.  

S34I 2025 - Special Session on S34I - From the Sky to the Soil

306



 
Figure 3: Plot of dependencies between Log (Fe) and pH. 

2.2 R/S Datasets 

An overview of the used R/S datasets for AMD 
mapping follows in Table 2. All data were projected 
to WGS1984/UTM 33N (WKID: 32633).  

Table 2: Overview of the acquired imagery for AMD 
mapping (VNIR:  visible and near-infrared, LWIR: Long-
Wave Infrared, SWIR: Short-Wave Infrared).1 

 

2.2.1 Sentinel-2 Data 

Sentinel-2 data were downloaded from https://code-
de.org/de/. CODE-DE is part of Germany's 
geoinformation strategy and offers easy and efficient 
access to remote sensing data as well as free cloud 
resources for processing. More detailed information 
on the Sentinel-2 acquisition resolutions can be found 
on the Copernicus Sentinel-2 Mission website 
(Copernicus, n.d.).  

For the AOI there is a wide archive of historical and 
actual data available. Top of Atmosphere (TOA) and 
Bottom of Atmosphere (BOA) products were 
downloaded respectively. The spatial resolution is set 
to 10 m to benefit from the medium spatial resolution 
of Sentinel-2 imagery. 

 
1  The cloud cover of Sentinel-2 acquisition over water 

bodies in the area of interest (AOI). 

2.2.2 Worldview-3 Data 

The commercial high-resolution (HR) Worldview-3 
data (VNIR+SWIR) was ordered from European 
Space Imaging (https://www.euspaceimaging.com/) 
for a 100 km2 representative area. More detailed 
information on the WorldView-3 data can be found 
on the ESA Earth Online website (European Space 
Agency [ESA], n.d.). Important prerequisites aspects 
to consider for optical analysis are the cloud coverage 
and the low nadir angle.  

The data has been made available as Ortho-Ready 
Standard Product (OR2A), with the spectral data as 
Digital Numbers (DN). The DN values are further 
processed to TOA Reflectance values using the 
radiometric calibration tool supported by NV5 
Geospatial's software tools (NV5 Geospatial, n.d.). 
The conversion to BOA reflectance resulted in 
negative reflectance values in water areas, because of 
the low radiance. It is important to highlight that the 
atmospheric corrections are designed for land 
applications, and not for water bodies. In water 
applications they modify the reflectance drastically. 
For this reason, TOA reflectance data are used for 
further processing. 

2.2.3 UAV Data 

The very-high resolution (VHR) UAV data were 
acquired from Beak Consultants GmbH with the 
following equipment:  
 UAV: DJI Matrice M300 RTK, 
 Multispectral camera: Micasense Altum-PT 

(detailed information can be found in the 
Altum-PT Integration Guide – MicaSense 
Knowledge Base [MicaSense, n.d.]), 

 GPS/GNSS System: Emlid RS2 GPS/GNSS 
(Global Positioning System / Global 
Navigation Satellite System) with NTRIP 
(Networked Transport of RTCM via Internet 
Protocol) connection to the national CORS 
system (Continuously Operating Reference 
Station). 

The necessary approvals/permissions for the UAV 
flights were obtained in advance based on the 
regulations of the German Federal Aviation Authority 
(LBA, n.d.). 

The processing of UAV acquisitions relies on the 
Structure from motion (SfM) photogrammetric range 
imaging technique. However, applying this technique 
over large water bodies presents several challenges: 
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 High reflectivity: The reflective properties of 
water create a mirror-like effect. 

 Dynamic surface conditions: The continuous 
movement of water, influenced by factors such 
as wind, introduces discrepancies of 
overlapping areas in consecutive scenes. 

 Stereo image similarity: The homogeneity of 
stereo-image pairs over water surfaces makes it 
difficult to identify tie and key points necessary 
for accurate image alignment. 

To align UAV acquisitions in this case study, we 
employed the image block-adjustment by reference 
technique, as implemented in Agisoft Metashape 
(Agisoft LLC, n.d.). This workflow includes a yaw 
estimation process that analyses the drone's flight 
path between consecutive images to determine the 
camera's horizontal rotation. Assuming zero pitch and 
roll, yaw is the only rotational parameter considered. 
The drone's movement direction is calculated by a 
direction vector, obtained by subtracting the current 
camera's location from the next camera's location. 
This process effectively determines the camera's 
horizontal orientation based on its movement relative 
to the previous shot, aiding in initial camera 
alignment for photogrammetric processing.  

Because of the large areas, UAV flight campaigns 
are conducted over multiple days, often under varying 
illumination conditions, leading to variations in 
ground surface brightness. Figure 4 shows the tiles 
representing the flight missions and the weather 
conditions, respectively. To mitigate these variations, 
the sun sensor correction (DLS) is applied, which 
partially compensates for differences in lighting 
conditions during data acquisition. However, this 
approach assumes a constant irradiance over time and 
lacks to develop irradiance series and compensate the 
DLS for movement (MicaSense, n.d.).  

               (a)                                             (b) 

Figure 4: The flight missions and respective weather 
conditions in a) Bergheider See and b) Scheibe See. 

Finally, the recorded values have been divided by 
32768 to get the reflectance values for each band 
instead of digital numbers (MicaSense, n.d.).   

3 METHODS DESRCRIPTION 

Dependencies and relationships between spectral 
reflectance bands and AMD constituents are 
investigated using the supervised machine learning 
(ML) algorithm of ANNs of the multilayer perceptron 
type (MLP) (Haykin, 1998). Additionally, cross-
sensor comparisons (Chastain, et al., 2019) are 
performed to gain more insights into the agreement 
between the spectra from Sentinel-2 images with 
those from the Worldview-3 and UAV images over 
surface water. Finally, transformation parameters are 
calculated to harmonize Worldview-3 and UAV 
spectral bands to Sentinel-2 over water bodies. 

3.1 Prediction Modelling Using 
Artificial Neural Networks 

MLP ANNs are implemented in the advangeo® 
Prediction Software from Beak Consultants GmbH 
(www.advangeo.com). The modeling and prediction 
software analyses complex relationships between a 
wide variety of spatial influencing parameters (in this 
case the multispectral data) and given AMD 
occurrences, by using methods of artificial 
intelligence (AI) within a Geographic Information 
System (GIS) environment. The base principle is the 
ability of ML algorithms to generalize and learn from 
non-linear relationships, and model natural complex 
processes and events, which are difficult or 
impossible to be described with analytical 
mathematics (Noack, et al., 2014). 

The aim of the modelling is large-scale mapping 
of the iron concentration and pH based on R/S 
multispectral data and geochemical data and 
elaboration of the influence of spatial and spectral 
resolution in the modelling process. 

The accuracy and robustness of the trained 
network is assessed by:  
 Statistical evaluation: A comparison plot of the 

modelling results with the measured values of 
iron concentration and pH.  

 The network mean squared error (MSE): A 
converging and stable model error indicates 
that the network is learning effectively. 

 The model distribution weights: Balanced 
model distribution weights indicate that the 
network has appropriately distributed 
importance across all spectral bands without 
overemphasizing or neglecting any specific 
band.  

 The distribution map: Predictions should 
closely align with the actual target values and 
present uniform and logical AMD clustering. 
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3.2 Cross-Sensor Comparison of 
Sentinel-2 and Worldview-3 TOA 
Products 

The calibration of a reliable training network requires 
adequate and sufficient sampling data, covering a 
wide range of AMD scenarios. Given the free 
availability of Sentinel-2 data and the typically high 
costs of high-resolution commercial R/S datasets, we 
propose a methodology where ANNs are trained 
using Sentinel-2 data over a large area in conjunction 
with extensive geochemical monitoring data. The 
established dependencies and relationships are then 
applied to commercial high-resolution datasets for 
targeted identification of AMD in specific areas. This 
approach requires that the training and application 
models are provided with similar controlling 
parameters. 

Though the R/S multispectral datasets used in this 
study can provide “similar” observations (VNIR-
SWIR for Sentinel-2 and Worldview-3 data, and 
VNIR for UAV data), they differ in the field of view, 
spatial resolution, spectral bandwidth, and spectral 
response function.  While the difference introduced 
by different field of view and spatial resolution can be 
reduced and solved by the orthorectification and data 
resampling, respectively, the difference caused by 
different spectral bandwidth and spectral response 
function (the so-called reflectance difference) is a 
more complex problem.  

In this study, we apply the linear regression 
approach at different wavelengths to minimize 
reflectance difference between two similar satellite 
observations over water bodies. Figure 5 shows the 
cross-sensor agreement analyses between the 
Sentinel-2 and Worldview-3 TOA data. The Sentinel-
2 bands B5, B7, B8A, B11 and B12 are paired to 
Worldview-3, based on the introduced concept of 
synthesised bands by (Gasparovic, et al., 2018).  

The weakest correlations are observed in the low-
resolution Sentinel-2 bands, specifically B1 (443 
nm), B9 (940 nm), and the blue spectral band B2 (490 
nm). The low correlation in the blue wavelength 
range can be addressed to the fact that the reflection 
in this part of the spectrum is more susceptible to 
atmospheric scattering, which can drastically affect 
measurements. 

 
Figure 5: Cross-sensor agreement analyses between the 
Sentinel-2 and Worldview-3 TOA data. 

Figure 6 shows examples of cross-sensor 
comparison of the median spectra for three lakes: 
Kleinleipischer See (Fe = 195 mg/L, pH = 2,56), 
Bergheider See (Fe = 50,2 mg/L, pH = 2,74) and 
Poleysee (Fe = 0,15 mg/L, pH = 3,9). In all lakes, the 
Sentinel-2 and Worldview-3 spectra are in good 
agreement in terms of shape.  

Additionally, we use the transformation 
parameters from the linear regression model to 
harmonize the reflectance of Worldview-3 to 
Sentinel-2. The Sentinel-2 and adjusted Worldview-3 
spectra are in good agreement in terms of shape and 
magnitude (Figure 6). However, the adjusted spectra 
are slightly brighter than those of Sentinel-2 within 
the near- and short wavelength infrared (>700-
nanometers). 

 
(a) 
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(b) 

 
(c) 

Figure 6: TOA reflectance spectra for a) Kleinleipischer 
See (Fe = 195 mg/L, pH = 2,56), b) Bergheider See (Fe = 
50,2 mg/L, pH = 2,74) and c) Poleysee (Fe = 0,15 mg/L, pH 
= 3,9). 

3.3 Cross-Sensor Comparison of 
Sentinel-2 BOA Products and UAV  

Similar to section 3.2, cross-sensor agreement 
analyses were performed between Sentinel-2 BOA 
data and UAV data. The results of these analyses are 
presented in Figure 7. The Sentinel-2 bands B5 and 
B7 are paired to UAV, based on the introduced 
concept of synthesised bands by (Gasparovic, et al., 
2018). The weakest correlations are observed in the 
visible part of the spectrum corresponding to 
Sentinel-2 B2 (490 nm), B3 (560 nm), B4 (665 nm).  

 
Figure 7: Cross-sensor agreement analyses between the 
Sentinel-2 BOA and UAV data. 

A detailed view of the individual bands revealed 
that the visible bands are more susceptible to the 
ground surface brightness and reflectance differences 
coming from dynamically changing weather 
conditions. 

These discrepancies are confirmed also when 
comparing the Sentinel-2 BOA and UAV median 
spectra for Scheibe See (Figure 8). Generally, both 
spectres in the two lakes (Bergheider and Scheibe 
See) are in good agreement both in terms of shape and 
magnitude. Due to their similarity, in this case no 
transformation is used to harmonize the reflectance of 
UAV data to Sentinel-2 BOA. 

 
(a) 

 
(b) 

Figure 8: BOA reflectance spectra for a) Bergheider See (Fe 
= 50,2 mg/L, pH = 2,74), b) Scheibe See (Fe = 0,17 mg/L, 
pH = 7,38)  

4 RESULTS 

Two MLP training models were developed using 
Sentinel-2 and WorldView-3 data as controlling 
parameters. These models aim to evaluate the impact 
of WorldView-3's higher spatial and spectral 
resolution on AMD mapping. Furthermore, an 
application model leverages the established 
dependencies derived from Sentinel-2 training model 
and applies them to harmonized WorldView-3 data to 
assess the transferability of the knowledge gained in 
MLPs across similar remote sensing datasets. 
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On the other hand, the development of training 
models based on UAV-derived data for two lakes was 
deemed impractical due to the limited availability of 
training data. However, an application model was 
implemented to evaluate the transferability of the 
established dependencies for AMD mapping and was 
validated by the geochemical sampling in the two 
lakes.  

4.1 Training Scenario Using Sentinel-2 

Controlling parameters include Sentinel-2 
multispectral bands of Level-1C and Level-2A 
products. Figure 9 shows a comparison plot of the 
modelling results with the measured values of iron 
concentration and pH values. The trained neural 
network has been able to reproduce the calibration 
data in case of the iron concentration, as an optically 
active parameter. In case of pH values, there are no 
clearly established dependencies between the 
controlling parameters and the calibration data, 
however there is a significant differentiation of the 
acidic from the neutral waters. 

 
               (a)                                             (b) 

Figure 9: Plot of given and modelled a) iron concentration 
and b) pH values based on Sentinel-2 Level-2A BOA 
products. 

The MSE in both cases shows systematic 
convergence and remains stable, confirming the 
neural network's accuracy and robustness (Figure 10). 

 
               (a)                                             (b) 

Figure 10: Plot of MSE for the MLP for a) iron 
concentration and b) pH values based on Sentinel-2 Level-
2A BOA products. 

The model parameter weights revealed the 
Sentinel-2 Level-2A green (B03) and SWIR (B11 and 
B12) spectral bands to have the highest contribution 
for the modelling of iron concentration and B08 
(NIR) and SWIR (B11 and B12) for pH values.  

The result is a distribution map of iron 
concentration (Figure 11) and pH values (Figure 12) 
in the value ranges of input calibration data (0 – 361 
mg/L and 2–8, respectively) over the water bodies in 
the AOI. The typical patterns of high iron 
concentrations and low pH values in the shores are 
mostly due to the mixed pixel information in shallow 
waters. Generally, the distribution map reflects the 
AMD severity as measured from the geochemical 
analysis.  

 
Figure 11: Distribution map of iron concentration over the 
water bodies in the AOI; additionally, the measured Fe 
values are shown as a column chart. 

 
Figure 12: Distribution map of pH values over the water 
bodies in the AOI; additionally, the measured pH values are 
shown as a column chart. 
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4.2 Training Scenario Using 
Worldview-3 

Controlling parameters include Worldview-3 TOA 
multispectral bands. In this case, the geochemical 
analytic results are available for about 10 post-mining 
water bodies in the AOI. Figure 13 shows a 
comparison plot of the modelling results with the 
measured values of iron concentration and pH values. 
In this case, the trained neural network has been able 
to better reproduce the calibration data. 

 
               (a)                                             (b) 

Figure 13: Plot of given and modelled a) iron concentration 
and b) pH values based on Worldview-3 TOA products. 

The MSE in both cases shows systematic 
convergence and remains stable, confirming the 
neural network's accuracy and robustness (Figure 14). 

 
Figure 14: Plot of MSE for the MLP for a) iron 
concentration and b) pH values based on Worldview-3 
TOA products. 

Similar to the training model in 4.1, the training 
model weights confirmed the Worldview-3 TOA 
green and SWIR (from SWIR2 to SWIR7) spectral 
bands to have the highest contribution for the 
modelling of iron concentration and NIR1/2 and 
SWIR (SWIR6 to SWIR8) for pH values.  

The resulting distribution maps of iron 
concentration (Figure 15) and pH values (Figure 16) 
reflect the AMD severity as measured from the 
geochemical analysis, taking into consideration only 
those part of the WV3-image that are free of cirrus 
clouds.  

 

 
Figure 15: Distribution map of iron concentration over the 
water bodies in the AOI; additionally, the measured Fe 
values are shown as a column chart. 

 
Figure 16: Distribution map of pH values over the water 
bodies in the AOI; additionally, the measured pH values are 
shown as a column chart. 

4.3 Application Scenario Using 
Harmonized Worldview-3 

This scenario is useful when there are no sufficient 
calibration data inside the AOI of commercial 
Worldview-3 data. In this case, the harmonized 
Worldview-3 image bands to Sentinel-2 are used as 
controlling parameters and the established 
dependencies from the training scenario in 4.1 are 
used for AMD mapping. This approach does not 
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exploit the full potential of SWIR in the Worldview-
3 data, since they are harmonized to SWIR bands of 
Sentinel-2. However, it enables AMD mapping in the 
shores and in small/narrow water bodies, which 
cannot be represented properly in medium resolution 
images.  

Figure 17 shows a comparison plot of the 
application results with the measured values of iron 
concentration and pH values. The predicted iron 
concentration values resemble to the trend of 
measured values, but they are obviously 
overestimated, showing higher AMD-levels then the 
ones from geochemical analysis. This is reflected also 
in the modelled pH value, where all the water bodies 
in the AOI are predicted as very acidic.  

 
               (a)                                             (b) 

Figure 17: Plot of given and modelled a) iron concentration 
and b) pH values based on harmonized Worldview-3 TOA 
products. 

The same observations are confirmed from the 
distribution maps of iron concentration (Figure 18) 
and pH values (Figure 19). 

 
Figure 18: Distribution map of iron concentration over the 
water bodies in the AOI; additionally, the measured Fe 
values are shown as a column chart. 

 
Figure 19: Distribution map of pH values over the water 
bodies in the AOI; additionally, the measured pH values are 
shown as a column chart. 

4.4 Application Scenario Using UAV 
Data 

In this scenario, a new neural network was trained by 
Sentinel-2 data using only bands in the VIS-VNIR. 
This network confirmed the Sentinel-2 Level-2A 
green band (B03) to have the highest contribution for 
modelling of iron concentration and NIR band (B08) 
for the pH value. The established dependencies in the 
trained network were used for large-scale mapping of 
AMD in Scheibe See and Bergheider See using UAV 
data. 
Figure 20 and 21 show the distribution map of iron 
concentration and pH value over Bergheider See and 
Scheibe See. The median values of AMD parameters 
over both lakes and results of geochemical analysis 
are presented for comparison in Table 3. 

 
               (a)                                             (b) 

Figure 20: Distribution map of a) iron concentration and b) 
pH value over the Bergheider See. 
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               (a)                                             (b) 

Figure 21: Distribution map of a) iron concentration and b) 
pH value over the Scheibe See. 

Table 3: Comparison of geochemistry and modelling results 
for Bergheider See and Scheibe See.  

 Bergheider See Scheibe See
 Measured Model Measured Model

pH 2,74 3,84 7,38 6,622

Fe 
(mg/L) 

50,2 39,3  0,17 9,4 

The variating weather conditions between the mission 
flights seem to have a very small effect in the modelling of 
iron concentration, but show a considerable influence in the 
modelling of pH values. This issue is further elaborated in 
chapter 6. 

5 DISCUSSION 

This study assesses the feasibility of using free and 
commercial multispectral R/S datasets in 
combination with supervised ML algorithms for the 
automatic mapping of AMD in water bodies. 

Supervised ML algorithms require large and 
diverse training datasets that represent a wide range 
of AMD scenarios. However, in practical 
applications, such comprehensive datasets are often 
unavailable. To address this limitation, the study 
developed training models using a large variety of 
water bodies exhibiting different AMD levels. The 
transferability of the established models was further 
evaluated using commercial R/S datasets. 

The application of optical R/S analyses requires 
cloud- and cirrus-free acquisitions. Sentinel-2 data 
are generally more available for this purpose due to 
their high temporal resolution. In contrast, acquiring 
commercial datasets such as WorldView-3 imagery 
often requires careful planning, as constraints such as 
low cloud coverage and low nadir angles significantly 
influence the availability of suitable acquisitions. 
UAV-flight campaigns also present logistical 

 
2 The median pH values for Scheibe See were derived only 

from tiles captured under cloudy weather conditions. 

challenges, especially for large water bodies, as they 
require several days of data collection under stable 
weather conditions to ensure consistent reflectance 
values across adjacent flight paths. 

The high spatial and spectral resolution of 
WorldView-3 imagery, particularly in the SWIR 
bands, proved to be highly effective for AMD 
mapping. This may be related to the ability of SWIR 
bands to detect high concentrations of heavy metals 
typically associated with severely acidic conditions. 
Future research could further explore AMD patterns 
within the SWIR region using hyperspectral datasets, 
such as those provided by EnMAP or PRISMA. 
Additionally, the green spectral band was identified 
as an important feature, potentially due to the absence 
of vegetation or algae in water bodies with high 
acidity levels. 

The MLP models developed in this study 
demonstrated robust performance but are limited by 
the concentration ranges defined by the calibration 
data. Consequently, quantitative predictions cannot 
be reliably extrapolated beyond the range of the 
calibration data. In this context, discrete sampling 
remains of critical importance for properly calibrating 
or validating the algorithms. However, the proposed 
approach enables large-scale AMD mapping of water 
bodies by significantly reducing the need on 
extensive sampling campaigns. 

The flight campaign for a complete survey of 
large water bodies can take several days due to the 
European Union Aviation Safety Agency (EASA) 
restrictions for UAV (such as a maximum flight 
height of 120-meters). In practice, it is almost 
impossible to have constant weather conditions 
during such campaigns. The variating weather 
conditions (cloud, cirrus, haze, shadows) have a big 
influence on the surface reflectance of water bodies, 
leading to difficulties for balancing of the reflectance 
values and modelling inconsistencies over a water 
body.  

To improve UAV-based monitoring, fixed-wing 
UAVs are recommended for their ability to cover 
larger areas efficiently, reducing weather-induced 
variability and resulting imbalances across flight 
missions. Additionally, multispectral cameras with 
wider spectral bands would enhance the detection of 
subtle water quality variations. On the other hand, 
increasing the UAV flight altitude would 
considerably reduce flight time and also improve the 
accuracy of photogrammetric reconstructions by 
enhancing feature variations between consecutive 
images.  
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6 CONCLUSIONS 

The novelty of this study is the cross-sensor 
comparison of free and commercial space- and 
airborne- multispectral R/S datasets (Sentinel-2, 
Worldview-3 and UAV) with a focus on assessing the 
transferability of established dependencies between 
AMD parameters and spectral data across several 
datasets.  

The cross-sensor analysis identified spectral 
discrepancies coming mainly from differences in 
spectral bandwidth and spectral response functions. 
To address these variations, transformation 
parameters were derived to align the spectral 
characteristics of commercial datasets with those of 
Sentinel-2, which was used as a reference due to its 
free availability and high temporal resolution. This 
makes Sentinel-2 a valuable dataset for training ML 
algorithms. 

Results indicate that adjusted WorldView-3 data 
appear slightly brighter than Sentinel-2 data in the 
NIR and SWIR (>700 nm) regions. Consequently, the 
transferred neural network exhibited a tendency to 
overestimate AMD levels. Future research can focus 
on optimizing transformation parameters using larger 
and more diverse datasets, including time-series data 
and broader spatial coverage. Nevertheless, the 
correct relative distribution of iron concentrations 
suggests that the established dependencies from the 
training model remain transferable across these 
datasets. This approach fully elaborates the high 
spatial resolution of WV3-datasets and enables AMD 
mapping even in small-scale or narrow water bodies, 
offering a more efficient and cost-effective 
alternative, as running extensive training models on 
commercial datasets. 

The training scenario with the best results was 
obtained when using Worldview-3 datasets as 
controlling parameters, due to their high spatial and 
spectral resolution, particularly in the SWIR bands. 
However, the trained network in this case is relied in 
a few number of water bodies and AMD scenarios. 

The transferred neural network for UAV-based 
monitoring has shown also very promising results.  
While clear-sky and sunny conditions offer optimal 
reflectance, they can introduce sun-glint effects in 
UAV-based monitoring. The large-scale pH 
distribution map of Scheibe See (Figure 21) 
highlighted the significant impact of weather 
conditions on the modelling process. In Bergheider 
See, flight missions occurred under more consistent 
conditions, resulting in minimal weather-related 
influences. These findings suggest that bright, 
diffused sunlight represents the ideal weather 
conditions for UAV-based water quality monitoring. 

Finally, despite not being included in any training 
scenarios, Scheibe See was correctly classified as a 
lake with no evidence of AMD, demonstrating the 
applicability of the trained neural network beyond the 
AOI. This demonstrates the robustness and 
application of the developed approach for large-scale 
mapping of the water quality in post-mining water 
bodies. 
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