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Abstract: We show that by using inertial sensor data generated by a smart ring, worn on the finger, the user can be
authenticated when making mobile payments or when knocking on a door (for access control purposes). We
also demonstrate that smart ring data can authenticate payments made with a smartwatch, and vice versa, such
that either device can act as an implicit second factor for the other when worn on the same arm. To validate
the system, we conducted a user study (n=21) to collect finger and wrist motion data from users as they
perform gestures, and we evaluate the system against an active impersonation attacker. We develop payment
authentication and access control models for which we achieve equal error rates of 0.04 and 0.02, respectively.

1 INTRODUCTION

Mobile payment systems (also known as tap-and-pay
systems), such as Google Pay, have become perva-
sive. These systems enable the user to provision pay-
ment cards to a virtual wallet on a smartphone and
then facilitate cashless and contactless payments with
NFC-enabled point-of-sale terminals. The functional-
ity of mobile payment systems has been extended to
wearable devices, such as smartwatches. When paired
with a smartphone, a smartwatch can access and store
the same virtual wallet and make payments even when
the smartphone is not present.

We are starting to see commercial smart rings en-
ter the market. Sleep tracking rings, such as Thim, use
inertial or heart-rate sensors to infer different stages
of sleep and monitor sleeping patterns. HelioS uses
an ultra-violet radiation sensor to monitor exposure to
sunlight to infer vitamin D intake and warn the user
about sunburn. Amazon Echo Loop uses a micro-
phone and speaker to enable the user to interact with
the Alexa virtual assistant and to make phonecalls
through a paired smartphone. Blinq uses inertial sen-
sors for fitness monitoring and provides a discreet
panic button in the shape of a fake gemstone that trig-
gers an application on a paired smartphone to send
a help request containing geo-location information to
contacts or social media, ideal for night joggers.
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Mastercard K-ring is a smart ring that enables the
user to make payments via NFC, similar to a contact-
less payment card. While the K-ring does not commu-
nicate directly with the user’s smartphone, a payment
application running on the phone can be linked to the
same account to which the ring is linked such that
payment authorisation requests can be sent from the
payment provider to the phone for the user to autho-
rise. As smart ring technology evolves and ring-based
services that require user authentication, such as pay-
ment and access control systems, grow in feature-
richness, there is a growing need for new authenti-
cation factors to support them.

Given that wearable devices are often designed
with continuous healthcare or fitness use-cases in
mind, they tend to have an inertial measurement unit
(IMU) consisting of (at least) an accelerometer and
a gyroscope. Works in behavioural biometrics have
shown that inertial sensor data in smartphones and
smartwatches can be used to infer gait or gestures.
These systems require some initial calibration (i.e., a
cumbersome enrolment phase), but then continuously
authenticate the user with reasonable effect.
Contributions. In this work, we show that inertial
sensor data generated by a smart ring can be used to
authenticate the user when making certain gestures,
such as tapping a payment terminal or knocking on a
door. Specifically, we contribute the following:

• We propose a novel, smart ring-based authentica-
tion system and we conduct a user study (n=21)
to evaluate it. Using only inertial sensor data,
we show that a single tap gesture performed by

96
Sturgess, J., Birnbach, S., Eberz, S. and Martinovic, I.
RingAuth: User Authentication Using a Smart Ring.
DOI: 10.5220/0013494900003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 96-107
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



a user while making a payment with a smart ring
can implicitly authenticate the user. We also show
that smart ring data can authenticate a smartwatch
user, and vice versa, allowing either device to act
as an implicit second factor for the other.

• We show that our approach can also be applied to
an access control context, in which a single knock
gesture on a door (measured by sensors on either
device or embedded in the door itself) can explic-
itly authenticate the user.

• We show that our authentication models are resis-
tant against an active impersonation attacker.

• We make our data available (Sturgess, 2023).

2 SYSTEM DESIGN

2.1 Design Goals

In this paper, we investigate the use of inertial sensors
on a smart ring for user authentication purposes. We
consider both the use of the smart ring to authenticate
the user for its own services and to support authenti-
cation on other devices and the use of other devices to
support authentication for services on the smart ring.

First, we select the context of mobile payments
and we consider the tap gesture made when the user
taps an NFC-enabled device against a point-of-sale
terminal to provide a gesture biometric and we pose
the following questions:

• Can tap gestures made with a smart ring, as mea-
sured by the inertial sensors of the smart ring, be
used to implicitly authenticate the user during a
transaction?

• Can tap gestures made with a smart ring, as mea-
sured by the inertial sensors on a smartwatch worn
on the same arm, be used to implicitly authenti-
cate the user (in case the smart ring does not have
inertial sensors of its own) during a transaction?

• Can implicit authentication in a smartwatch sys-
tem be improved by incorporating (the inertial
sensor data of) a smart ring as a second factor?

Second, we select the context of access control
and we consider knock gestures on a closed door,
as measured by inertial sensors on worn devices and
mounted on the door. We pose the question:

• Can knock gestures, as measured by inertial sen-
sors, be used to authenticate the user implicitly
(with regular knocks) or explicitly (with user-
chosen secret knocks)?

Figure 1: The equipment used in our experiments: six fixed
terminals, an NFC reader (here on Terminal 1), a Raspberry
Pi for timestamp collection, a Raspberry Pi attached to the
door, and a fixed camera. Inset: our smart ring and smart-
watch worn on the left arm with sensor axes shown (the
z-axes point upwards through the screens). Right: the at-
tacker’s view of a victim interacting with (from left) Termi-
nals 2 with the watch, 3 with the ring, and the door.

Table 1: Details of the terminals used in our payment ex-
periment; the indices correspond to the labels in Figure 1
and ‘F’ is the freestyle terminal. Height is measured from
the floor to the lowest point of the terminal; Tilt is the incli-
nation at the lowest point of the terminal; and Distance is
measured from the front of the stand to the foremost point
of the terminal.

Terminal Height (cm) Tilt (◦) Distance (cm)

1 100 0 5
2 120 60 25
3 95 45 -10
4 105 30 15
5 110 15 10
6 115 90 30

F picked up from centre of stand

2.2 System Model

For our payment model, we consider a system model
in which the user is wearing both a smart ring and
a smartwatch on the same arm and is using them to
make an NFC-enabled payment at a point-of-sale ter-
minal in a typical setting (e.g., a shop). We assume
that a payment consists of the user making a tap ges-
ture by moving a device towards the terminal until it
is near enough to exchange data via NFC. We assume
that each tap gesture ends when the NFC contact point
is found, as this is when the payment provider would
decide whether to approve the payment.

For our access control model, we consider a sys-
tem model in which the user is wearing both a smart
ring and a smartwatch on the same arm and is knock-
ing on a door with that hand as a means to authenticate
to an access control system. This is a knock gesture.

We assume that the devices have an accelerometer
and gyroscope and that we have access to their data.
We use data from the inertial sensors only. We assume
that the user’s biometric templates are stored securely
on the wearable devices. When we combine data from
multiple devices into a single sample for classifica-
tion, as we do in some of our models, we assume that
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one device shares its feature vector components wire-
lessly with the other in a secure manner. We do not
make any assumption on how the wider system might
act on the authentication decision; however, an exam-
ple would be to have the NFC module of the tapping
device disabled by default and only enabling it if the
user is locally authenticated by the gesture biometric.

2.3 Threat Model

We consider an adversary that has possession of a le-
gitimate user’s smart ring (or smartwatch, or both, as
appropriate), has unlocked it, is wearing it, and is at-
tempting to use it to make a payment at a terminal or
to gain entry to a locked door via an access control
system. The adversary may have (maliciously) stolen
the device(s) or (benignly) borrowed it. Our goal is to
authenticate the legitimate user and to reject the ad-
versary by using gesture biometrics. We consider the
following two types of attack:

• Zero-effort attack: for any given victim, all other
users are considered to be passive, zero-effort at-
tackers.

• Observation attack: an active attacker who sees
(and hears) the victim perform gestures (e.g., via
a hidden camera) and then attempts to mimic him.

We focus on how gesture biometrics can be used
to defend against these attacks. We do not consider
threats to other components in the system, tampering
of devices or biometric templates, malware, or denial
of service attacks.

3 EXPERIMENT DESIGN

3.1 Experiment Overview

To evaluate the extent to which finger and wrist mo-
tion data can be used to authenticate users, and to
compare the two, we designed and conducted a user
study to collect data. We set up six point-of-sale
terminals on an adjustable stand fixed at a height
of 100 cm, an ACR122U NFC reader connected to
a Raspberry Pi for timestamp collection, a second
Raspberry Pi with an accelerometer and a gyroscope
attached to a closed door, and a smartphone fixed in
position for video recording. For our wearable de-
vices, we used a smart ring and a smartwatch (de-
tailed below), both commercial off-the-shelf devices
and worn together on the same arm by the user. We
collected motion data from the wearable devices and
the door-mounted Raspberry Pi (with all clocks syn-

chronised) as the user performed gestures. Figure 1
shows our apparatus.

For our payment experiment, we affixed an NFC
tag to the front of each wearable device and we affixed
the NFC reader to the front of each point-of-sale ter-
minal in turn. For each terminal, the user stood in
front of the stand and performed tap gestures on a ter-
minal using a wearable device, as if making real pay-
ments, with a short spacing delay between each tap
gesture. The use of NFC tags and the NFC reader
ensured consistent NFC communication between the
wearable devices and the terminals. Each NFC tag
stored the name of the wearable device to which it
was affixed; each time NFC contact was made during
a tap gesture, the Raspberry Pi captured its timestamp
and the name of the triggering device. This was later
used to segment the inertial sensor data collected from
the devices to retrieve the data for each tap gesture.

For our access control experiment, the user stood
in front of the closed door and performed knock ges-
tures on it using his device-wearing hand. The user
pressed the button on the smart ring before and after
each knock gesture to capture bounding timestamps.
These timestamps were later used to segment the in-
ertial sensor data collected from all devices to retrieve
the data for each knock gesture.

3.2 Point-of-Sale Terminals

To immerse the user in a real-world payment setting
as much as possible, we captured tap gestures us-
ing seven point-of-sale terminals. Six terminals were
fixed in position (as detailed in Table 1) and one was
movable—we call this the ‘freestyle’ terminal. To
inform the placement of the fixed terminals, we sur-
veyed supermarkets and restaurants to find popular or
standardised terminal positions (in terms of height, tilt
angle, and distance from the user). We set one of the
fixed terminals (Terminal 3) to match the position of
the terminal on a train station barrier in the UK, which
is widely standardised and represents another setting
where mobile payments are made. For the freestyle
terminal, the user picked up the NFC reader from the
centre of the stand with his other hand and performed
a tap gesture on it, returning it after each gesture, as if
a shopkeeper had handed a terminal to a customer.

3.3 Wearable Devices and Sensor
Modules

For our smart ring, we used a Genki Wave. This ring
is worn on the index finger and has a button that can
be pressed with the thumb—we utilised this for times-
tamp collection in our access control experiment. We
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wrote a data collection script in Python using the open
source library provided by the developers to interface
with the ring over Bluetooth LE.

For our smartwatch, we used a Samsung Galaxy
Watch running the Tizen 4.0 operating system. We
built a data collection app and installed it on the
smartwatch using the Tizen Studio IDE.

From each of these wearable devices, we collected
timestamped data from four inertial sensors directly
or derived from their MEMS sensors. The accelerom-
eter measures change in velocity. The gyroscope
measures angular velocity. The linear accelerome-
ter is derived from the accelerometer and the mag-
netometer to exclude the effects of gravity. The gy-
roscope rotation vector (GRV) is a fusion of sensor
readings to compute the orientation of the device. We
collected this data with sampling rates of 100 Hz for
the smart ring (which we downsampled to 50 Hz),
50 Hz for the smartwatch, and 30 Hz for the door-
mounted Raspberry Pi.

The inertial sensor axes are fixed relative to the
frame of each device (as shown in Figure 1). Motion
measured along the x-axis corresponds with pushing
or withdrawing the arm; the y-axis, with waving the
arm from side to side; and the z-axis, with movements
up- and downwards through the screen.

3.4 Tap and Knock Gestures

To collect tap gestures for our payment experiment,
we had each user perform the following types of tap
gesture on each of the seven point-of-sale terminals:

• Ring Tap: the user tapped the smart ring against
the terminal and moved it around, if necessary,
until NFC contact was made to simulate a ring-
based payment.

• Watch Tap: the user tapped the smartwatch against
the terminal and moved it around, if necessary,
until NFC contact was made to simulate a watch-
based payment.
To collect knock gestures for our access control

experiment, we had each user perform the following
types of knock gesture on the closed door:

• 3-knock: the user knocked on the door three times.
• 5-knock: the user knocked on the door five times.
• Secret knock: the user created a knock pattern

consisting of between three and six knocks.

3.5 User Study

To collect our data, we conducted a user study that
was approved by the relevant research ethics commit-
tee at our university. We recruited 21 participants that

included staff, students, and members of the public.
Each participant attended three data collection ses-
sions and performed 10 of each of the gestures de-
tailed in Section 3.4 in each session. The first two
sessions were separated by a break of 5 minutes and
the final session occurred on a different day. We col-
lected 17×10×3 = 510 gestures from each user.

In each experiment, the participant was asked to
stand facing the terminals or the door; aside from
this, we did not prescribe any constraints on position-
ing as we wanted the user to interact comfortably as
though acting in a real-world setting. The first three
gestures of any type were performed in silence to fa-
miliarise, then the researcher engaged the participant
in light conversation to simulate the distractions of a
real-world environment. This sometimes elicited ad-
ditional hand and body movements if the user gestic-
ulated naturally.
Impersonation. To evaluate the robustness of our
approach against an observing attacker, all 21 par-
ticipants consented to having their gestures recorded
and participated in an impersonation exercise. The
first 3 were recorded as victims and the latter 18 im-
personated them; then, at the end of the study, the
first 3 returned to impersonate the other 18. This de-
sign enabled us to compare the susceptibility of dif-
ferent victims and the skill of different attackers (also
known as wolf and lamb analysis). We recorded the
following six gestures of each participant: smart ring
and smartwatch tap gestures on Terminals 2 and 3,
5-knock gestures, and secret knock gestures. The
camera was fixed in position, as if hidden, and so
the amount of observable information was controlled;
Figure 1 shows the attacker’s view of the terminals
and the different information observable for each type
of gesture. For each attack, the attacking participant
watched (and heard) a short video of the victim per-
forming the gesture three times and then made three
attempts to mimic him. The attacker wore the wear-
able devices on the same arm as the victim.
User Statistics. Of our 21 participants: 15 were male,
17 wore the devices on the left arm (the decision was
led by the smartwatch; everyone who wore them on
the right arm was female), 15 regularly wore a watch
of some kind (7 of which wore a smartwatch), 13 had
paid with a smartphone before, and 5 had paid with
a smartwatch (i.e., 71% of those who regularly wore
one). 16 participants (76%) remembered their secret
knock, with an average of 4.8 days between their ses-
sions (those who did not remember had an average of
4.2 days between sessions).
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4 METHODS

4.1 Data Processing

We collect time-series data from the inertial sensors
on the wearable devices and those attached to the
door. Each accelerometer, gyroscope, and linear ac-
celerometer sample at time t is given in the form
(t,x,y,z). Each GRV sample at time t is given as a
quaternion in the form (t,x,y,z,w).

We express a single tap or knock gesture as a se-
ries of samples within a time window. In our payment
experiment, we retrieve the tap gestures for each user
by segmenting sensor data into 4-second windows us-
ing NFC contact point timestamps as endpoints. To
find the optimum parameters for a tap gesture win-
dow, we compare (in Section 5) the performance of
gestures bounded by a variety of window sizes and
time offsets. We define the offset to be the time
between the NFC contact point and the end of the
window—i.e., for an NFC contact point timestamp T0,
a window size s, and an offset o, we would retrieve a
tap gesture with start time TS and end time TE , where
TE = T0 − o and TS = TE − s. In our access control
experiment, we retrieve the knock gestures for each
user using bounding timestamps captured when the
user pressed the button on the ring before and after
each gesture.

4.2 Feature Extraction

Whenever a gesture is retrieved, we reduce noise in
the data by applying a Butterworth low-pass filter and
then process the gesture in the following 19 dimen-
sions. For each accelerometer, gyroscope, and linear
accelerometer sample, we process the filtered x-, y-,
and z-values, the Euclidean norm of the filtered val-
ues, and the Euclidean norm of the raw (unfiltered)
values. For each GRV sample, we process only its
four filtered values.

We reduce each gesture to a feature vector con-
taining the following 220 members. For each gesture,
we extract ten statistical features in each dimension—
namely: minimum, maximum, mean, median, stan-
dard deviation, variance, inter-quartile range, kur-
tosis, skewness, and peak count. And, from each of
the gesture’s accelerometer, gyroscope, and linear ac-
celerometer vectors, we calculate the mean velocity,
maximum velocity, and displacement along each axis
and the Euclidean displacement.

In previous works (Sturgess et al., 2022a; Sturgess
et al., 2022b), we found similar feature sets to be ideal
by starting with a larger set and pruning it down using
normalised Gini importances to reject the least infor-

mative features, so we use the same approach here on
similar grounds. This approach also yielded promis-
ing preliminary results in our access control model, so
we used it for both models to allow for comparability
and consistency throughout the paper.

In some of our models, we combine inertial sensor
data from multiple devices. In these cases, the above
features are extracted for each separate source and
then concatenated together to form a linearly larger
feature vector.

4.3 Classification

We construct random forest classifiers for each of our
payment authentication and access control models in
Python (Pedregosa et al., 2011) and we include 100
decision trees in each forest. Similar works (Acar
et al., 2020; Sturgess et al., 2022b) have shown that
random forests are efficient, robust against noise, and
capable of estimating the importance of features. To
mitigate the effects of randomness, and to ensure that
our results are fair and unselective, we reconstruct
each classifier ten times with different forest randomi-
sation seeds and average the results.
Position-Agnostic Model. To evaluate the zero-effort
attacker, we train a set of classifiers that are user-
dependent and agnostic to the position of the termi-
nal. This means that a separate template (and deci-
sion threshold) is generated for each user and that,
for each tap gesture under test, the tap gesture sam-
ples used to train the classifier came from tap gestures
made only against other terminals (i.e., a leave-one-
out approach). The user’s tap gestures form the pos-
itive class and all other users’ tap gestures form the
negative class. As this is an authentication scenario,
we ensure that the training data temporally precedes
the testing data by taking the tap gestures collected
in users’ first data collection session as training data
(analogous to the enrolment phase, where the user
template is created) and those collected in the second
session as testing data (analogous to the authentica-
tion phase).
Position-Known Model. To evaluate the observation
attacker, we apply a similar design, except that we
do not exclude tap gestures based on terminal. We
assume that, since the attacker has already observed
the victim using the terminal in question, the sys-
tem has knowledge of the victim’s tap gestures made
against that terminal. We pair up every user as a vic-
tim with every other user as an attacker, one at a time,
and train the classifiers, excluding all of the attacker’s
tap gestures. This enables us to generate the vic-
tim’s decision threshold for that pairing, tuned to the
EER (which we take as our baseline FAR, the base-
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FAR), with no knowledge of the attacker, and then
we test the attacker’s impersonation samples against
that tuned classifier to find his attack success rate (the
observation-FAR). We compare these two FARs to
measure the success of the observation attack.
Position-Specific Model. We train a set of classifiers
in which each is trained and tested on tap gestures
made on a single terminal. This model enables us to
measure the effectiveness of our approach if imple-
mented in systems with standardised fixed terminals,
such as public transport systems.
Access Control Model. For knock gestures, to eval-
uate each of the attackers, we use a similar approach
as with each respective payment authentication model
above, except that we do not need to generalise the
model over multiple terminals. We train separate
models for each of the three types of knock gesture.

4.4 Performance Metrics

We define the true positives to be the number of times
that the positive class (i.e., the legitimate user) is cor-
rectly accepted; the true negatives to be the number
of times that the negative class (i.e., the adversary) is
correctly rejected; the false positives to be the number
of times that the negative class is wrongly accepted;
and the false negatives to be the number of times that
the positive class is wrongly rejected. The decision
threshold, θ, is the score required for the classifier
to assign to a sample the positive class. To tune, we
adjust θ—if we increase θ, the model becomes more
resilient to false positives, so a greater θ will favour
security and a smaller θ will favour usability.

To quantify the performance of our models, we
find the optimum θ where the false acceptance rate
(FAR) equals the false rejection rate (FRR); this
cross-over point is called the equal error rate (EER).
The FAR gives us an indication of security, as it mea-
sures the likelihood that the negative class will be
wrongly accepted. The FRR gives us an indication
of usability, as it measures the likelihood that the pos-
itive class will be wrongly rejected. The EER is com-
monly used as a metric in authentication systems as
it gives a balanced measure of system performance.
To understand how well a classifier can distinguish
between positive and negative classes, we plot a re-
ceiver operating characteristic (ROC) curve by com-
paring its true positive rate against its FAR for each θ.
The area under this curve (AUC) gives us an indica-
tion of the classifier’s ability to separate the classes,
where a score of 1 shows perfect class separation, a
score of 0.5 shows none, and a score of 0 shows that
the classifier is always assigning the wrong class.

5 RESULTS

5.1 Zero-Effort Attack

Tap Gestures. Figure 2 shows the average EERs for
our position-agnostic payment authentication models
by window size and offset. With 21 users and 6 fixed
terminals, each score is the average of scores from
21× 6× 10 = 1,260 classifiers (see Section 4.3 for
details).

For ring tap gestures, Figure 2a shows that when
using data from the smart ring only our model
achieves EERs as low as 0.06. Figure 2b shows that
when using data from the smartwatch only, we get
0.08. This suggests that a smartwatch could perform
as a reasonable authenticator for a smart ring, in a sce-
nario where the smart ring does not have any inertial
sensors of its own (such as the Mastercard K-ring). If
the data from both devices are combined, Figure 2c
shows that we achieve EERs as low as 0.04. The opti-
mum parameters for ring tap gestures, by considering
EERs and favouring a smaller window size for usabil-
ity, are {s = 2.5,o = 0}. Figure 3a shows the ROC
curves for these models by gesture and device in this
optimum window; we achieve AUCs of up to 0.96.

When we use data from the smartwatch only, we
see a pattern radiating from the bottom left corner of
the grid. This shows that, when training only on data
where the tapping device is near to the terminal (small
window, just before the NFC contact point is found),
the movements of the wrist are not discriminative be-
tween users. The same is not true when using data
from the smart ring only; this suggests that the fin-
ger remains active during that time, even for watch
tap gestures. Figure 2f shows that including a smart
ring as an additional factor can improve the authen-
tication of a user making watch-based payments (cf.
Figure 2e).
Knock Gestures. Across all of the participants in
our user study, the average 3-knock gesture lasted
2.81 seconds, the average 5-knock, 3.32 seconds, and
the average secret knock, 3.78 seconds. Table 2 shows
the average EERs for our access control models. Each
score is the average of scores from 21 × 10 = 210
classifiers. Figure 3 shows the average ROC curves.
Unexpectedly, our 3-knock model performed best,
achieving an EER of 0.02 and an AUC of 0.98 using
data from the smartwatch only. The weaker results
of the 5-knock model might be due to some partic-
ipants sometimes miscounting the number of knocks
when performing a 5-knock gesture, suggesting that it
is a less user-friendly gesture and leading to messier
data, whereas 3-knock gestures were performed ef-
fortlessly and more consistently.
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Figure 2: Average EERs for our payment models by window size and offset, for tap gestures made with the smart ring (top)
and smartwatch (bottom), using data from the smart ring only (left), the smartwatch only (centre), and both combined (right).
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Figure 3: Average ROC curves for our payment models in optimum window {s = 2.5,o = 0} and our access control models,
using data from (i) only the smart ring, (ii) only the smartwatch, (iii) only the door-mounted sensors, and (iv) both or all three
(as relevant) combined. The AUCs are given in parentheses.

Table 2: Average EERs for our access control models, us-
ing data from (i) only the smart ring, (ii) only the watch,
(iii) only the door-mounted sensors, and (iv) all three com-
bined.

Knock
Gesture

EER

Ring Watch Door Combined

3-knock 0.06 0.02 0.17 0.03
5-knock 0.12 0.04 0.21 0.05
secret knock 0.09 0.05 0.19 0.05

When we use data from the smartwatch only, we
achieve the best error rates and class separation across
all models, including those based on combined data.
This suggests that wrist movements are a key discrim-
inator in knocking, to such an extent that other factors
act as pollutants. When we use data from the door
only, we achieve the poorest results; the lower sam-
pling rate of the door-mounted sensors may have an
impact, but the magnitude of the difference in results
is likely explained by those sensors lacking knowl-
edge of user movements. Despite this sparse data,
the classifiers are still able to achieve a reasonable de-
gree of class separation, as evidenced by their average
AUC of 0.81.

5.2 Observation Attack

Figure 4 shows the results of our observation attack
against our position-known payment authentication
model and our access control model. Each of the first
3 users was the victim of 1,080 ring tap imperson-
ation attempts (18 attackers × ring tap gestures on 2
terminals × 3 attempts at each gesture × 10), 540 5-
knock attempts, and 540 secret knock attempts; each
of the other 18 users, separated in the figures by a red
line, was the victim of 180 (3 attackers), 90, and 90
attempts, respectively.

For ring tap gestures, the base model achieves av-
erage base-FARs of 0.03 when using data from the
smart ring only and of 0.01 when using data from
the smart ring and smartwatch combined; when at-
tacked, the average success rates (observation-FARs)
are 0.06 and 0.05, respectively (and similar results for
watch tap gestures). Figures 4a and 4b show that a
small number of our users are lambs (i.e., users who
are especially susceptible to impersonation), where
their observation-FAR is significantly larger than their
base-FAR. Figure 4b shows that the addition of the
smartwatch data helps to reduce the largest FAR
deltas, and the overall average observation-FAR, but
also opens a new vector that increases the suscepti-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

102



0.0

0.2

0.4

0.6

0.8

FA
R

(a) ring tap gestures;
ring data; victims
.

0.0

0.2

0.4

0.6

0.8

(b) ring tap gestures;
combined data; victims
.

0.0

0.2

0.4

0.6

0.8

(c) 5-knock gestures;
combined data; victims
.

0.0

0.2

0.4

0.6

0.8

(d) secret knock gestures;
combined data; victims
.

0.0

0.2

0.4

FA
R

(e) ring tap gestures;
ring data; attackers

0.0

0.2

0.4

(f) ring tap gestures;
combined data; attackers

0.0

0.2

0.4

(g) 5-knock gestures;
combined data; attackers

0.0

0.2

0.4

(h) secret knock gestures;
combined data; attackers

Figure 4: Results of our observation attack against our position-known payment models in optimum window {s = 2.5,o = 0}
and our access control models. The top row shows for each user as a victim the average FAR of the user-specific base model
(flat line) and the average FAR when attacked (circle); if the latter is greater, then the victim’s line is coloured blue, otherwise
it is orange. The bottom row shows for each user as an attacker the average FAR achieved when attempting to impersonate
other users. The red line separates the first 3 users from the other 18, indicating the two groups of users (see Section 3.5).

bility of some users. Figures 4e and 4f show that
none of our users are wolves (i.e., users who are es-
pecially skilled at impersonation); when using data
from the smart ring only, some attempts got lucky
against a random spattering of users, but when the
smartwatch data were combined, the success rate
dropped. This suggests that our system provides re-
sistance against wolf behaviour, reducing the likeli-
hood that an attacker could predictably impersonate a
given victim—and so, in the wider system, this may
act as a deterrent.

For knock gestures, when using data from the
door-mounted sensors, smart ring, and smartwatch
combined, we have average base-FARs of 0.05 for
both the 5-knock and secret knock gestures and aver-
age observation-FARs of 0.08 and 0.09, respectively.
Figures 4c and 4d show that we have a number of
lambs, this time with greater FAR deltas. Knock ges-
tures are notably weak against impersonation if they
are loud and slow. For the secret knock, the fourth
and sixth users after the red line have high base-FARs
because those users chose common gesture fragments
in their secret knocks. For the former (and the sev-
enth user), the gesture was loud and slow, as evi-
denced by the large observation-FAR. For the latter,
curiously, the observation-FAR is far lower than the
base-FAR, suggesting that the gesture was difficult
to mimic intentionally despite having commonality
with other gestures. This gesture contained three fast
knocks in the middle, which captured the attention of
attackers only for them not to match the surrounding
knocks. Figures 4g and 4h show that attentive attack-
ers are able to achieve reasonable attack success rates,
but this is due to the lambs being more vulnerable—
whether by poor choice of secret or poor execution

(i.e., loud and slow)—rather than the attacker being
especially skilful. The knock gesture has a greater
dependence on user discretion than the tap gesture.

5.3 Feature Informativeness

To investigate which features are most informative to
our models, we sum the top five features, sorted by
Gini importance, of each classifier. (Note that, w.r.t.
the counts, there are six times more classifiers for the
payment models.)

For ring tap gestures, Table 3a shows that our
models favour GRV-derived features when using data
from the smart ring only, but accelerometer- and
gyroscope-derived features when using data from the
smartwatch only, indicating that the finger moves to a
position faster and remains in a position longer than
the wrist, whose movements are smoother. The com-
bined model, which achieved stronger results than the
others as we saw in Figure 2, had twice as many
members in its feature vector and ended up favour-
ing a similar set, re-affirming the relative importance
of these features.

For 3-knock gestures, Table 3b shows the domi-
nance of features derived from the y- and z-axes of
the wearable devices, which is to be expected as these
measure the sideways and forward movements of the
hand, respectively. Aside from these, two notable ex-
ceptions show greater importance: the x-axis of the
smartwatch yields a single important feature, repre-
senting the maximum acceleration of the arm as it ex-
tends towards the door initially, and the median im-
pact experienced by the door-mounted accelerometer,
indicating that each user struck the door with consis-
tent force.
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Table 3: Modal top-five features by Gini importance summed over classifiers for our payment models in optimum window
{s = 2.5,o = 0} and our access control models, using data from (i) only the smart ring, (ii) only the smartwatch, (iii) only the
door-mounted sensors, and (iv) both or all three (as relevant) combined. Features are given in the format sensor-axis-statistic;
for combined models, the leading character indicates the device to which the sensor belongs (ring, watch, or door).

(a) payment models; ring tap gestures

Ring Watch Combined

Feature # Feature # Feature #

GRV-y-med 309 Acc-x-min 297 w-Acc-x-min 185
GRV-y-mean 269 Acc-y-max 208 w-Acc-y-max 151
GRV-x-mean 239 Acc-x-max 208 r-Gyr-z-mean 145
GRV-x-med 223 Acc-z-max 189 r-Acc-x-vmax 141
GRV-x-max 222 Gyr-z-vmean 138 r-GRV-x-max 135
GRV-y-max 217 Gyr-z-mean 126 r-Acc-x-mean 128
Gyr-z-mean 192 Gyr-z-min 124 r-GRV-y-mean 122
Acc-x-mean 162 Gyr-z-disp 119 r-Acc-x-med 122
GRV-z-max 157 Acc-x-mean 117 r-GRV-x-med 116
Acc-x-vmax 155 Acc-x-vmax 116 r-GRV-y-med 116

(b) access control models; 3-knock gestures

Ring Combined

Feature # Feature #

GRV-w-med 24 d-Acc-y-med 22
Acc-y-disp 22 w-Acc-x-max 20
GRV-y-max 20 w-Gyr-z-var 17
GRV-w-mean 19 w-Gyr-y-med 17
GRV-z-med 19 w-Gyr-z-vmax 15
Acc-z-mean 18 w-Gyr-z-stdev 15
Acc-z-med 18 w-LAc-z-disp 15
Gyr-y-vmax 18 w-GRV-y-iqr 15
GRV-x-mean 18 w-GRV-y-med 14
LAc-x-disp 17 w-Gyr-y-min 12

5.4 Sensor Selection

We collected motion data from all of the inertial sen-
sors available on our devices. Some devices are more
limited in their offering—the accelerometer is the
commonest sensor, as it is the smallest and cheapest.
To assess the feasibility of our approach on devices
with fewer sensors, we trained a set of sensor-specific
models in which each classifier is trained and tested
on data from a subset of sensors.

For models that use data from the smart ring only,
we find distinctly poorer results whenever we remove
the GRV sensor. With just an accelerometer, we see
poorer results with an increase of approximately 0.04
in every EER. Conversely, for models that use data
from the smartwatch only, we find that we achieve
EERs of 0.05 in windows that achieved EERs of 0.08
in Figure 2c when using only the accelerometer and
gyroscope; this suggests that the other sensors pollute
the smartwatch classifiers, echoing similar findings in
related work (Sturgess et al., 2022b). The combined
models are broadly unchanged, relying on ring fea-
tures when GRV is included and watch features when
not.

5.5 Terminal Positions

We collected tap gestures performed against a range
of terminals. Some systems, such as public transport
systems, have highly standardised terminals (i.e., ded-
icated terminals that can be found set at the same posi-
tion in many instances). To compare the effectiveness
of our approach in a general setting against a stan-
dardised setting, we trained a set of position-specific
models in which each classifier is trained and tested
on data from a single terminal.

Table 4 shows the average EERs for our position-
specific payment authentication models when trained
and tested on tap gestures from a single terminal. In
general, we gain little improvement from restricting
our system to a single terminal. We find that user
comfort has a beneficial impact on authentication re-
sults. Terminals 5 and 6 show slightly improved re-
sults and these were the most comfortably positioned
terminals for the majority of participants, who wore
the devices on their left arm (indeed, if we reconstruct
our models using data only from those users wear-
ing the devices on their left arm, the relative gains
are greater still). Likewise, the freestyle terminal
shows improved results for watch tap gestures, since
the watch was more awkward to tap than the ring and
this terminal accommodated smoother movements—
however, it had the opposite effect for ring tap ges-
tures, likely because most users tilted and moved the
terminal a shorter distance when interacting with it
when using the ring than when using the watch, elic-
iting a sloppier punch gesture.

5.6 Enrolment Parameters

The enrolment phase of a biometric system requires
the user to submit samples of the measured char-
acteristic so that the initial template can be con-
structed. This can be particularly user-unfriendly in
behavioural biometric systems due to the effort re-
quired to collect these samples. To evaluate how
much we can expedite this process, we trained a set
of models in which each classifier is trained on fewer
user samples (i.e., a smaller positive class).

Figure 5a shows that our payment models can au-
thenticate the user with EERs as low as 0.12 when
trained on just twelve of the user’s tap gestures
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Table 4: Average EERs for our position-specific payment
models in optimum window {s = 2.5,o = 0}, using data
from the smart ring only, the smartwatch only, and both
combined. Our position-agnostic results are included for
comparison.

(a) ring tap gestures

EER

Terminal Ring Combined

1 0.07 0.04
2 0.09 0.07
3 0.09 0.07
4 0.08 0.03
5 0.06 0.02
6 0.07 0.03
F 0.10 0.09

agnostic 0.07 0.04

(b) watch tap gestures

EER

Watch Combined

0.08 0.05
0.09 0.07
0.09 0.07
0.06 0.05
0.06 0.03
0.04 0.02
0.05 0.04

0.09 0.05
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Figure 5: Average EERs for our payment models in opti-
mum window {s = 2.5,o = 0} and our access control mod-
els if trained on fewer enrolment samples. For the payment
model, each classifier is trained on six terminals.

(spread evenly over six terminals), which can be per-
formed in less than a minute. Figure 5b shows that,
when including watch data, our 3-knock access con-
trol model can authenticate the user with EERs as low
as 0.12 when trained on just two 3-knock gestures
(the access control models for the other knock ges-
tures show a similar pattern), which can be performed
in a few seconds. In both cases, we see that the er-
ror rates improve as more samples are included in the
training set; this suggests that we can relax upfront
sample collection requirements and then incorporate
subsequent gestures with an update mechanism to im-
prove the models over time as the system is used.

6 DISCUSSION

Power Consumption. Wearable devices are designed
to facilitate always-on sensing (e.g., for health mon-
itoring). To measure the impact of our data collec-
tion in practical terms, we wore two of each wear-
able device in an identical state, but only collecting
data from one of each. For the smart rings, there was
no noticable difference in power consumption over 6
hours. For the smartwatches, our app consumed an
additional 1.5% of battery capacity per hour.
Response Time. We calculated the computation time
for classifying a single watch tap gesture, averaged
over 10,000, to be 7.11 ms on a desktop computer
with an Intel Core i5-6500 processor. Using a bench-
marking tool, we found that a Samsung Exynos W920
(a modern smartwatch processor) performs 26 times
slower, so we would expect an authentication deci-
sion to be made in roughly 185 ms on a smartwatch.
Robust benchmarking is not yet available for smart
ring CPUs.
3-knock Impersonation. Table 2 shows that we
achieve our best overall results from the 3-knock ges-
ture. In our preliminary testing, this was not the case,
so we chose not to include it in the impersonation ex-
ercise of our user study due to time restrictions. This
is regrettable, as 3-knock gestures in the observation
attack may have yielded more interesting results than
5-knock gestures.
Secret Knock Feasibility. The three drawbacks
of using an explicit gesture biometric are that it
(i) takes time to perform, (ii) must be remembered,
and (iii) must be performed discreetly. In our user
study, 76% of participants remembered their secret
knock, with an average of 4.8 days between their ses-
sions, which suggests that a secret knock is memo-
rable. The average length of a secret knock gesture
was 3.78 seconds, although we influenced this by re-
stricting its size to three to six knocks. This restric-
tion limited the key space and resulted in each se-
cret knock gesture consisting of 1-, 2-, or 3-knock
fragments knocked at a certain cadence—despite this,
we had only one collision, where two users chose the
same. We found that these two users were not good
at impersonating each other because once they heard
the familiar gesture they performed their own version
rather than listening to the subtle differences. In a
larger user set, we would expect to see more colli-
sions; however, this finding suggests that it would not
necessarily weaken the system. The chief weakness
of a secret knock is that its sound is difficult to con-
ceal; however, as we show in Figure 4d, only a few of
the users in our user study were highly susceptible to
having their secret knocks impersonated.
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Smart Door Feasibility. Figure 3 shows that we
are reasonably able to distinguish between users even
when we use data only from the door-mounted sen-
sors. This is a promising result that presents the pos-
sibility of a smart door system that can authenticate
(and perhaps identify, which raises privacy concerns)
the user using only its own embedded inertial sensors,
without requiring the user to hold or wear any devices.
We leave this project to future work.

7 RELATED WORK

Tap Gestures. The use of inertial sensor data to au-
thenticate tap gestures in tap-and-pay systems was
proposed by Shrestha et al. (Shrestha et al., 2016)
for smartphone-based systems, achieving F-measure
scores of 0.93, and by Sturgess et al. (Sturgess et al.,
2022b) for smartwatch-based systems, achieving F-
measure scores of 0.88 and EERs of 0.07. The use of
a smartwatch, due to the physiology of the arm, in-
troduced the challenge that the sensor axes frequently
change reference frames because the device changes
orientation during the tap gesture. We found that the
use of a smart ring sits between the two in terms of
complexity: the smartphone requires no major change
in orientation and is the trivial case, the smart ring re-
quires only a single change because the finger is eas-
ily manoeuvred towards the terminal, and the smart-
watch orientation is changed frequently during the tap
gesture. We found similar results to related works in
our smartwatch models and improved results with our
smart ring and combined models.
Smartwatches. The use of inertial sensors on smart-
watches have been used in a variety of authentica-
tion cases. For implicit authentication, Johnston et
al. (Johnston and Weiss, 2015) showed that wrist mo-
tion data can be used to authenticate the user while
walking with 10-second windows of data. For ex-
plicit authentication, some works have shown that
various full arm (Yang et al., 2015), punch (Liang
et al., 2017), and hand (Yu et al., 2020) gestures can
be used to authenticate the user in a similar fashion.
Nassi et al. (Nassi et al., 2016) showed that wrist mo-
tion data can be used to authenticate handwritten sig-
natures and other authors (Ciuffo and Weiss, 2017;
Griswold-Steiner et al., 2017; Griswold-Steiner et al.,
2019; Wijewickrama et al., 2021) applied a similar
approach to freestyle handwriting. We found opti-
mum results with 2.5 seconds of data for tap gestures
and 2.8 seconds for knock gestures.

A number of works have used inertial sensor data
from a smartwatch to verify the user’s continued in-
teraction with another device to facilitate automatic

de-authentication on that other device (as an improve-
ment to timed lockouts). Mare et al. (Mare et al.,
2014) showed that wrist motion data can be used to
infer a sequence of interactions from the user that can
be correlated with inputs on his workstation, such that
he can be de-authenticated from the workstation if the
correlation stops (however, the system was found to
be vulnerable to spoofing attack as the attacker can
control both streams (Huhta et al., 2016)). Acar et
al. (Acar et al., 2020) showed that wrist motion data
can be correlated with keystrokes in a similar manner.
Other works (Lee and Lee, 2016; Mare et al., 2019)
have correlated wrist motion data with interactions on
a smartphone.
Smart Rings. Few authors have considered the use
of smart rings in authentication use-cases. Sen et
al. (Sen and Kotz, 2020) proposed the use of a smart
ring that is capable of producing a vibration to boot-
strap a communication channel with another device
held in the same hand that has an accelerometer to de-
tect the vibration. Liang et al. (Liang and Kotz, 2017)
showed that inertial sensor data from a smart ring can
be correlated with mouse movements to verify the
continued interaction of the user with a workstation.
For explicit authentication, Roshandel et al. (Roshan-
del et al., 2014) showed that finger motion data can be
used to authenticate the user of a smart ring while air-
writing a signature or tracing it on a flat surface with
the finger. To the best of our knowledge, we are the
first to propose the use of inertial sensors on a ring to
authenticate the user via implicit gesture biometrics.

8 CONCLUSION

In this paper, we showed that inertial sensor data from
a smart ring can be used to authenticate the wearer. In
a mobile payment context, we showed that a smart
ring user can be authenticated implicitly with a sin-
gle tap gesture with an EER of 0.04. We also showed
that inertial sensor data from a smart ring can be used
to authenticate the user when making a smartwatch
payment, and vice versa, opening the possibility for
either device to be used as an implicit second fac-
tor to support the other. This is particularly appli-
cable in cases where the other device lacks inertial
sensors of its own. In an access control context, we
showed that a smart ring user can be authenticated
with a single knock gesture with an EER of 0.06 (or
0.01 with a smartwatch). Our results further show that
a smart door, which has inertial sensors embedded in-
side it, may be able to authenticate or identify the user
knocking on it without the need for other devices. We
demonstrated that our models can be trained quickly
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(on very few samples) and that they provide resistance
against an active attacker who observed (and heard)
the victim’s gestures.
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