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Abstract: The identification of null pointer dereference vulnerabilities has implications for software security and re-
liability, as well as satisfying market needs for user data protection. This study introduces NULLDect, an
adaptive learning-based approach that addresses this issue using the CWE-476 (NULL Pointer Dereference)
dataset. Such detection becomes essential for averting software failures and unforeseen events that could
compromise system stability and security. The proposed approach combines the uses of Long-Short-Term
Memory (LSTM) networks, attention mechanisms, and adaptive learning with callback techniques to produce
a phenomenal accuracy rate of 0.806 by extracting features utilizing the CodeT5 paradigm. Furthermore,
the work incorporates and evaluates advanced computational models, including CodeT5, BERT, UniXcoder,
and NLP-based GloVe embeddings, to discover the most successful strategy for null pointer detection across
many evaluation metrics. This adaptability improves model accuracy, robustness, and longevity. NULLDect’s
synergistic combination of approaches defines it as a comprehensive and effective solution for detecting and
mitigating NULL pointer dereference problems.

1 INTRODUCTION

The fundamental objective of software development
is to produce software of the highest standard in a
manner that is efficient and affordable. Reuse of
code is an essential and widely recognized method
of achieving this objective Abdalkareem et al. (2017).
Therefore, preserving software systems has become
essential for preventing violations that might result
in substantial financial damage, a negative reputation,
and litigation Security Importance (2024). Model val-
idation is a standard verification approach that uses
quantitative and logical confirmation to determine if a
system satisfies particular criteria Byun et al. (2020a).
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The checking of models might prove highly benefi-
cial when dealing with NULL Pointer Dereference
(NPD), including in CWE-476. Since 2019, NPD
has been listed in the “CWE Top 25 Most Dangerous
Software Weaknesses“ presented on the CWE portal
CWE Ranking (2020). In some circumstances, at-
tackers can use this vulnerability to run arbitrary code
or circumvent authentication procedures. The predic-
tion thoroughly evaluates all program states to ver-
ify that pointers are never dereferenced while they are
NULL, hence avoiding potential vulnerabilities. This
strategy supports identifying and eliminating safety
concerns early in the development process, lowering
the probability of run-time mistakes that might result
in system failures or security breaches. .

This present study represents some innova-
tive contributions to detecting the NPD with the
CWE-476 dataset. In this work, an adaptive
computational approach was used that included
LSTM, attention mechanisms, and adaptive learning
with callback techniques called as NULLDect.The
NULLDect model provides various benefits for iden-
tifying Null pointer dereference difficulties. First,
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LSTM improves the model’s ability to grasp long-
term dependencies in data, which increases detection
accuracy. The attention mechanism enables the model
to focus on the most important features, hence im-
proving performance. Adaptive learning with call-
back approaches ensures that NULLDect develops to
handle new patterns and threats while remaining ef-
fective over time. This combination yields a highly
precise, adaptive, and robust model that ensures the
reliable detection of potential software vulnerabili-
ties.

2 RELATED WORK

According to the previous study, Lu et al. devel-
oped GRACE, a tool that enhances large language
models (LLMs) that utilize graph structure informa-
tion to comprehend source code context better Lu
et al. (2024). In another paper, Wang et al. gen-
erated the DefectHunter method, which uses convo-
lutional networks and self-attention methods to dis-
cover vulnerabilities in software with great precision
Wang et al. (2023). Akuthota et al. proposed a pre-
trained GPT-3.5-Turbo model that utilizes enhanced
language-generating capabilities for various applica-
tions Akuthota et al. (2023). Jin et al. proposed the
Npdhunter framework for NPD detection in binary
Jin et al. (2021). Gotovchits et al. introduced the
Saluki technique, which uses static property check-
ing to detect taint-style vulnerabilities in software
systems Gotovchits et al. (2018). In another study,
Byun et al. recommended a method for identifying
vulnerabilities in software using CBMC (C Bounded
Model Checker) and the CWE framework Byun et al.
(2020b). This method includes using CBMC to sys-
tematically check for vulnerabilities by mapping them
to known flaws cataloged in CWE. Lipp et al. con-
ducted empirical research to assess the usefulness of
static C code analyzers in discovering vulnerabilities.
Their research compares multiple static analysis tech-
niques to C codebases to measure their accuracy, cov-
erage, and efficiency in detecting security issues. The
work sheds light on the strengths and limits of various
analyzers, guiding future enhancements and selection
criteria for C vulnerability identification.

Bojanova et al. demonstrated a methodology
for identifying memory issues based on the issues
methodology approach. This approach entails iden-
tifying and assessing memory-related issues in soft-
ware systems using a systematic framework that as-
signs defects based on their features and impacts Bo-
janova and Galhardo (2021). Alqaradaghi et al. pre-
sented an experiment to evaluate which static analy-

Figure 1: General methodology of the proposed strategy
for operation: The whole procedure of our recommended
approach for identifying Null Pointer Dereferences (NPD).

sis tool is most successful at identifying null pointer
dereferences in Java code Alqaradaghi and Kozsik
(2022). Sandoval et al. introduced the ”Lost at C”
technique, which analyzes the security consequences
of utilizing LLM code assistants. Their research looks
into how LLMs, when applied to C programming,
might cause or fail to discover security issues San-
doval et al. (2023). In another study, Choi et al. pro-
posed Graph Neural Network (GNN) model for the
detection of error in null pointers Choi and Kwon
(2022). Furthermore, multiple studies Alon et al.
(2018, 2019) explored various strategies to improve
the efficiency of source code representation in model
analysis based on machine learning. These research
aims to reduce information loss during the represen-
tation learning process by employing Abstract Syntax
Tree (AST)-based encoding methods.

Building on prior findings, this study delved
deeper into the CWE-476 dataset to address issues
in detecting NULL Pointer Dereference (NPD) vul-
nerabilities. We offer an alternate technique that uses
CWE information to improve detection reliability and
efficiency. Our solution makes use of a model that is
optimized for computational speed and resource uti-
lization. By incorporating CWE samples, which pro-
vide a complete repository of known vulnerabilities,
the model increases its capacity to discover NPD con-
cerns with better precision and efficiency. The contri-
butions of the NULLDect framework are as follows:

1. Extensive evaluations were performed utiliz-
ing many advanced computational models, including
CodeT5, BERT, UniXcoder, and GloVe-based NLP
embeddings, to determine the best effective strategies
for NPD identification.

2. Combining LSTM, attention mechanisms,
and callback-based adaptive learning to detect NULL
pointer dereference (NPD) vulnerabilities efficiently.
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3 MATERIALS AND METHODS

3.1 Dataset Descriptions

As we delve into NPD identification, we begin utiliz-
ing publicly accessible datasets that have been used
in previous studies. To help with our study and
increase detection accuracy, we used the CWE-476
dataset, which focuses on vulnerabilities related to
NPD. We have collected 24,492 samples from the
“VDISC Dataset“, where the dataset is designed for
vulnerability detection in source code VDISC Dataset
(2024). The dataset includes two labels: “True“ and
“False,“ where “True“ is represented by 1, indicating
the presence of a vulnerability, and “False“ is repre-
sented by 0, indicating no vulnerability. These textual
and category inputs were converted into numerical
representations using various embedding approaches,
which allowed the machine learning model to handle
the data efficiently for vulnerability identification Guo
et al. (2022); Wang et al. (2022); Pennington et al.
(2014). In Table. 1 overall dataset description are de-
picted for better understanding.

3.2 Overview of the Proposed
Methodology

The proposed approach for detecting NPD vulnerabil-
ities is both easy to follow, with great room for further
development. While past research have been com-
mendably accurate, many attempt to present routes
for furthering their conclusions. In contrast, our ap-
proach creates a meta-model framework that will be a
useful resource for future experts. Figure 1 illustrates
every step of the methods, including model building
and dataset preparation. Using a large dataset, we
used many feature embedding approaches, including
CodeT5, UniXcoder, BERT, and GloVe. These em-
beddings were tested using nine computational algo-
rithms: Logistic Regression (LR), Multi-Layer Per-
ceptron (MLP), Extreme Gradient Boosting (XGB),
Fully Connected Neural Networks (FCNN), Active
LSTM, Q-Learning, Bidirectional Encoder Repre-
sentations from Transformers (BERT), Adaptive Bi-
LSTM, and our proposed method, Adaptive LSTM,
that is known as NULLDect LaValley (2008); Chen
(2015); Pratt et al. (2017); Greff et al. (2016); Koro-
teev (2021a); Jang et al. (2019); Koroteev (2021b).

3.3 Feature Embedding

Feature embedding approaches have become essen-
tial for translating raw data into meaningful numerical

representations that machine learning models can pro-
cess effectively. Therefore, this study used CodeT5,
UniXcoder, BERT and GloVe Bilgin et al. (2020)
methods. These embedding methods offer a variety
of ways of encoding features, each with a particular
set of advantages. CodeT5 and UniXcoder excel in
capturing domain-specific nuances of programming
languages, whereas BERT relies on deep bidirectional
context. GloVe, on the other hand, provides a simpler,
more computationally efficient method for producing
embeddings.

Table 1: Distribution of total, true, and false sets in the train
and test datasets.

Dataset Total Set True Set False Set
Train Set 18880 9440 9440
Test Set 5612 2810 2802

3.4 Applied Models

A variety of machine learning and deep learning mod-
els were used, each with their own set of skills to de-
tect vulnerabilities in NPD. LR is a statistical model
designed for binary categorization. Predicts the like-
lihood of a target variable using a logistic function on
a linear combination of input information. In another,
MLP is a feedforward neural network with input, hid-
den, and output layers. It employs backpropagation
for training, allowing it to detect complex nonlinear
correlations in data. This study used an ensemble-
based model as XGB, which is a treebased ensem-
ble learning method that enhances prediction accu-
racy via iterative boosting. Unlike the first, FCNNs
are dense neural networks that connect all nodes in
each layer to the next. They excel at capturing com-
plicated feature interactions in datasets. In another,
Active LSTM improves traditional LSTM networks
by using active learning methodologies. LSTMs are
intended to capture sequential dependencies and long-
term relationships in data, making them ideal for
time-series or ordered datasets. For adaptive learning,
Q-Learning is a reinforcement learning algorithm that
optimizes decision-making by learning policies that
maximize cumulative rewards. It is useful for chal-
lenges that need sequential decision-making or adap-
tive techniques. BERT is a deep bidirectional trans-
former architecture that captures context from both
directions in sequential data. This makes it especially
effective for understanding subtle relationships in tex-
tual or tokenized information.
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3.5 Proposed Approach: NULLDect
Framework

The proposed model is an adaptive LSTM-based ar-
chitecture with an The proposed model is an adap-
tive LSTM-based architecture with an integrated at-
tention mechanism. To improve performance, the de-
sign uses a variety of advanced techniques such as
spatial dropout, attention layers, residual connections,
and adaptive learning procedures. The architecture
starts with a 256-unit LSTM layer that captures se-
quential dependencies, followed by a spatial dropout
to prevent overfitting. An attention layer concentrates
on the most important sequence elements, enhanc-
ing interpretability and performance. Attention out-
put is mixed with LSTM output through a residual
link to stabilize learning. The model consists of fully
linked layers with swish activation and dropout for
regularization, culminating in a sigmoid output layer
for prediction. It employs the Adam optimizer, binary
cross-entropy loss, and callbacks such as early halting
and learning rate adaption to facilitate training. This
method provides reliable detection with higher accu-
racy and versatility.

The model accepts input sequences with a shape
corresponding to the dataset features. Then, LSTM
layer of 256 units processes sequential data. We uses
the tanh activation function and L2 regularization to
avoid overfitting. The outputs of the LSTM layer pass
through Spatial dropout and Attention layer, where a
spatial dropout layer reduces overfitting by randomly
dropping entire feature maps rather than individual
elements and the attention mechanism calculates the
relevance of each time-step. Additionally the resid-
ual connection adds attention outputs to the original
LSTM outputs and the attention-enhanced sequence
representation is passed through three dense layers.
A 128-unit layer with swish activation:

swish(x) = x ·σ(x), (1)

where σ(x) is the sigmoid function. A 64-unit
layer with swish and sigmoid activation for binary
classification.where ŷ is the predicted probability:

ŷ = σ(W · x+b), (2)

Then we used batch normalization and Dropout
layers with a 0.5 rate reduce over fitting by randomly
deactivating neurons during training. To enhance
training phase we use callbacks which halts training
when the validation loss does not improve for 10 con-
secutive epochs. Then, reduces the learning rate by a
factor of 0.5 if validation loss stagnates for 5 epochs.
All the workflows of the model development has been
illustrate in Fig. 2

Figure 2: Working Procedure of the NULLDect model.

4 EXPERIMENTAL ANALYSIS

This study utilizes a variety of assessment criteria.
These criteria were used to assess the efficacy and
dependability of the proposed framework. Table 2
compares the performance of several models among
extractors, including BERT, CodeT5, UnixCoder, and
Glove, utilizing important metrics. CodeT5 emerges
as the best extractor, with top scores for Adaptive
LSTM (accuracy: 0.806, F1: 0.814), demonstrating
its capacity to capture patterns effectively. BERT per-
forms well, particularly with Adaptive LSTM (ac-
curacy: 0.789), but simpler models, such as FCNN,
perform poorly. UnixCoder produces competitive re-
sults, particularly with BERT (accuracy: 0.799, F1:
0.802), although its recall is significantly worse than
CodeT5. The glove underperforms overall, with a
top accuracy of only 0.727. CodeT5 with Adaptive
LSTM is the best-performing combination.

4.1 Ablation Study

This work used an ablation strategy to verify the En-
hanced LSTM model with Attention, as demonstrated
in Table 3. Removing the Attention layer dramati-
cally decreased performance, emphasizing its impor-
tance in concentrating on crucial characteristics. Re-
ducing LSTM units decreased accuracy, highlighting
the requirement for enough capacity to record com-
plicated patterns. Omitting residual connections re-
sulted in slower convergence and decreased perfor-
mance, highlighting their necessity for training sta-
bility. The Base Model frequently outperformed oth-
ers, demonstrating the usefulness of combining these
components for precise and efficient detection. The
Base Model (NULLDect) has the highest accuracy
(0.818) and F1 score (0.817). Removing the atten-
tion mechanism or residual connections and lowering
LSTM units reduced performance, with accuracy sta-
bilizing at 0.799. This underlines the importance of
these components.
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Table 2: Performance comparison of different models and
extractors in NPD dataset.

Extractor Model Acc. Pre. Rec. F1 Sn Sp AUC

BERT LR 0.762 0.772 0.764 0.772 0.762 0.753 0.700
XGB 0.744 0.752 0.744 0.743 0.745 0.732 0.765
MLP 0.745 0.745 0.775 0.761 0.639 0.678 0.751
BERT 0.747 0.754 0.767 0.754 0.744 0.752 0.658
FCNN 0.657 0.635 0.639 0.627 0.635 0.639 0.752

Active LSTM 0.738 0.767 0.678 0.720 0.761 0.639 0.752
Adaptive LSTM 0.789 0.782 0.779 0.751 0.751 0.744 0.743

Adaptive BiLSTM 0.775 0.762 0.770 0.759 0.744 0.743 0.752
Q-learning 0.758 0.715 0.742 0.742 0.755 0.654 0.743

CodeT5 LR 0.780 0.774 0.757 0.775 0.767 0.732 0.750
XGB 0.792 0.808 0.780 0.794 0.768 0.740 0.770
MLP 0.800 0.797 0.819 0.808 0.772 0.750 0.780

FCNN 0.756 0.710 0.718 0.718 0.739 0.700 0.760
BERT 0.802 0.796 0.827 0.814 0.755 0.732 0.785

Active LSTM 0.805 0.814 0.814 0.806 0.760 0.720 0.800
Adaptive LSTM 0.806 0.814 0.804 0.814 0.778 0.750 0.790

Adaptive BiLSTM 0.797 0.801 0.795 0.795 0.762 0.740 0.770
Q-learning 0.780 0.774 0.784 0.774 0.745 0.732 0.750

UnixCoder LR 0.754 0.765 0.742 0.754 0.739 0.710 0.750
XGB 0.791 0.812 0.782 0.792 0.744 0.700 0.765
MLP 0.792 0.814 0.778 0.791 0.772 0.732 0.780

FCNN 0.760 0.732 0.731 0.732 0.750 0.678 0.760
BERT 0.799 0.778 0.827 0.802 0.755 0.710 0.775

Active LSTM 0.776 0.758 0.807 0.782 0.761 0.720 0.765
Adaptive LSTM 0.788 0.781 0.772 0.767 0.750 0.710 0.770

Adaptive BiLSTM 0.782 0.774 0.765 0.779 0.744 0.700 0.750
Q-learning 0.783 0.774 0.784 0.782 0.750 0.710 0.760

Glove LR 0.703 0.721 0.689 0.705 0.744 0.654 0.700
XGB 0.691 0.709 0.677 0.693 0.732 0.620 0.685
MLP 0.727 0.733 0.737 0.735 0.744 0.678 0.710

FCNN 0.573 0.578 0.588 0.579 0.639 0.552 0.600
BERT 0.622 0.652 0.568 0.607 0.635 0.520 0.590

Active LSTM 0.608 0.734 0.330 0.455 0.755 0.420 0.550
Adaptive LSTM 0.676 0.688 0.679 0.678 0.744 0.610 0.665

Adaptive BiLSTM 0.721 0.722 0.725 0.721 0.761 0.654 0.735
Q-learning 0.698 0.658 0.682 0.682 0.744 0.654 0.690

Table 3: Performance metrics for ablation study models.

Model Acc. Pre. Rec. F1
Base Model 0.818 0.818 0.818 0.817
No Attention 0.806 0.806 0.806 0.805
Reduced LSTM Units 0.799 0.799 0.799 0.798
No Residual Connections 0.799 0.799 0.799 0.798

4.2 Discussion

The NULLDect model uses LSTM, attention pro-
cesses, and adaptive learning to successfully detect
NPD vulnerabilities. LSTM detects long-term in-
terdependence, attentiveness improves concentration,
and residual connections boost stability. Adaptive
learning responds to different coding patterns, ensur-
ing generalization. Regularization, dropout, and bi-
nary classification improve efficiency while reducing
overfitting. NULLDect adapts to changing software
paradigms by using embeddings such as CodeT5,
BERT, GloVe, and UnixCoder. This framework pro-
vides a robust and scalable method for NPD detec-
tion, as demonstrated in Table 4, whereas other re-
search focus on various vulnerabilities. From the ta-
ble, NULLDect performs best across major assess-
ment metrics, making it the most effective model in
this comparison. With an accuracy of 0.806, it out-

Table 4: Comparison NULLDect with outer studies.

Model Acc. Pre. F1
Devign 0.790 - 0.841
AIBugHunter 0.741 - -
VulDeePecker - - 0.808
RealVul 0.798 0.469 0.598
RefBilgin et al. (2020) - 0.701 0.598
RefTanwar et al. (2020) 0.700 0.740 -
RefZagane et al. (2020) - 0.734 0.729
NULLDect 0.806 0.814 0.814

performs models like Devign (0.790) and RealVul
(0.798). Furthermore, NULLDect earns the greatest
precision score of 0.814, much outperforming mod-
els such as RealVul (0.469). It also shares the high-
est F1-score with Devign, at 0.814, indicating a good
combination of precision and recall. Thus, based on
these findings, NULLDect is the best model for dis-
covering vulnerabilities in the given dataset. It should
be noted here that this innovation can have surprising
applications, even in the emerging machine learning
context (e.g., Lugosch (2018); Howlader et al. (2018);
Camara et al. (2018); Leung et al. (2019); Li and Sun
(2025)).

5 CONCLUSIONS AND FUTURE
WORK

This study aimed to develop another model for future
vulnerability identification, focusing on overcoming
difficulties identified in prior studies. The sug-
gested model, NULLDect, employs a meta-classifier
method, processing text and code input and the sec-
ond handling categorization and adapting to new data
for enhanced recognition. NULLDect obtained an
accuracy of 80.06%, indicating its ability to identify
CWE-476 vulnerabilities. Key benefits include its ca-
pacity to adapt to new datasets and improve detection
accuracy over time, making it a viable tool for future
vulnerability identification.
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