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Abstract: We present ongoing work in developing a system to support instrumental practice in which a students plays
from a score but can move freely within the score, as is typical of score-based music practice. Our system
develops a correspondence between the practice audio and the score, partitioning the audio into a collection of
score-aligned excerpts using dynamic programming. We examine several offline approaches to help interpret
or summarize the practice audio. One is a tool that allows score-driven browsing of the audio. We also
look at several score-based visualization tools that highlight aspects of the practice data. Finally we develop
a technique that assembles an “optimal” audio performance from the score-aligned fragments, seeking an
assembly that is rhythmically most plausible according to a simple probabilistic model for musical timing.

1 INTRODUCTION

Music instruction systems provide support for instru-
mental music practice by identifying errors or inaccu-
racies, providing guidance, and, perhaps, even offer-
ing a kind of companionship during music practice.
These systems hold promise for making the reward-
ing, lifelong activity of music-making more broadly
available, increasing the individual attention received
by music students.

These systems can sense the student’s actions with
a variety of kinds of data, such as audio, video,
MIDI, haptic, etc., though we use audio due to our
focus on traditional musical instruments, such as
strings, woodwinds, brass, and piano, where other
data sources are not available.

Such instruction systems are often organized
around a call and response paradigm: the practicing
student is presented with a series of short score pas-
sages which are played by the student and, in turn,
evaluated the system. The commercial system Yousi-
cian (Yousician, 2022) as well as (Fober et al., 2004),
(Dannenberg et al., 1990), and (Zhang et al., 2019) are
all examples of such call and response approaches.
Of course, this paradigm is familiar, and often effec-
tive, in the larger computer supported education space
as well.

The evaluation of the passage allows the instruc-
tional system to determine if the presented challenge
has been met, thus influencing the choice of the next
passage — perhaps a repeat of the most recent one.

Thus the overall loop of call, response, and evalua-
tion becomes the basic structure of the system. The
call and response paradigm simplifies the evaluation
process since it is much easier to judge accuracy when
the system “knows” what the student intended to play.
However, it also decreases the agency of the student,
requiring the student to follow the practice regimen
presented by the system, rather than allowing a stu-
dent to direct the practice session. Evidence suggests
that taking “ownership” of the the practice session, as
well as the learning process more generally, is impor-
tant for long term success (Coutts, 2019).

Rather than requiring a music student to fit into
what is easiest for the computer, we explore an ap-
proach that works with the way music students natu-
rally practice. In typical score-based music practice
a student plays from a score, jumping around in the
score at will. Often short sections are practiced re-
peatedly, gradually moving forward through the score
in an attempt to build fluidity through a larger section.
Though, occasionally, the student may skip from one
section of the score to another. Sometimes a student
may even depart from the score temporarily to prac-
tice an exercise derived from a particular passage. It
is this “unscripted” score-based practice we address
here, assuming only that most of the audio played
during the session comes from the score, as is com-
mon in a broad range of practice scenarios. We de-
velop an audio recognition technique, a variant of tra-
ditional audio score alignment, that maps the audio
onto the music score as a sequence of “excerpts” —
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Figure 1: We associated the frame sequence with a path in the score graph, above, thus mapping the audio onto the score.

time-labeled sequences of score notes.
In the current work we limit our attention to the

“offline” version of unscripted score based practice in
which we analyze a recorded practice session after it
has been recorded. Offline analysis is the basis for
our computer-supported review of music practice, as
well as practice summary. In contrast, “online” score
following seeks to understand the practice audio as
it is generated, as would be necessary to offer real-
time support. As we seek to build actual systems and
get them into the hands of practicing music students,
we are interested in both offline and online analysis,
however the online aspect is beyond the scope of the
current discussion.

We describe the essential methodology behind the
offline score alignment in Section 2. Once we have
the alignment we seek meaningful ways to browse the
practice audio, and summarize what is important for
the student to know, presenting our results in accessi-
ble visualizations. Given the centrality of the score to
much of music practice, and to our statement of score
alignment problem, it makes sense to leverage the mu-
sic score in our student feedback. Section 3 sketches
a score-based practice browser that allows the student
to explore the practice in an easy and intuitive self-
directed manner, as well as several score-based visual
summaries of the practice. Section 4 considers the
problem of assembling an “optimal” complete perfor-
mance from the practice session. Section 5 provides
some larger context for the current work and discusses
developing ideas.

2 OFFLINE SCORE ALIGNMENT

Here we present briefly our approach to audio-score
alignment for unscripted score-based music practice.

Score following (online) and score alignment (of-
fline) were simultaneously proposed in 1984 by Dan-
nenberg (Dannenberg, 1984) and Vercoe (Vercoe,
1984). Many variations on score alignment have

been proposed, including adaptations for polyphonic
music (Hu et al., 2003), audio alignment with im-
ages of printed scores (Dorfer et al., 2018), the si-
multaneous identification tempo or other latent vari-
ables (Raphael, 2006), and audio-to-audio matching
(Müller et al., 2005). A common methodological
theme runs through nearly all of this work: the perfor-
mance is represented as a path through a state graph
in which nodes represent score positions, while dy-
namic programming (DP) is used to find the best in-
terpretation given the audio data. We use the term
“dynamic programming” in a general sense to in-
clude both most likely path and filtering computa-
tions (as with an HMM). An overview of the score
alignment and following can be found in (Dannenberg
and Raphael, 2006), while a thorough history of the
methodological ideas is given in (Cuvillier, 2016).

Our particular focus is on score alignment that al-
lows the player to “jump around” in the score, as is
typical in most realistic practice scenarios. Restrictive
versions of this idea were first proposed in (Pardo and
Birmingham, 2005) and (Fremery et al., 2010) con-
sidering possible jumps to and from important struc-
tural boundaries. The scenario involving arbitrary
jumps was first proposed by Nakamura and Sagayama
(Nakamura et al., 2015), while our modeling frame-
work is similar while (Jiang et al., 2019) compares
and contrasts the approaches.

We begin with an audio recording of a music prac-
tice session, typically about 20 minutes in length in
our experiments. The recording is divided into a se-
quence of “frames” of about 30 ms. each, y1, . . . ,yT .
Our approach to score alignment views the music
score as a sequence of notes, without regard for the
notated lengths of these notes. If we are treating a
polyphonic instrument, such as the piano, then the
score can be regarded as a sequence of chords, with
a new chord appearing when any note of any voice
changes. We relate the audio to the score by mod-
eling the y1, . . . ,yT as a path through the state graph
of Figure 1, x1, . . . ,xT — one state for each frame of
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audio. The graph explicitly models the possibility of
skips in the score.

The lower level of the graph, labeled “Notes” in
Figure 1, depicts the notes (or chords) of the score,
connected in left-to-right order, as indicated by the
right arrows that connect this level. Since the number
of frames the player spends in each note is unknown,
each of these states, and all other states in the graph,
contains a self-loop — we can remain in a state for
any number of frames. In reality each of the states in
the note layer are actually sub-models involving sev-
eral states, however this is omitted from Figure 1 for
simplicity’s sake.

The upper layer of Figure 1, labeled “Transport,”
models the player’s score skips: from any note in the
score one may move to the Transport layer, moving
in this layer to the next score note to be played. The
curved arcs in Figure 1 allow transitions in the Trans-
port layer that move several, or many, states to the
left or right, thus allowing long score skips spanning
many notes in a single frame. A probability distribu-
tion over the arcs that exit each state model our pref-
erence for transitions, favoring linear motion through
the Notes layer over skips, local skips over distant
ones, and backward skips over forward skips. Thus,
x1, . . . ,xT is modeled as a Markov chain.

Our data model computes the probability of a
frame of audio given a particular model state, P(yt |xt)
with details presented in (Jiang et al., 2019). Implicit
in the notation is the assumption that the tth frame of
audio, yt , depends only on the current state, xt . While
we omit the details here, if xt is a note or chord in the
Notes layer the probability model depends on the as-
sociated pitches of the note or chord. If xt is in the
Transport layer we use a rest model for the audio, (we
assume no notes are currently sounding).

The result of these assumptions is a hidden
Markov model. We interpret the audio by identify-
ing the most likely sequence of states given the audio
data

x̂T
1 = argmax

xT
1

P(xT
1 |yT

1 )

= argmax
xT

1

P(xT
1 )P(y

T
1 |xT

1 )

= arg max
x1,...,xT

P(x1)
T

∏
t=2

P(xt |xt−1)

T

∏
t=1

P(yt |xt)

The dynamic programming computation of the most
likely path, x̂T

1 is well known, e.g. (Rabiner, 1989),
and is omitted here. The most likely path can be par-
titioned into intervals, x̂hi(e)

lo(e), for e = 1 . . . ,E that lie

completely in the Notes layer separated by intervals
that lie completely in the Transport layer. Each x̂hi(e)

lo(e),
becomes an excerpt in our interpretation of the au-
dio, identifying a sequence of score notes that were
played as well as the onset frame for each note in the
sequence.
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Figure 2: Each horizontal segment shows the range of notes
covered by an excerpt for the first 150 excerpts of a practice
session. Aspects of the practice strategy are evident in this
simple overview.

Figure 2 gives an example of this distillation of
the audio into excerpts, showing the first 150 excerpts
in a practice session. From this simple analysis one
gets an overview of the practice strategy employed by
this particular student, beginning by playing through
the entire etude in long sections over the first several
excerpts, followed by a focus on shorter sections with
lots of repetition, gradually moving forward through
the current section.

(Jiang et al., 2019) evaluates the accuracy of this
approach on a small sample, showing promising re-
sults on the test set. However, there is a great
deal of variation in practice data, while the most
straightforward ways of collecting labeled data are
prohibitively time-consuming. Using synthetic data
may offer some clarity, though this approach must
make assumptions concerning the generation mech-
anism which are bound to be simplistic. Thus there
is more work to be done in validating the accuracy of
our proposed method.

3 REVIEWING PRACTICE

A former teacher impressed on his students the im-
portance of “facing the music,” by which he meant
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Figure 3: Left: The coverage of the rehearsal is shown by tinting the note heads. Brighter notes were played more frequently.
Right: Tuning expressed by coloring note heads. Red notes are sharp while blue notes are flat in relation to equal A=440
tempered tuning.

listening to recordings of our playing. Such listening
is important because we often don’t hear ourselves
objectively in real-time, (Silveira J. M., 2016). Per-
haps this is because listening is a matter of habit —
we hear what we listen for, especially when so much
cognitive bandwidth is directed toward the mechanics
of playing. However, listening to a recording offline
— facing the music — has a way of breaking this at-
tention habit, making clear what we otherwise miss.
Our user interface, discussed here, seeks to facilitate
this directed listening.

The music score is usually the focal point dur-
ing score-based practice, thus we also orient our di-
rected listening around the score. Our interface al-
lows one to navigate through the practice session at
the note level, either using arrow keys to move for-
ward/backward while highlighting the current score
note with a box around the note — our “cursor.” Play-
back can be initiated from the cursor position at any
time. Alternatively, the user can click on a score note
to jump to the associated score and playback position
in the recorded audio. In contrast, a traditional audio
browser requires the user to search for musical events
in order to hear them.

Simply holding down the forward arrow key in
our interface advances through the score at the key-
board repeat rate, providing a movie-like summary of
the sequence of notes visited during practice, analo-
gous to Figure 2, as shown here. A more fine-grained

review process is shown here, where the user inter-
actively explores the practice clicking on notes that
deserve further review. One can imagine a produc-
tive exchange between a teacher and student oriented
around such an interactive tool, allowing the teacher
to observe and explore the student’s practice itself,
rather than just the final result.

The score also works well as a basis for static visu-
alization, much as a geographical map is an effective
reference for spatial data (Hogräfer et al., 2020). The
left panel of Figure 3 shows a score page where each
note is colored according to how many times it was
visited in the practice session. In the image a black
note would mean the note was never played while a
bright blue was played the most. One can see both re-
gions that were virtually untouched, as well as those
receiving special attention.

The right panel of Figure 3 shows an analogous
depiction of tuning, where a blue note is one that is
flat while a red note is sharp. We make these de-
terminations by estimating the frequency difference
between the A=440 equal-tempered target frequency
and the average frequency for the note, measured in
cents. We highlight the note when the discrepancy is
greater than a user-adjustable threshold. The refer-
ence tuning level of A=440 can also be adjusted. In
creating such tuning maps one can either consider ag-
gregate tuning, averaged over all of the excerpts in the
rehearsal, or a more targeted choice of tuning — say
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the most recently played notes.
Of course there are other aspects of the rehearsal

that can be visualized in this way, such as rhythmic
accuracy, while one can combine the note tinting with
interactive browsing.

4 ASSEMBLING AN OPTIMAL
PERFORMANCE
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Figure 4: A schematic view of the assembly problem. We
seek to link together portions of the excerpts to make the
best overall performance.

In addition to having visual summaries of prac-
tice data, audio summaries are also helpful. In this
section we discuss a method for generating a single
“optimal” performance produced by assembling the
audio fragments generated during practice. Such a
recording could be shared with a teacher as a repre-
sentative example of the level attained by the student
(at her best). Or it may be useful to the student as
a distillation of the entire practice session (or several
sessions), reducing the data to a manageable quantity.

Our approach for performance assembly is based
on rhythm analysis, so, unlike Section 2, we need to
consider notated rhythm. We assume that our score is
composed of K notes with notated lengths l1, . . . , lK in
whole note units — that is, if note k is a quarter note
then lk = 1/4, regardless of the time signature. The
analysis of this section applies equally well to poly-
phonic scores, such as with piano practice, in which
lk describes the length of the kth chord, taking a ho-
mophonic (sequence of pitch simultaneities) view of
the score.

We begin with a collection of excerpts, as in Fig-
ure 2, from which we wish to assemble an “ideal”
complete performance by piecing together note se-
quences, schematically depicted in Figure 4. At
present we consider only rhythmic fluidity in as-
sembling this performance, though pitch accuracy or
other performance elements could easily be included
into our formulation. Thus, in short, we seek the path
through the excerpt notes of Figure 4, that is most

rhythmically fluid, linking these note sequences to-
gether to form the optimal performance.

Our measure for rhythmic fluidity is based on a
probabilistic model for musical timing that uses a
latent tempo process t1, . . . , tK where tk is the local
tempo at note k measured in seconds per whole note.
The onset times for the complete performance we will
construct are given by o1, . . . ,oK , measured in sec-
onds. The joint structure of these variables is modeled
by a joint Gaussian distribution, modelling the ini-
tial tempo, t1, as t1 ∼ N(µt ,σ

2
1) where µt is the tempo

given in the score, expressed in secs per whole note,
and letting the initial onset, o1, have o1 ∼ N(0,τ2

1)

where τ2
1 is a nearly infinite variance — we do not care

when the sequence begins. The process then evolves
according to

tk+1 = tk + ε
t
k

ok+1 = ok + lktk + ε
o
k

for k = 1, . . . ,K − 1 where the {εt
k} are N(0, l2

k σ2)

variables, the {εo
k} are N(0, l2

k τ2), with the variables
{εt

k,ε
o
k}

K−1
k=1 , t1,o1 assumed mutually independent.

The 0-mean and small variances of the {εt
k} lead

to a smoothly varying tempo process, which is rea-
sonable since we want the tempo to be stable within
and between our assembled fragments. In a situation
where a known tempo change occurs in the score, we
could easily allow a “reset” of the tempo process. The
kth note has length ok+1−ok, which, according to our
model, has mean length lktk — this is the length that
would be predicted purely based on the tempo. How-
ever the model allows additional variation in the ac-
tual note lengths though the {εo

k} variables.
The model defines a joint Gaussian density on all

model variables, P(tK
1 ,o

K
1 ). Thus, the plausibility of

a sequence of onset times, oK
1 , for the assembled per-

formance could be measured by maxtK
1

P(tK
1 ,o

K
1 ).

We now turn to the problem of constructing the
ideal performance. Our analysis of the practice ses-
sion results in E excerpts, indexed by e = 1, . . . ,E,
where the eth excerpt covers the range of notes
lo(e) . . . ,hi(e) as in Figure 2 or Figure 4. For excerpt
e we denote the onset time of the kth by ok,e, where
lo(e) ≤ k ≤ hi(e). For each note we want to choose
one of the possibly many examples observed in the
practice session. As notation we let ek be the excerpt
from which we take the kth note. Once we have cho-
sen eK

1 , we can construct a sequence of onset times,
oK

1 according to
o1 = o1,e1 (1)
ok = ok−1 +(ok,ek −ok−1,ek−1) (2)

k = 1, . . . ,K −1. For this construction to make sense
both ok,ek and ok−1,ek−1 must come from the same ex-
cerpt so that their difference measures the length of
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the kth note. Thus we require that for each note, k,
with k ̸= 1 we have lo(ek)< k.

Now, emphasizing the dependence of oK
1 on eK

1
by explicitly writing oK

1 (e
K
1 ), we could view the most

plausible assembly by choosing the eK
1 that maxi-

mizes maxtK
1

P(tK
1 ,o

K
1 (e

K
1 )). However, we also want

to reduce the amount of skipping around between ex-
cerpts, so we add a penalty for each such excerpt
switch, L(eK

1 ) = C|{k:ek+1 ̸=ek}| for some positive con-
stant C. Then we define our optimal ek

1, êK
1 , by

êK
1 = argmax

eK
1

L(eK
1 )max

tK
1

P(tK
1 ,o

K
1 (e

K
1 )) (3)

The construction of êK
1 poses some interesting

methodological challenges that are beyond the scope
of our current effort. However, (Raphael, 2006) de-
scribes a method for computing the globally optimal
sequence of hidden states in a switching state space
model containing both 1-dimensional Gaussian and
discrete hidden variables. This situation is very close
to ours, so the methodology easily adapts to the situ-
ation at hand.
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Figure 5: Assembly of a complete performance of the Bruch
Violin Concerto No. 1, Mvmt 1 from a practice session.

Figure 5 shows the analog of Figure 4 constructed
from a real practice session of the Bruch Violin Con-
certo No. 1, first movement. The figure shows that the
practice session began with a complete run through of
the movement, with later practice focusing on specific
sections, so a significant portion of the movement was
played only once. This is reflected in the optimal as-
sembly, shown in red, that draws heavily from the 1st
excerpt, as it must.

A score-aligned video of the result is given here.
In constructing the audio we have made no effort to
cover up the splice points, which can be heard as
clicks in the audio or places where the microphone

placement seems to suddenly change. While a user-
facing result might blend the audio over the splice
points, it seems better to leave them in the raw state
for purposes of our demonstration.

5 FUTURE WORK

The discussion above gives an overview of the ideas
we are developing for audio-based instrumental prac-
tice support systems. It is safe to say that the chal-
lenges are significant and open-ended, while many re-
main unmentioned in our discussion. We have pre-
sented a number of ideas for practice visualization
based on the mapping we construct from the practiced
notes to the score. Given the centrality of the score
for many practicing students, such score-based visu-
alization seems an obvious and essential component
of such a system.

It is worth mentioning, however, that the idea is
more general than what we have sketched. Our score
alignment technique of Section 2 establishes a many-
to-one map between the practice audio and something
familiar to the student, the score. However, having
mapped the notes to the score, we could reduce fur-
ther to say, the chromatic pitches that are playable on
the instrument. Such a mapping could display, for in-
stance, average tuning for the different notes or regis-
ters. This could be particularly useful for instruments,
such as woodwinds, that have particular notes or reg-
isters that tend to be out of tune. Or, rather than re-
ducing the mapping to a smaller range, one could ex-
pand it, looking, for example, at particular sequences
of pitches. From this analysis we may ask, for in-
stance, if a particular pattern of pitches tend to lack
rhythmic fluidity in the practiced audio? We men-
tion these examples to stress that there is a large and
largely-unexplored space that may contribute signifi-
cantly to the challenge at hand.

In addition to the algorithmic, visualization, and
modeling challenges, such as those discussed within,
we are also interested in building an actual work-
ing practice support system, making this available for
general use by music students on the familiar app
stores. This goal is motivated by the promise shared
by nearly all music instruction systems — to help
more people appreciate and enjoy music-making, es-
pecially those who cannot afford traditional one-on-
one music instruction, or do not have access to it.

In addition to the inherent value of such a sys-
tem, wide distribution would provide a means for col-
lecting score-aligned music practice data from willing
contributors, thus supporting a large scale, empirical
view of music practice. Such data could be used to
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track a student’s progress over a large period of time,
or could be used as a tool for studying the effective-
ness of various practice strategies. The benefits in
transforming our approach from a single practice ses-
sion to a large corpus of practice data could make a
lasting contribution to music pedagogy.
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