
Model-Driven Development Using LLMs: The Case of ChatGPT

Virginia Niculescu a, Maria-Camelia Chisăliţă-Creţu b,
Cristina-Claudia Osman c and Adrian Sterca d

{virginia.niculescu, maria.chisalita, cristina.osman, adrian.sterca}@ubbcluj.ro

Keywords: Model-Driven Development, Large Language Models, Conceptual Diagrams, Business Process Model and
Notation, Entity-Relationship Diagrams, User Productivity, Business Analysts.

Abstract: The recent rise of Large Language Models (LLMs) suggests the possibility for users with different levels of
expertise to generate software applications from high-level specifications such as formatted text, diagrams or
natural language. This would enhance productivity and make these activities accessible to users without a
technical background. Approaches such as Model-Driven Engineering (MDE) and Workflow Management
Systems (WfMSs) are widely used to enhance productivity and streamline software development through
automation. This study explores the feasibility of using LLMs, specifically ChatGPT, in software development,
focusing on their capability to assist business analysts (BAs) in generating functional applications. The goal
of this paper is threefold: (1) to assess the extent to which LLMs comprehend conceptual model diagrams,
(2) to evaluate the reliability of diagram-based code generation, and (3) to determine the level of technical
knowledge required for users to achieve viable solutions. Our methodology evaluates the effectiveness of using
LLMs to generate functional applications starting from BPMN process diagrams and Entity-Relationship (ER)
diagrams. The findings provide insights into the reliability and limitations of LLMs in diagram-based software
generation, the degree of technical expertise required, and the prospects for adopting LLMs as tools for BAs.

1 INTRODUCTION

A significant factor behind the difficulty of develop-
ing complex software is the wide conceptual gap be-
tween the problem and the implementation domains
of discourse. Business analysts (BAs) are able to
provide a good description of the problem; business
processes can be represented as diagrammatic visual-
izations using standardized or non-standardized lan-
guages. In order to be analyzed and managed, busi-
ness processes need representations that are formal,
standardized and at the same time, easy to understand.

The Business Process Model and Notation
(BPMN) represents such a representation and it is a
standard managed by an international organization,
the Object Management Group (OMG). Nowadays,
practitioners use BPMN on a daily basis to design var-
ious complex business processes.

The term Model-Driven Engineering (MDE) is
typically used to describe software development ap-

a https://orcid.org/0000-0002-9981-0139
b https://orcid.org/0000-0002-1414-0202
c https://orcid.org/0000-0002-1414-0202
d https://orcid.org/0000-0002-5911-0269

proaches in which abstract models of software sys-
tems are created and systematically transformed into
concrete implementations (France and Rumpe, 2007).
MDE is meant to increase productivity and simplify
the process of the design and implementation.

Another approach that has the same goals of in-
creasing productivity and at the same time ensuring
simple and correct development of the business ap-
plications is represented by the Workflow Systems
(WfSs). A Workflow Management System (WfMS)
is a system that allows defining, managing and exe-
cuting processes.

Large Language Models (LLMs) are a specialized
subset of GenAI, focusing on language generation,
while GenAI consists of a greater variety of AI mod-
els capable of creating various forms of content. Re-
cent popularity of the LLMs leads to the idea that in
a near future they could be used for developing soft-
ware applications. This for sure will increase produc-
tivity and allow non-specialized IT users to create ap-
plications from specifications. The specifications of
the software applications could be given in different
format: formatted text, diagrams or even natural lan-
guage. The general goal of our research is to study

328
Niculescu, V., Chisǎliţǎ-Creţu, M.-C., Osman, C.-C. and Sterca, A.
Model-Driven Development Using LLMs: The Case of ChatGPT.
DOI: 10.5220/0013484400003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 328-339
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

how close we are from this stage.
Business processes are defined as a set of business

activities that represent the steps required to achieve a
business objective. They include the flow and use of
information and resources (OMG, 2013). The most
common modeling languages used in process repre-
sentations are Event-driven Process Chains (EPCs)
(Keller et al., 1992) and Business Process Model and
Notation (BPMN) (OMG, 2013) diagrams.

Targeted users of our research are BAs who have
to manage artefacts as business process diagrams that
consists of meaningful actions performed in specific
business areas. Often, BAs have to cope with chang-
ing requirements or defining new business processes
that should be accommodated into the existing soft-
ware. They may be asked to provide a proof of con-
cept that helps the decision makers or to build a quick
solution that can be extended or adapted later. In this
context, LLMs become a tool at hand that may be em-
ployed to obtain results faster then other software de-
velopment methodologies.

We aim to investigate whether LLMs may be used
as effective tools to be employed in software develop-
ment by specialists, i.e., BAs, that may not have tech-
nical knowledge in particular, as developers do have.

Considering BAs as the targeted users, a promis-
ing approach of using LLMs may be considered: to
start by providing a minimal set of information com-
prised from just the conceptual models described us-
ing diagrams. The diagrams implicitly describe the
processes and the functionalities of the application.
An entity-relationship model (ER model) is also given
in order to assure the correct generation of all entities
involved. This approach is similar to the approach
used by the WfMS. Based on all these, we may as-
sume that the code sources of the application could
be generated by AI.

ChatGPT was chosen as the LLM variant in our
study. ChatGPT uses a complex machine learning
model built on a Generative Pre-trained Transformer
(GPT) architecture. The model is trained on a massive
dataset of text from books, articles, websites, publicly
available sources (Bala et al., 2025).

In the specific context of the proposed endeavour,
the users (BAs) provide ER diagrams and BPMN pro-
cess diagrams. So, we constrained the diagram anal-
ysis to these types of diagrams.

For a structured study approach we have identified
three research questions, as follows:

• RQ1 – To what extent does ChatGPT comprehend
conceptual model diagrams?

• RQ2 – To what extent diagram-based code gener-
ation is reliable?

• RQ3 – How much technical knowledge should the
user have in order to build a reliable solution?

The next section presents related works to our ap-
proach. Section 3 describes the methodology em-
ployed throughout the research and the evaluation re-
sults. The answer for each research question are in-
cluded in this section after the results analysis of the
corresponding experiments. Based on the obtained
results, we present an incipient analysis of the pos-
sible directions to follow in achieving success in us-
ing LLMs in software development in Section 4. The
paper concludes with the final remarks.

2 RELATED WORK

The application of LLMs in BPM semantic quality
improvement is explored by (Ayad and Alsayoud,
2024). The paper investigates the extent to which
GenAI technologies can aid the modeler by suggest-
ing improvements. The study uses GPT-4o and exam-
ines its capabilities by employing various combina-
tions of prompts, incorporating proposed textual syn-
tax, and integrating contextual domain knowledge.
The findings indicate that the knowledge generated
by GPT-4o is predominantly generic, encompassing
ambiguous and general concepts that extend beyond
the specific domain. The use of specific proposed
prompts helps to refine the generated knowledge,
leading to more specific and comprehensive outcomes
that align closely with the intended domain.

Kanuka et al. (Kanuka et al., 2023) explore the
capabilities of LLMs, particularly OpenAI’s Chat-
GPT, in addressing the challenges associated with
software modeling, explicitly focusing on the bidi-
rectional traceability problem between design models
and code. The study aims to showcase the proficiency
of ChatGPT in understanding and integrating specific
requirements into design models and code. The paper
investigates its potential to offer solutions to the bidi-
rectional traceability problem through a case study.
The findings indicate that ChatGPT is capable of gen-
erating design models and code from natural language
requirements, thereby bridging the gap between these
requirements and software modeling. ChatGPT has
limitations in suggesting a specific method to resolve
the problem, but exhibited the capacity to provide cor-
rections to be consistent between design models and
code.

The research conducted by (Rajbhoj et al., 2024)
suggests that generative AI techniques have the po-
tential to reduce the skill requirements necessary for
software development and significantly accelerate the
development process.

Model-Driven Development Using LLMs: The Case of ChatGPT

329

GitHub Co-pilot1 is examined by Wermelinger
(Wermelinger, 2023), focusing on the performance
for generating code, tests, and details in offering sup-
port for students to solve computer science problems
described as text. The study compares Copilot with
OpenAI Davinci in terms of correctness, diversity,
and guidance needed to obtain correct solutions. They
reported that DaVinci demonstrated more effective-
ness than Copilot regarding correctness and diversity.

Dakhel et al. (Dakhel et al., 2022) carried out
an assessment of GitHub Copilot as an AI pair pro-
grammer. The researchers investigated the quality of
the generated code compared to the human elaborated
code considering a set of programming tasks. The re-
sults showed the Copilot is capable of providing so-
lutions for almost all fundamental algorithmic prob-
lems, but some of them are buggy. When comparing
Copilot to humans, the results indicate that the ratio
of correct human solutions is greater than Copilot’s
correctness ratio, while the buggy solutions generated
by Copilot require less effort to be repaired.

The study of Kamrul et al. (Siam et al., 2024)
presents a thorough evaluation of leading program-
ming assistants, including ChatGPT, Gemini (Bard
AI), AlphaCode, and GitHub Copilot. The evalua-
tion is based on tasks like natural language process-
ing and code generation accuracy in different pro-
gramming languages like Java, Python, and C++. The
study offers a comparison of different LLMs and pro-
vides essential feedback on the rapidly changing area
of AI models, emphasizing the need for ethical devel-
opmental practices to actualize AI models’ full poten-
tial. Results indicate the strengths, weaknesses, and
the importance of further modifications to increase the
reliability and accuracy of the latest popular models.

Liukko et al. (Liukko et al., 2024) documents the
development of a real life web application in the fi-
nancial domain using ChatGPT. They adopt an Agile
methodology in developing the software.

Dae-Kyoo Kim (Kim, 2024) compares OpenAI’s
ChatGPT and Google’s Bard in developing a tour
reservation web application. Both LLMs are used
for producing various software development life cy-
cle (SDLC) artifacts from a textual description of
the application: generating the functional and non-
functional requirements, domain modeling, and im-
plementation. The author mentions that both mod-
els identified correctly many entities of the domain of
the application, but also that they missed some of the
entities. Still, they can not produce class diagrams
or sequence diagrams for the the modeling phase.
When it comes to code generation, the author men-
tions that ChatGPT and Bard produced errors of dif-

1https://github.com/features/copilot

ferent kinds in their generated code, including miss-
ing import statements, missing modifiers, undefined
variables, undefined data types, undefined methods,
and parameter mismatches. When asked to correct
these compile errors, both tools were able to correct
most of the errors. The author concludes that both
tools are helpful in developing an application, but they
also have limitations.

3 METHODOLOGY AND
EVALUATION

Our approach implies the use of GenAI tools in the
SDLC process. Specifically, we intend to explore the
usage of ChatGPT as LLM tool in the software de-
velopment process. Moreover, we propose the use of
BPMN models and ERDs in the development of the
software product. Figure 1 represents the general ap-
proach of our study.

Our general endeavor is to evaluate the possibility
to generate source code for a complex web application
starting from business processes (depicted as BPMN
models) and business domain concepts (depicted as
ERDs). This analysis is split into three phases di-
rected by the established research questions.
For each phase of the evaluation we set the following
stages:

1. establish the evaluation criteria appropriate to the
corresponding research question;

2. create the input data set for evaluation;
3. establish the prompts that allow us to evaluate

the established criteria (the initial prompt may be
adapted based on the responses);

4. analyse the results and extract conclusions.

Full details about prompts, data, and evaluation of
studied diagrams could be accessed at the link avail-
able at the reference (Chisăliţă-Creţu et al., 2025).

RQ1: To What Extent Does ChatGPT
Comprehend Conceptual Model
Diagrams?

The first goal is to evaluate the ChatGPT’s degree
of comprehension of the used diagrams. We have
evaluated two types of diagrams, namely ERDs and
BPMN diagrams for processes.

Evaluation Criteria
The first goal in our study is to evaluate the Chat-
GPT’s degree of comprehension of the various types

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

330

Figure 1: General approach.

of diagrams provided as input. The response gener-
ated is assessed based on the following criteria:

• C01: ChatGPT is able to correctly identify the
type of the received diagram;

• C02: the extent to which ChatGPT is able to cor-
rectly describe the symbols and relationships in-
cluded in the diagrams;

• C03: the extent to which ChatGPT is able to cor-
rectly transform the diagram into a persistent for-
mat through conversion to another artifact, e.g.,
database schema, XML format;

• C04: ChatGPT is able to improve the existing di-
agrams;

• C05: the extent to which ChatGPT is able to
generate a diagram based on a persitent format
(database schema, XML format);

Criteria C01 and C04 are evaluated with yes or no,
while criteria C02, C03, and C05 use the scale from 1
(low accuracy) to 5 (high accuracy). Criteria C03 and
C05 are complementary.

ER Diagrams

Data
Five samples of ER diagrams were provided as input
for ChatGPT to analyze. Two samples of ERDs do
not include attributes. From the remaining ones, one
ERD highlights primary keys (PKs) and foreign keys
(FKs) using graphical symbols, one ERD uses the text
acronyms PK and FK, while the last ERD does not
include distinct marks for attributes or keys. Because
it is more commonly used, we opted for Crow’s Foot
notation instead of Chen notation.
Prompts
The prompts given to ChatGPT are listed below and
the evaluation of C01 and C02 use the same prompt.

P1.ERD: ”Explain the uploaded diagram.”

P2.ERD: ”Provide the database schema for the uploaded
ERD.”

P3.ERD: ”Improve the database schema with new entities,
attributes, and relationships between entities.”

P4.ERD: ”Recreate the ERD for the improved database
schema. Please use the same type of diagram as the
uploaded one, including the crow’s foot notation.”

Results Analysis
For ERDs, the responses include details about the
type of the diagram, entities, attributes, and relation-
ships. Additional data produced refers to generated
database schema. A third type of data generated in-
cludes the improvements for the database schema, in
terms of new entities, attributes, and relationships. At
the end, ChatGPT generates a diagram that should
represent the improved database schema.

The prompt P1.ERD requested to explain the up-
loaded diagrams. The responses offered by ChatGPT
indicate that it manages to identify correctly the type
of the diagram. Therefore, criterion C01 is evaluated
with yes for all five recorded experiments, explicitly
saying that an ERD was uploaded. Other not recorded
experiments indicate that ChatGPT answered that the
processed ERD is a concept diagram and the user
needed to ask ChatGPT to clarify what type of con-
cept diagram actually is it. For this case, the responses
indicate that ChatGPT successfully identifies the dia-
gram type only if additional prompts that refine the
response are present.

P1.ERD prompt responses allowed the evalua-
tion of the C02 criterion, too. ChatGPT manages to
correctly describe the ERDs, identifying and detail-
ing entities, attributes, and relationships. The C02
criterion is evaluated with 5 for all recorded experi-
ments. For the cases where the ERDs do not specify
attributes, ChatGPT offered details about the entities
and relationships only, but offered information about
the cardinality, usage, and purpose of the diagram.

The prompt P2.ERD requested to generate the
database schema for the uploaded ERD. Almost all
generated database schema using SQL statements
meet partially the initial ERDs. For instance, ERD1
and ERD2 do not specify attributes. Still, ChatGPT

Model-Driven Development Using LLMs: The Case of ChatGPT

331

adds attributes to the existing entities and other new
entities, considered bridge tables to manage m:n re-
lationships. CO3 criterion in these cases is evaluated
to 4 because of the improvements suggested for the
missing attributes. ERD3 includes attributes, empha-
sizes crow’s foot notation, and primary and foreign
keys. Still, ChatGPT adds two new relationships be-
tween the existing entities. For the ERD3 sample and
this specific result, the CO3 criterion is evaluated to
3, as ChatGPT does not follow the details mentioned
in the diagram. ERD4 presents graphical symbols for
primary keys, foreign keys, and the crow’s foot nota-
tion. During the experiment for ERD4, ChatGPT suc-
cessfully manages to generate the database schema
that entirely mirrors the provided ERD and the CO3
criterion is evaluated to 5. All database schema pro-
vided are normalized to 3NF.

The prompt P3.ERD requested to improve the
database schema with new entities, attributes, and
relationships. For all experiments, the data gener-
ated indicate improvements and the C04 criterion was
evaluated to yes. For some cases, the initial entities
were replaced with new entities and relationships that
ChatGPT has evaluated as offering a better perspec-
tive for the application domain through flexibility and
adaptability.

The prompt P4.ERD requested to recreate the
ERD for the improved database schema. The prompt
explicitly requested to use the crow’s foot notation,
but the generated diagrams do not follow the standard
notation for ERD. The C05 criterion was evaluated to
1 for all run experiments. ChatGPT did not suggest
using particular tools that could successfully generate
the ERD based on the provided database schema in
any recorded experiments.

Table 1 summarizes the results of the recorded ex-
periments on ERDs together with the evaluation for
the five used criteria.

Table 1: Experimental results for ERDs.

ERD C01 C02 C03 C04 C05
ERD1, no attr. yes 5 4 yes 1
ERD2, no attr. yes 5 4 yes 1

ERD3, with attr. yes 5 3 yes 1
ERD4, with attr yes 5 5 yes 1
ERD5, with attr. yes 5 3 yes 1

BPMN Diagrams

Data
We have used five BPMN diagrams 2.

2https://github.com/camunda/bpmn-for-research/tree/
master/BPMN\%20for\%20Research/English

• BPMN1 – collaboration diagram with different
gateways types and annotations (asynchronous
communication),

• BPMN2 – collaboration diagram with exclusive
gateways (synchronous communication),

• BPMN3 – process diagram with inclusive, exclu-
sive and parallel gateways,

• BPMN4 – collaboration diagram with event-
based gateways and different intermediate events,

• BPMN5 – process diagram with exclusive and
event-based gateways.

Prompts
P1.BPMN: ”Explain the uploaded diagram.”

P2.BPMN: ”Generate the XML-file (*.bpmn) correspond-
ing to the uploaded diagram.”

P3.BPMN: ”Improve the uploaded diagram by including
new elements (tasks, events, gateways, data objects,
swimlanes etc. - or any other BPMN concept).”

P4.BPMN: ”Recreate the BPMN model for the im-
proved BPMN model. Use BPMN specification:
https://www.omg.org/spec/BPMN.”

Results Analysis
Our evaluation criteria are consistent with those previ-
ously employed for the assessment of ERDs, while in-
corporating necessary adaptations to ensure their ap-
plicability within the BPMN context. The first cri-
terion C01 evaluates the ability of ChatGPT to iden-
tify the diagram type (process diagram modeled using
BPMN). The next criterion C02 refers to the ability of
ChatGPT to correctly describe the flow of the BPMN
diagrams (namely, to identify the BPMN symbols and
the corresponding relationships between them). The
prompt used for the assessment of the first two criteria
is P1.BPMN. The third criterion C03, evaluates the
ability of ChatGPT to extract from the diagrammatic
visualization of a BPMN model, the corresponding
XML representation (*.bpmn file). The prompt used
for the assessment of this criterion is P2.BPMN. Cri-
terion C04 evaluates the capacity to bring improve-
ments for the uploaded BPMN diagram. The im-
provements may include the incorporation of new
BPMN symbols (such as tasks, gateways, data ob-
jects, etc.). The corresponding prompt of the third
criterion is P3.BPMN. Through the fourth prompt
P4.BPMN we assess the ability of ChatGPT to pro-
duce a BPMN model that reflects the previously pro-
posed improvements.

The analysis of BPMN diagrams demonstrates
ChatGPT’s accurate analysis of BPMN process mod-
els, aligning with the diagrams’ symbol usage, suc-
cessfully fulfilling criteria C01 and C02. Criteria

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

332

Table 2: Experimental results for BPMN diagrams

BPMN C01 C02 C03 C04 C05
BPMN1 yes 5 2 yes 1
BPMN2 yes 5 2 yes 1
BPMN3 yes 5 2 yes 1
BPMN4 yes 5 2 yes 1
BPMN5 yes 5 2 yes 1

C03 and C05 are partially met as although Chat-
GPT proposes new concepts to be added on the di-
agram (usually it proposes the incorporation of tasks,
gateways, data objects, intermediate events, swim-
lanes, sub-processes, text annotations, message flows,
etc.), the XML file that is generated does not com-
ply with BPMN specification (OMG, 2013). The re-
sponse for P3.BPMN is usually the XML format of
the improved model with additional narrative expla-
nations related to the proposed updates. The *.bpmn
file cannot be read by BPMN editors like SAP Sig-
navio or bpmn.io, Bizagi being one of the BPMN
modeler tools able to partially interpret the XML files
(but the visualization provided overlaps the identified
BPMN elements). By providing additional details in
the prompt (for example: ”The position of the sym-
bols is missing from the XML file and the elements
are overlapped, can you please update the XML file?”
or ”The same position of the symbols is provided for
the elements from the XML file and the elements are
overlapped, can you please update the XML file?”),
the XML file is improved, it still fails to accurately
represent a machine-readable BPMN model. Con-
sequently, a well-defined sequence of prompts is re-
quired for ChatGPT to effectively fulfill the initial
task (therefore, ChatGPT users should enhance their
prompt engineering skills).

Nevertheless, criterion C05 is minimally fulfilled.
The provided visualization deviates from the BPMN
standard. In some situations it reveals the Python
source code used in order to provide the graphical
visualization (see P4.1 for BPMN5, reachable at the
link from the reference (Chisăliţă-Creţu et al., 2025)).
Still, it cannot provide standardized diagrams, neither
if the XML structure (for example the XML corre-
sponding file of a BPMN diagram) is provided.

Table 2 summarizes the results of the recorded
experiments on BPMN models, together with the
evaluation for the five used criteria.

Answer to RQ1:
From all these experiments we may conclude that
ChatGPT is able to understand the ERDs, the entities
and their relations being extracted from the images.
The database schema is not accurately generated as
some relations are not defined at all, or they are not

appropriately defined. Also, it is possible that new ta-
bles, attributes, and relationships to be added.
Requested improvements show that ChatGPT is able
to add new entities, attributes, and relationships
based on the deduced data domain represented by the
diagram. Reversely, ChatGPT is not able to generate
ERDs following domain-specific modeling notation as
dedicated standalone tools are able to.
The BPMN model analysis reflects a good interpre-
tation of the diagrams, but shows that a well-defined
sequence of prompts is required for ChatGPT to ef-
fectively fulfill the transformation into the XML per-
sistent format.
ChatGPT is not able to produce standardized dia-
grams, neither if the entire XML structure of the
BPMN diagram is provided.
We may conclude that the interpretation and transfor-
mation work executed by ChatGPT for the analysed
diagram types is very useful since the number of in-
accuracies is low in percentage, and with additional
further verification and prompts the correct solution
could be obtained.

RQ2: To What Extent Diagram Based
Code Generation Is Reliable?

The second goal of our study is to assess the extent
to which the generated code by ChatGPT is able to fit
the real needs of the BAs from various perspectives.

To assess this capability, we conduct a case study
on developing an application using some of the most
widely adopted technologies in software develop-
ment, including React for the frontend, Spring for the
backend, and MySQL for the database.

The considered application is a sale web appli-
cation that involves two types of actors: seller and
customer. The seller prepares a quote and sends it to
the customer. Using the quote, the customer selects
the desired products. The customer then provides
additional information, such as the shipping cost, the
address, and the payment method. After entering
customer details, described in the data model as
Name, Primary Contact, Phone and Industry, the
customer creates and submits the order to the seller.
Upon receiving the order, the seller generates an
invoice number. Using the order details, the total
price is calculated, and the delegate is included in
the invoice. The shipping and the payment methods
are also incorporated based on the order information.
The seller adds the shipping address details, updates
the total price, generates the invoice and sends it to
the customer.

Model-Driven Development Using LLMs: The Case of ChatGPT

333

Evaluation Criteria
• C06: the extent to which ChatGPT is able to gen-

erate code consistent with the diagrams provided
by the user;

• C07: the extent to which ChatGPT is able to gen-
erate an entire application;

• C08: the extent to which ChatGPT is able to im-
prove the generated code as a consequence of us-
ing additional prompts (clarification);

• C09: the extent to which ChatGPT is able to in-
tegrate new requirements in the previously gener-
ated code;

• C10: the extent to which ChatGPT is able to guide
the user regarding the platform prerequisites for
successful deploy of the generated application.

Data
For this application we consider that the user (BA)
will provide only two diagrams. From the business
point of view they include enough information about
the entities and the processes into which they are in-
volved:

• an ER diagram that describes the main concepts
together with their attributes and relations be-
tween them (Fig. 2);

• a BMPN diagram that describes the main func-
tionalities of the application (Fig. 3).

Figure 2: ER Diagram for the Sale web application.

Prompts and Results Analysis
For this goal of evaluating the code generation,
we started from an initial prompt and following
prompts were given depending on the analysis of the
responses.

All-in-One Approach
Since we intend to find out if the application that

respects the requirements implicitly given in the
diagrams, we tried with an initial prompt that asked
ChatGTP upfront to generate all the code files for
the web application, both the frontend part and the
backend.

Initial Prompt:
”Develop a web application using the generated database
and the BPMN process from the uploaded picture. The
web application should use a MySQL database and should
be made from a React frontend and a Java backend. Please
pack everything together as a downloadable zip archive.”

Response:
”Creating a web application with the described architecture
involves the following steps:
1. Database Setup: Set up the MySQL database with the
previously generated schema and data. 2. Backend Devel-
opment: Build a Java Spring Boot backend that connects to
the database and exposes RESTful APIs for the BPMN pro-
cesses.
3. Frontend Development: Create a React frontend that in-
teracts with the backend to follow the BPMN workflow.
4. Packaging: Organize the application as an IntelliJ IDEA
project and package it as a downloadable zip archive.
I will prepare the required files and structure the project.
This process may take some time. The web application
project has been successfully created and packaged as a zip
archive. You can download it using the link below:
Download ProductManagementWebApp.zip ”

The provided zip archive contains just the main
SpringBoot class of the application for the backend
and a simple Javascript skeleton file for the frontend.
It can be noticed that the response includes short de-
scription about the structure of the application, but it
suggests that the entire application was built, which it
not correct.

During the next attempt, we gave ChatGPT
the same prompt but without the requirement of
packaging all code in a zip archive. This time it
generated more relevant code, different classes for
the Java backend and .jsx files for the React frontend
application. Although the code was good and more
complete, it still had many inconsistencies between
different code files (e.g. objects that call methods
which does not exist). We had to spend a lot of time
to manually correct the code so that it would compile
and finally it would also run correctly.

Iterative Approach
Analysing the results of the first two attempts lead

to the conclusion that the strategy should be changed
and for the third attempt we adopted the following
iterative-based development strategy: we would ask

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

334

Figure 3: BPMN diagram of the main processes of the Sale application.

ChatGPT to generate small chunks of code and an
experienced software developer (i.e. one of the au-
thors of the paper) would review the code and correct
it (and sometimes even gave ChatGPT back the cor-
rected code as input) so that errors don’t propagate
in the development process. In the remaining lines
of this subsection we document the interaction with
ChatGPT in this third attempt methodology of code
development assisted by ChatGPT.

For this approach we start with a prompt that up-
loaded the BPMN process diagram and asked Chat-
GPT:

”I want to implement the above BPMN process in a web
application with React frontend and Java Springboot back-
end. First, please analyze the BPMN diagram and tell me
what do you understand from it.”

After we verified that the provided interpretation
of the diagram was correct, we gave it the ERD image
with the database concepts and asked:

”Please generate SQL scripts for creating a Mysql
database for the above BPMN process. The conceptual dia-
gram of the database is depicted in the attached image.”

The generated SQL scripts were mainly correct
but they also had problems. Three out of nine rela-
tions in the diagram were not recognized by ChatGPT
and some attributes wrongly identified; on the plus
side, ChatGPT correctly identifies most of the foreign
keys.

We then corrected the SQL scripts and instructed
ChatGPT to use the corrected ones in the rest of the
dialogue. Following, we asked ChatGPT to generate
sample data for the database which we used in order
to populate the database - they required minor correc-
tions.

Next, we started to implement the backend API
service. The prompt used was this:

”Generate Java code for the backend REST API im-
plementation: generate JPA entity classes, service classes,

repository classes, API Endpoints for the above database ta-
bles.”

ChatGPT generated classes for the entities, ser-
vice, JPA repository, controller, but it generated only
two for each category. It also generated the JPA Hi-
bernate configuration. These classes contained cor-
rect code.

It was necessary to explicitly ask ChatGPT to gen-
erate all the entities. As a result these were generated
but there were some inconsistencies. For instance,
some of them were placed on a different package then
the previous generated entities (i.e. model.* instead
of entity.*), so we had to manually verify and cor-
rect them.

During the following iterations, we explicitly
asked ChatGPT to generate:

• the rest of the JPA repository interfaces,
• the rest of the service classes and
• the rest of the REST controllers.

It was necessary to review each generated class
files, some of them requiring minor corrections re-
lated to identifier inconsistencies across different
files.

Many of the entity class files required additional
annotations like @Column(name="paymentmethod")
for a private String paymentMethod member so
that the Hibernate SQL querries would work with the
database structure previously generated by ChatGPT
(otherwise, the attribute name would be converted by
default to the column payment method which did not
existed in the database). We corrected all these man-
ually.

The controllers were correct, except for the fact
they did not have the CORS (Cross-Origin Resource
Sharing) security setting setup (in order to be accesi-
ble from the React server.

Model-Driven Development Using LLMs: The Case of ChatGPT

335

In addition, some of the required service or repos-
itory classes were not generated at all, so we had to
remind ChatGPT to generate them like in the follow-
ing prompt:

”You forgot to generate the class
com.example.productsale.service.ProductService.”

As a result the missing classes have been gener-
ated.

We then asked ChatGPT to generate the Gradle
build file and OpenAPI documentation for the gener-
ated REST API.

Finally, for the backend side, we asked ChatGPT:
”Please generate the backend code that implements the

BPMN process depicted in the diagram that I uploaded in
the beginning of this chat.”

In the first response, ChatGPT generated just
skeleton files for Camunda without being specific to
the BPMN process given by us, but after we insisted,
it generated the required backend files for the BPMN
process.

The service class had many inconsistencies (i.e.
calls of method that did not exist, inexistent at-
tributes), so eventually we prompted ChatGPT:

”Please look again at the updated database structure
(that I have given you previously as SQL statements). The
implementation of OrderProcessService class you have pro-
vided me is incorrect, it does not use the database structure
I mentioned. Can you generate again the OrderProcessSer-
vice class?”

At this point ChatGPT provided two code imple-
mentations of the same class and asked us to choose
one. After we chosen one, there were still some in-
consistencies that we corrected manually.

We were then ready to move to the generation of
the React frontend app. We used the prompt:

”Can you generate the REACT frontend for the previ-
ously generated backend service ?”

There were still some inconsistencies in the gen-
erated frontend code that we had to manually correct.

The deployment phase was entirely our attribu-
tion. Everything had to be placed together configured
and set. The positive aspect is the fact that after we
deployed the frontend and backend applications, the
web application worked correctly and implemented
the functionality of the BPMN process given in the
diagram.

Summarizing, ChatGPT generated approximately
1000 lines of code for the REACT frontend and 1300
lines of code for the Java SpringBoot backend.

ChatGPT service was of real help and it managed
to generate a web application from a BPMN process
diagram and a conceptual database diagram. But
the application would not have worked correctly
without an experienced software developer reviewing

and correcting the generated code (criterion C06).
We have found that ChatGPT does not generate
a complete application all at once and the best
methodology in our experience was an iterative one
with code inspection and review after each round
(criterion C07). Related to criterion C08, we evaluate
that ChatGPT is very efficient in correcting itself
following additional clarifications from the user,
although sometimes it offers two possible code
solutions and asks the user to choose one. The least
efficiency of ChatGPT was related to packaging
the application and deploying it - the problem was
more proeminent in the backend application, and
integrating different code files previously generated
(criteria C09 and C10).

Answer to RQ2: We may conclude that ChatGPT
is not able to directly create a software application in
one single step: an iterative approach is necessary.
During each iteration the tasks should be clear, ex-
plicitly given and focused on a single responsibility.
Each iteration needs verification and corrections, but
with additional clarifications from the user ChatGPT
could efficiently correct itself. The most important as-
pect is the fact that the final goal – building a reliable
software application – is reached. The effort needed
for this software construction is considerably reduced
and, in addition, the knowledge support offered by
ChatGPT is important since at each step it produce
also explanation together with the generated code.

RQ3: How Much Knowledge Should the
User Have in Order to Reach a Solution?

The third goal of our research refers to the human
user employing ChatGPT in his work. Therefore, we
examine the amount of technical knowledge needed
to use ChatGPT to successfully obtain the desired
solution. The inquiry addresses the several aspects,
as follows:

Evaluation Criteria
• C11: The level of technical knowledge required

for a user to be able to give the effective prompts
and to understand the generated responses.

• C12: The level of technical knowledge required
for the user to be able to aggregate all the received
source code files, to configure the platform, and to
deploy it to produce the fully working application.

For this research question we have used the same
data, prompts and responses used for the research
question RQ2.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

336

Results Analysis
The first plain observation is that the user should un-
derstand the diagrams that are included into the first
prompt. This is an obvious observation since we as-
sume that the targeted users are BAs for which these
kinds of diagrams represent the common knowledge.

As it may be seen from the first initial prompt
of RQ2, information about the technologies are re-
quired. This entails knowledge regarding these tech-
nologies at least at the level of knowing about their
purpose and their context of usage. This means that
the BA should be familiar to the corresponding termi-
nology.

From the first response we can notice that the in-
formation about the structure of the application and
its main components are given. Again, fundamentals
regarding these should be known in order to be able to
understand the ChatGPT’s response. This leads to the
conclusion that for the criterion C11 the required level
of technical knowledge includes fundamentals related
to design and technologies used in the business pro-
cess management and software application develop-
ment.

Since Chat GPT was not able to provide the en-
tire code from the beginning, the user should be able
to iteratively ask explicitly for different components
to be implemented and integrated. During this phase
some information about other technologies that Chat-
GPT chooses to use are given. These should be un-
derstood by the user as well.

On the other hand, if some mistake are given by
the user, ChatGPT could emphasizes it and suggest
correction. For example, in the experiment we have
used an entity with the name ’Order’ and ChatGPT
emphasized the fact that it is a SQL keyword and
should be changed. This could give valuable help to
the user.

Through iterative requests all the source code was
obtained, but it was the user responsibility to man-
ually extract the code and introduce it into a local
project. The generated code contains errors, some in-
accuracies and inconsistencies. To correct all these,
advanced knowledge in software development was
necessary. In addition, the solution may involve par-
ticular project configuration and settings.

Providing the solution, ChatGPT chose to use di-
verse set of frameworks and libraries (e.g. Flask,
Spring, Axios or Fetch API). All these additional
tools have to be installed, and the necessary config-
uration to be set.

Finally, ChatGPT was asked to give all the nec-
essary information needed to reach a deployable ap-
plication. Even if the response includes several de-
tails about the necessary steps and guidelines, they

could not be successfully executed without appropri-
ate knowledge and experience.

So, we may conclude that for the criterion C12 we
need an expert user with advanced technical knowl-
edge.
Answer to RQ3: The experiments emphasize that the
user should know at least the fundamentals knowl-
edge such that to be able to give the correct prompts
and to understand the received responses. For achiev-
ing a complete functional application the user should
be an experimented advanced developer. At the cur-
rent stage, ChatGPT could represent more an assis-
tant tool in software development rather than an in-
strument able to create concrete, functional software
application for the BAs. This imposes high level of
user knowledge in order to allow obtaining functional
applications.

Threats to Validity

For the previous analysis we have used ChatGPT-
4o free version. Additionally, paid plans may pro-
vide better results. ChatGPT-o1 model is trained with
a large-scale reinforcement learning algorithm that
provides responses using Chain-of-Thought (CoT).
Therefore, GPT-o1 is reported to have longer re-
sponse time than GPT-4o (mini) that may affect the
UX. ChatGPT-o3 mini is fast for advanced reasoning.
Currently, free plan users may send 50 requests every
three hours, which are reduced when pictures and di-
agrams should be analysed. Paid plans users do not
have any issues of unavailability, even during peak
hours. This implies that there is the possibility that we
didn’t obtain the best possible responses. During the
experiments, we did not encounter disruptions with
ChatGPT’s functionality, but rather limitations on the
number of requests allowed.

Not customizing ChatGPT may result in increased
number of prompts that should be provided in order to
obtain the desired results.

The computational effort that is needed to analyze
and generate diagrams resulted in constraints when
finishing the evaluation in single working session.
Multiple ChatGPT sessions were required to generate
the dataset for RQ1.

In addition, we noticed that there is quite a high
level of non-determinism in obtaining the responses.
For the same user or not, giving to ChatGPT the
same prompt, different responses are generated. This
means that the quality of the responses is not always
the same.

Model-Driven Development Using LLMs: The Case of ChatGPT

337

4 DIRECTIONS OF LLMs
INTEGRATION IN SDLC

Based on the previous analysis we may derive also
some directions related to the integration of LLMs
into the software development life cycle.

Software Development Life Cycle
SDLC methodologies provide a systematic manage-
ment framework based on stages with specific deliv-
erables of the software development process. Some of
the common SDLC stages are: Plan, Design, Imple-
ment, Test, Deploy and Maintain. Following a SDLC
methodology assures improvement of the following
aspects: estimation, planning, and scheduling; risk
management and cost estimation; software delivery
and customer satisfaction; and visibility of the devel-
opment process for all involved stakeholders.

SDLC has shifted from Waterfall models (Royce,
1970), Iterative models, V-Models (Hill, 1996), Spi-
ral models (Boehm, 1988) or Model Driven Archi-
tecture (MDA) (OMG, 2001) to agile methodologies
(Extreme Programming (XP) (Beck, 1999), Scrum
(Schwaber and Beedle, 2001) or Kanban (Anderson,
2012)).

Among these we may identify two of them that
may benefit the most of allowing a LLMs to be used
as an actor involved in the development process.

The Iterative SDLC model presented in Fig 4,
stands out as a flexible and efficient methodology that
promotes continuous improvement and adaptability.
The key principles of this are: Incremental Progress,
Flexibility and Adaptability, Continuous Evaluation,
and Risk Management.

Figure 4: Iterative Model.
(source:https://www.geeksforgeeks.org/sdlc-models-types-phases-use)

Agile SDLC approach is described in Fig 5.
The key principles of this model are: Iterative and
Incremental Development, Customer Collaboration,
Adaptability to Change, and Cross-Functional Teams.

Both of them are based on iterations in the
development process. This is important since a LLM
actor managed well with small and well defined tasks.

Figure 5: Agile Model.
(source:https://www.geeksforgeeks.org/sdlc-models-types-phases-use)

Comparison with Model-Driven Development
Model-driven development (MDD) approach is meant
to increase productivity by using standardized mod-
els, simplifying the process of design via models of
recurring design patterns in the application domain. It
promotes communication between working individu-
als and teams by using standard terminology and rec-
ognized best practices.

At their foundation, LLMs are also working by
identifying and generating models. So, they could
provide information organized and recognized mod-
els as well. Diagrams or programming patterns are
examples of such models from the domain of pro-
gramming.

The conceptual diagrams are quite well handled
by LLMs (e.g. ChatGPT). Even if the results are not
perfect they provide interpretation and transformation
at a high level of accuracy and could become a very
useful actor in MDD approach.

Comparison with Workflow Systems Approach
Workflow systems allow secure and productive soft-
ware development that starts from process diagrams,
too. They provide a very high level of abstraction in-
teraction with the user and provide automatic devel-
opment of the software based on specifications pro-
vided through the workflows (processes). Obtain-
ing the final application doesn’t imply expert level of
technical knowledge – it is automatically done based
on a pre-existant generic implementation which is
represented by the workflow engine.

They efficiently cover exactly the part that it is dif-
ficult to obtain from the interaction with a LLM actor.
Still, in this case the obtained application is not an in-
dependent one and could be executed only inside the
chosen workflow management system.

5 CONCLUSIONS

We conducted a research that aimed to evaluate the
extent to which LLMs (e.g. ChatGPT) could be used

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

338

for the development of an application prototype start-
ing from conceptual diagrams as ER and BPMN pro-
cess diagram. This would be very useful especially
from a business analyst point of view that usually
starts by defining these kind of diagrams.

The research questions structure the research on
three directions: diagram interpretation and manage-
ment, source code generation, and user necessary
knowledge. The results of the human user interaction
with ChatGPT were documented and several criteria
are formulated for each research question. Various re-
sult types obtained were evaluated, e.g., explanation,
transformation, improvements, code, offered support.

From the conducted experiments, we may con-
clude that, at this phase, ChatGPT can be used much
more as an assistant tool in developing software appli-
cation than as a reliable developer. Since it provides
very good results for small and very well specified
tasks, it may be included as an assistant actor in an
iterative or agile software development approaches.

As further work we propose to repeat the experi-
ments using other LLMs, as Gemini for example, or
using ChatGPT-Plus. Another investigation direction
would be to modify the initial problem such that to
contain not only diagrams but also descriptive func-
tional requirements.

REFERENCES

Anderson, D. J. (2012). Lessons in agile management: On
the road to Kanban. Blue Hole Press.

Ayad, S. and Alsayoud, F. (2024). Exploring ChatGPT
Prompt Engineering for Business Process Models Se-
mantic Quality Improvement, pages 412–422.

Bala, S., Sahling, K., Haase, J., and Mendling, J. (2025).
Chatgpt for tailoring software documentation for man-
agers and developers. In International Confer-
ence on Agile Software Development, pages 103–109.
Springer.

Beck, K. (1999). Embracing change with extreme program-
ming. Computer, 32(10):70–77.

Boehm, B. W. (1988). A spiral model of software develop-
ment and enhancement. Computer, 21(5):61–72.

Chisăliţă-Creţu, M. C., Osman, C., Sterca, A., and
Niculescu, V. (2025). ChatGPT response collec-
tion used for evaluation. https://figshare.com/s/
3bdcd6a7686a0ce20610.

Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F., Des-
marais, M., and Ming Jiang, Z. (2022). GitHub Copi-
lot AI pair programmer: Asset or Liability?

France, R. and Rumpe, B. (2007). Model-driven develop-
ment of complex software: A research roadmap. In
Future of Software Engineering (FOSE ’07), pages
37–54.

Hill, D. R. (1996). Object-Oriented Analysis and Simula-
tion. Addison-Wesley Longman Publishing Co., Inc.,
USA.

Kanuka, H., Koreki, G., Soga, R., and Nishikawa, K.
(2023). Exploring the ChatGPT approach for bidi-
rectional traceability problem between design models
and code.

Keller, G., Scheer, A.-W., and Nüttgens, M. (1992). Se-
mantische Prozeßmodellierung auf der Grundlage”
Ereignisgesteuerter Prozeßketten (EPK)”. Inst. für
Wirtschaftsinformatik.

Kim, D.-K. (2024). Comparing Proficiency of ChatGPT
and Bard in Software Development, pages 25–51.
Springer Nature Switzerland, Cham.

Liukko, V., Knappe, A., Anttila, T., Hakala, J., Ketola, J.,
Lahtinen, D., Poranen, T., Ritala, T.-M., Setälä, M.,
Hämäläinen, H., and Abrahamsson, P. (2024). Chat-
GPT as a Full-Stack Web Developer, pages 197–215.
Springer Nature.

OMG (2001). Model driven architecture (MDA). https:
//www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf.

OMG (2013). Business Process Model and Notation
(BPMN) Specification, Version 2.0.2. https://www.
omg.org/spec/BPMN/2.0.2/.

Rajbhoj, A., Somase, A., Kulkarni, P., and Kulkarni, V.
(2024). Accelerating software development using
generative ai: Chatgpt case study. In Proceedings of
the 17th Innovations in Software Engineering Confer-
ence, pages 1–11.

Royce, W. (1970). Managing the development of large
systems: Concepts and techniques. In 9th Inter-
national Conference on Software Engineering. ACM,
pages 328–38.

Schwaber, K. and Beedle, M. (2001). Agile software devel-
opment with Scrum. Prentice Hall PTR.

Siam, M. K., Gu, H., and Cheng, J. (2024). Programming
with AI: Evaluating ChatGPT, Gemini, AlphaCode,
and GitHub Copilot for Programmers.

Wermelinger, M. (2023). Using github copilot to solve sim-
ple programming problems. In Proceedings of the
54th ACM Technical Symposium on Computer Science
Education V. 1, SIGCSE 2023, page 172–178, New
York, NY, USA. Association for Computing Machin-
ery.

Model-Driven Development Using LLMs: The Case of ChatGPT

339

