
Evaluating the Use of Open-Source and Standalone SAST Tools for
Detecting Vulnerabilities in C/C++ Projects

Valdeclébio Farrapo, Emanuel Rodrigues,
José Maria Monteiro and Javam Machado

Computer Science Department, Federal University of Ceará, Brazil

Keywords: SAST Tools, Vulnerability Detection, C/C++ Code.

Abstract: Detecting security vulnerabilities in the source code of software systems is one of the most significant chal-
lenges in the field of information security. In this context, the Open Web Application Security Project
(OWASP) defines Static Application Security Testing (SAST) tools as those capable of statically analyzing
the source code, without executing it, to identify security vulnerabilities, bugs, and code smells during the
coding phase, when it is relatively inexpensive to detect and resolve security issues. However, most well-
known SAST tools are commercial and web-based, requiring the upload of the source code to a “trusted”
remote server. In this paper, our goal is to investigate the viability of using open-source standalone SAST
tools for detecting security vulnerabilities in C/C++ projects. To achieve our goal, we conduct an empirical
study in which we examine 30 large and popular C/C++ projects using two different state-of-the-art open-
source and standalone SAST tools. The results demonstrate the potential of using open-source standalone
SAST tools as a means to evaluate the security risks of a software product without manually reviewing all the
warnings.

1 INTRODUCTION

Nowadays, almost every daily task relies, to some ex-
tent, on software, ranging from electronic shopping to
smart homes and autonomous vehicles. Naturally, the
increase in the amount of source code implies greater
security requirements in software development. In
this context, a software security vulnerability can be
defined as a coding flaw present in the source code
of a software application that can be exploited by an
attacker to gain unauthorized access, expose informa-
tion, compromise data integrity, or disrupt and alter
its functionality1.

Security vulnerabilities have caused significant fi-
nancial losses to companies and threatened critical se-
curity infrastructures (Parizi et al., 2020). The prolif-
eration of cyber warfare further elevates the impor-
tance of preventing vulnerabilities. Therefore, busi-
nesses and governments require effective solutions to
identify and fix vulnerabilities before valuable infor-
mation is compromised (Dias et al., 2023).

Traditionally, software security is implemented
during the testing phase, heavily relying on manual

1https://cartilha.cert.br/

intervention, which delays its delivery and deploy-
ment. This practice has led organizations to neglect
security, endangering both the software and customer
data (Ahmed, 2019). Detecting software defects after
a product’s release forces companies to bear the costs
of repairs and legal proceedings while also damag-
ing their reputation. Consequently, one of the most
critical tasks for organizations today is ensuring the
security of their software products. Detecting vul-
nerabilities during the development phase, before the
software is deployed in production environments, is
crucial. Therefore, it is essential for software devel-
opment teams to focus on identifying and resolving
vulnerabilities in the source code. However, manual
inspection of software is impractical, as the process
is tedious and may not yield the expected results. To
make vulnerability detection more efficient in terms
of time, coverage, and number of vulnerabilities iden-
tified, automated methods have been proposed (San-
tos and de Santana Oliveira, 2017).

There are two widely used automated methods for
detecting vulnerabilities in source code: (1) Static
Code Analysis and (2) Dynamic Code Analysis. Both
static and dynamic analyses audit the entire software

394
Farrapo, V., Rodrigues, E., Monteiro, J. M. and Machado, J.
Evaluating the Use of Open-Source and Standalone SAST Tools for Detecting Vulnerabilities in C/C++ Projects.
DOI: 10.5220/0013483500003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 394-401
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



to identify vulnerabilities. Static code analysis scans
the entire source code of a system to uncover potential
security vulnerabilities. This method infers the be-
havior of a program without executing it. Static code
analysis detects vulnerabilities while the software is
still in the development phase. On the other hand, dy-
namic code analysis is performed after the developer
executes the source code. As observed by many soft-
ware developers and researchers, static code analysis
has proven to be more efficient than dynamic code
analysis in identifying software security vulnerabili-
ties (Macedo and Salgado, 2015).

Static Application Security Testing (SAST) tools
analyze a snippet of code or its compiled version
to identify security issues, including suspicious con-
structs, unsafe API usage, dangerous runtime errors,
bugs, duplications, and bad smells (Wheeler, 2015).
SAST tools assist developers in detecting security
vulnerabilities during the coding phase, where iden-
tifying and addressing security issues in the source
code is relatively less expensive. For this reason,
SAST tools are becoming increasingly crucial in the
software development lifecycle (Fagan et al., 2020).
Several tools claim to perform “security analysis”, in-
cluding AppScan Source, Checkmarx, Fortify, Sem-
grep, Bandit, and SonarQube. However, most SAST
tools are commercial and web-based, requiring the
source code to be sent to a “trusted” remote server.

In this paper, our goal is to investigate the fea-
sibility of using open-source and standalone SAST
tools for detecting security vulnerabilities in C/C++
projects. To achieve this goal, we conducted an
empirical study in which we examined 30 C/C++
projects using two open-source and standalone SAST
tools: Flawfinder (FF) 2 and Visual Code Grep-
per (VCG) 3. Additionally, the study adopted guide-
lines provided by the Common Weakness Enumera-
tion (CWE) 4 and the Open Web Application Security
Project (OWASP) 5 to identify and analyze vulnerabil-
ities in the source codes made available in these repos-
itories. The results demonstrate the potential of using
open-source and standalone SAST tools as a means
of evaluating the security risks of a software product
without manually reviewing all findings.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the main related works.
Section 3 presents the methodology used in this re-
search. Section 4 analyzes the results obtained. Fi-
nally, Section 5 presents the conclusions and points to
directions for future work.

2https://github.com/david-a-wheeler/flawfinder
3https://github.com/nccgroup/VCG
4https://cwe.mitre.org/
5https://owasp.org/

2 RELATED WORKS

In (Baca et al., 2008), the authors used a commer-
cial SAST tool called Coverity Prevent to evalu-
ate three private C++-based telecommunications soft-
ware projects from the same company. The case study
involved implementing a code security verification
step within the software development lifecycle, where
developers used the reports generated by the Coverity
Prevent tool to fix vulnerabilities. The authors con-
cluded that incorporating the security verification step
and using the analyzed tool provided improvements in
the quality and security of the developed software.

In the study presented in (Woody et al., 2020), the
authors discuss the challenges of adopting DevSec-
Ops and the importance of incorporating a security
step into the software development lifecycle within
organizations of the United States Department of De-
fense. They found that using DevSecOps allowed for
mitigating security risks by detecting and analyzing
vulnerabilities in an automated pipeline that acceler-
ated the secure delivery process of the software.

In (de França and da Silva, 2022), the authors de-
scribe a case study aimed at comparing two develop-
ment processes. The first process involves DevOps
without the security analysis step, while the second
corresponds to DevSecOps, which includes a dedi-
cated security step. The results revealed that, in both
pipelines, the product was delivered. However, in the
process using DevSecOps, it was possible to avoid de-
livering a vulnerable application, demonstrating that
integrating continuous security into DevOps work-
flows is not only feasible but can also provide signifi-
cant benefits to organizations.

In the work presented in (Rahul et al., 2019), the
authors integrated code security analysis as part of the
software development process, preventing attacks and
creating a secure environment and a more protected
system. They used the open-source platform JENK-
INS and code analysis plugins that perform SAST
checks.

In (Shi et al., 2024), a methodology was pro-
posed to produce and optimize a knowledge graph
that aggregates information from common threat
databases (CVE, CWE, and CPE). The threat knowl-
edge graph was applied to predict associations be-
tween threats, specifically between products and vul-
nerabilities. The authors demonstrated the ability of
the threat knowledge graph to uncover many associa-
tions that are currently unknown.

In (Esposito et al., 2024), the authors aim to eval-
uate the effectiveness of vulnerability identification
mechanisms based on SASTs versus machine learn-
ing alternatives. They investigated the use of eight

Evaluating the Use of Open-Source and Standalone SAST Tools for Detecting Vulnerabilities in C/C++ Projects

395



SAST tools (FindSecBugs, Jlint, Infer, PMD, Sonar-
Qube, Snyk Code, Spotbugs, VCG) on projects devel-
oped in Java. There were approximately 1.5 million
test executions on a controlled codebase, establishing
a reliable benchmark for evaluating the use of SAST
tools. The results indicated that SAST tools detect
a small variety of vulnerabilities. Contrary to com-
mon belief, SAST tools showed high precision but
fell short in recall. The work suggests that improving
recall along with increasing the number of vulnera-
bilities detected should be the main focus to enhance
SAST tools.

Table 1 presents a comparative analysis between
the current paper and the main related works. In
the “Rep” column, we list the number of repositories
(projects) used in each study. The “Language” col-
umn shows the programming languages used in each
study. The “Tools” column lists the SAST tools used
in the referred works. The “Open Source” column in-
dicates whether the SAST tools used are open source
or not. The “Standalone” column indicates whether
the SAST tools used operate independently, i.e., with-
out the need to upload the source code to a remote
“trusted” server.

Unlike the work presented in (Baca et al., 2008),
our research uses 30 repositories available on GitHub,
involving projects with different contexts and sizes.
In contrast to the study discussed in (Esposito et al.,
2024), our work focused on open-source tools. The
work presented in (Shi et al., 2024) discussed the
creation of an association mechanism between CVE,
CWE, and CPE, whereas in our research, we collected
the vulnerabilities detected in the scans and cataloged
them according to their corresponding CWEs, aiming
to identify which CWEs the investigated SAST tools
can detect. Finally, our work explored SAST tools
that are executed locally (standalone), meaning they
do not require uploading the source code to “trusted”
remote servers. In practice, this need to upload the
source code to third-party environments makes the
use of these SAST tools unfeasible due to obvious
concerns of trust and control. No company devel-
oping innovative technologies would allow its source
code to be sent to third-party environments. The ex-
clusive use of standalone SAST tools differentiates
our work from all others.

3 METHODOLOGY

In this study, we adopted the action-research method-
ology (Baldissera, 2001), combining research with
practical action. Below, we describe in detail all the
steps of the methodology used.

Initially, the first challenge was to select the SAST
tools to be used. To do this, we defined the following
selection criteria:

1. Free of Charge. The tools should be free.

2. Open Source. The tools should be open-source.

3. Standalone. The tools should be capable of run-
ning locally, without the need to upload the source
code to a remote server.

4. Support for C/C++. The tools should support an-
alyzing code in C/C++.

After thorough research, we found two SAST
tools that met all the selection criteria: Flawfinder
(FF) and Visual Code Grepper (VCG). Both tools
were integrated into our development environment.

The next step involved selecting the software
projects to be evaluated. We chose to use public
repositories available on GitHub, applying the follow-
ing selection criteria:

1. Availability. The repositories should be public to
allow access to the source code.

2. Size. The repositories should have varied sizes to
ensure the research is comprehensive and repre-
sentative.

3. Programming Language. The projects should
have at least 70% of their code written in C/C++.

After this screening process, 30 repositories were
selected. For each repository, we retrieved the code
from 4 distinct commits (or versions): the first com-
mit, the commits corresponding to the first and third
quartiles in terms of project duration, and the last
commit. This resulted in a total of 120 code snap-
shots. For each snapshot, we ran the Flawfinder (FF)
and Visual Code Grepper (VCG) tools, configured to
identify all possible vulnerabilities. This process gen-
erated a total of 240 security reports.

It is important to highlight that, in some reposi-
tories, the first commit was only used to create the
repository, without submitting source code. In these
cases, we discarded the first commit and replaced it
with the second commit. Additionally, we noticed
that some repositories were frequently updated, while
others had not been updated for a long time. There-
fore, we did not use time as a criterion for select-
ing commits, but rather the chronological order of the
commits.

This methodology ensures a comprehensive and
detailed analysis of code security quality in the se-
lected repositories, using open-source, locally exe-
cuted analysis tools, which facilitates practical appli-
cation and reproducibility of the research.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

396



Table 1: Comparative analysis of related works.

Work Rep Language Tools Open
Source Standalone

Baca et al. (2008) 3 C++ Coverity Prevent NO NO
Woody et al. (2020) 1 - - - -

França e Silva (2022) 1 JS Snyk CLI e
Njsscan YES NO

Rahul et al. (2019) 1 - Jenkins NO NO
Shi et al. (2024) - - - - -

Esposito et al. (2024) - JAVA

FindSecBugs
Jlint
Infer
PMD

SonarQube
Snyk Code
Spotbugs

VCG

NO NO

This Article 30 C\C++ Flawfinder e
Visual Code Grepper YES YES

After the selection of the commits, we began the
testing process, which was executed in isolation, us-
ing one tool at a time. During the execution of the
tests, the tools were configured to present the results
in table format, and the data was stored for later anal-
ysis. It is important to note that each tool has its own
characteristics, both in terms of execution mode, op-
eration, and result presentation, as well as the levels
of criticality and detection criteria for vulnerabilities.
Below, we present the main differences between the
tools used.

The SAST tool Flawfinder (FF) supports only the
C/C++ language. It is quite simple and can be exe-
cuted with a single command line. The results can be
directly presented in table format, including the level
of criticality and two corresponding CWEs for each
detected vulnerability.

On the other hand, the SAST tool Visual Code
Grepper (VCG) supports C/C++, Java, PL/SQL, C#,
VB, PHP, and COBOL. Unlike Flawfinder, it was not
possible to run Visual Code Grepper (VCG) via com-
mand line in a Windows environment, and it had to be
executed from its graphical user interface. The tool
is simple, lightweight, and user-friendly. The results
can be reported directly in table format. Additionally,
Visual Code Grepper (VCG) allows the generation of
graphs based on the obtained results. The vulnerabili-
ties are identified by criticality levels, but they are not
cataloged by their corresponding CWEs. Therefore,
after generating the reports with VCG, we manually
analyzed each reported vulnerability and then asso-

ciated two CWEs with each one. This strategy was
used to allow comparison between the results from
Flawfinder (FF) and Visual Code Grepper (VCG).

4 RESULTS

In this section, we present the results obtained from
240 tests conducted using the Flawfinder and Visual
Code Grepper tools. The results are analyzed from
three perspectives: the total number of vulnerabilities
detected by each tool, the total number of unique de-
tections (i.e., excluding duplicates), and the classifi-
cation of vulnerabilities based on their corresponding
CWEs.

Table 2 summarizes the total and unique vulner-
abilities detected by each tool across the 240 tests.
This analysis offers an overview of the performance
and scope of each tool in identifying potential flaws.
From Table 2, it is evident that the SAST tool Visual
Code Grepper reports a considerably higher number
and diversity of vulnerabilities compared to the SAST
tool Flawfinder, highlighting its significantly broader
coverage.

Figure 1 provides a more intuitive visualization
of the differences between the total and unique de-
tections presented by the tools Flawfinder and Visual
Code Grepper. Note that the number of repeated vul-
nerabilities, represented by the difference between the
two bars, shows values that are more similar between

Evaluating the Use of Open-Source and Standalone SAST Tools for Detecting Vulnerabilities in C/C++ Projects

397



Table 2: Summary of total vulnerabilities detected by each SAST tool.

Flawfinder Visual Code Grepper
Total 66,109 Total 101,124
Unique 49,261 Unique 82,224

the two tools, specifically 16,848 in Flawfinder and
18,900 in Visual Code Grepper.

For a more in-depth analysis, we examine the
unique vulnerabilities categorized by severity level.
As mentioned earlier, the SAST tool Flawfinder and
the SAST tool Visual Code Grepper present their re-
sults differently: the former uses levels 1 to 5, while
the latter uses levels 1 to 4. Table 3 illustrates the
number of unique vulnerabilities, by severity level,
for each of the analyzed tools. By analyzing Table 3,
it can be seen that the SAST tool Flawfinder identifies
a greater number of vulnerabilities with lower sever-
ity, while the SAST tool Visual Code Grepper iden-
tifies a greater number of vulnerabilities with higher
severity.

Figure 2 shows the number of unique vulnerabili-
ties by severity level for each of the analyzed tools. It
is worth noting that the histogram shown in Figure 2
uses the original data for the two studied tools, which
are on different scales. Nonetheless, it draws atten-
tion that the number of vulnerabilities with severity 3
found by the Flawfinder tool is quite small.

To facilitate the comparison of results obtained by
the studied tools, we opted to normalize the values
used to represent the severity levels. Normalization
places the data on the same scale, which makes it eas-
ier to analyze the results. In this sense, we used the
linear normalization approach, which maps the origi-
nal values to a standardized scale ranging from 0 to 1.
Below, we describe the linear normalization process
in detail:

Let x be a value in the original table, and xnorm
the corresponding normalized value. The formula for
linear normalization is given by:

xnorm =
x−min(x)

max(x)−min(x)
Where min(x) represents the minimum value in

the table and max(x) represents the maximum value.
Table 4 displays the relationship between the

severity levels before and after the normalization pro-
cess. Note that now the highest severity level in both
tools is Level 1, and the lowest is Level 0. How-
ever, the SAST tool Flawfinder still maintains 5 sever-
ity levels, while the SAST tool Visual Code Grepper
maintains 4 levels.

Figure 3 illustrates the number of unique vulner-
abilities by severity level for each of the tools ana-
lyzed, using the normalized data. By analyzing Figure

3, it can be observed that the SAST tool Flawfinder
identifies a greater number of vulnerabilities with
lower severity, while Visual Code Grepper identifies a
greater number of vulnerabilities with higher severity.

Now, we can analyze the vulnerabilities found ac-
cording to the CWEs. As mentioned earlier, the SAST
tool Flawfinder already provides two corresponding
CWEs for each vulnerability detected in its results.
On the other hand, the SAST tool Visual Code Grep-
per does not directly provide this categorization. To
address this limitation, we listed all the vulnerabili-
ties detected by Visual Code Grepper and manually
assigned two CWEs to each of them. Then, we com-
puted the number of detections for each CWE across
the analyzed SAST tools.

Table 5 illustrates the number of vulnerabilities
found by CWE for each of the tools investigated. Note
that out of all 32 CWEs listed, the SAST tool *Vi-
sual Code Grepper* did not identify vulnerabilities
for CWEs 785 and 829, confirming the extensive cov-
erage of this tool. Additionally, Visual Code Grep-
per shows a lower number of detections compared to
Flawfinder for CWEs 119, 120, 126, 134, 190, 250,
327, 362, 377, 676, 732, and 807 (twelve in total).
Next, we briefly discuss some of these CWEs.

CWE-785: Use of Out-of-Bounds Pointer Arith-
metic: Occurs when pointer arithmetic results in ad-
dresses outside the boundaries of memory allocated
for an object. This can cause unexpected behavior,
data corruption, segmentation faults, and exploitation
possibilities by attackers (MITRE CWE).

CWE-829: Improper Handling of File Names or
Paths: Involves insecure handling of file names or
paths, allowing attackers to access or modify unau-
thorized files (MITRE CWE).

CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer: Occurs when
software performs operations on a memory buffer but
reads or writes to a memory outside the intended
buffer bounds. This can lead to memory corruption,
arbitrary code execution, and denial of service (DoS).

Visual Code Grepper stands out for reporting
a higher number of vulnerabilities compared to
Flawfinder. This characteristic can be attributed to
a more comprehensive approach in detecting poten-
tial security issues in the source code. Addition-
ally, VCG tends to present more results categorized
with higher criticalities, indicating a focus on more
critical vulnerabilities. However, the tool does not

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

398



Figure 1: Total and unique vulnerabilities detected by each SAST tool.

Table 3: Distribution of unique vulnerabilities by severity levels for each tool.

Flawfinder Visual Code Grepper
Severity Level Vulnerabilities Severity Level Vulnerabilities

1 12,569 1 464
2 24,541 2 309
3 2,164 3 54,688
4 9,838 4 26,763
5 149 5 -

Figure 2: Unique vulnerabilities by severity level per SAST tool.

Evaluating the Use of Open-Source and Standalone SAST Tools for Detecting Vulnerabilities in C/C++ Projects

399



Table 4: Values for each severity level after normalization.

Flawfinder Visual Code Grepper
Original Level Normalized Level Original Level Normalized Level

1 0 1 0
2 0.25 2 0.33
3 0.5 3 0.67
4 0.75 4 1
5 1 5 -

Figure 3: Unique vulnerability counts by severity levels for each tool (After Normalization).

categorize vulnerabilities according to the Common
Weakness Enumeration (CWE). On the other hand,
the SAST tool Flawfinder adopts a more balanced ap-
proach, reporting fewer vulnerabilities but distributed
more evenly in terms of criticality. A notable advan-
tage of Flawfinder is its greater versatility in searches
and results, as it categorizes vulnerabilities according
to the Common Weakness Enumeration (CWE). Fur-
thermore, the capability of Flawfinder to be fully ex-
ecuted via the command line facilitates its integration
into automated pipelines, making it more practical for
incorporation into a software development pipeline.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, our goal was to investigate the fea-
sibility of using open-source and standalone SAST
tools for detecting security vulnerabilities in C/C++
projects. To achieve this objective, we conducted

an empirical study in which we examined 30 C/C++
projects using two open-source and standalone SAST
tools: Flawfinder (FF) and Visual Code Grepper
(VCG). Additionally, this study was based on guide-
lines provided by the Common Weakness Enumera-
tion (CWE) and the Open Web Application Security
Project (OWASP) to identify and analyze the vulner-
abilities present in the source codes available in these
repositories. The results demonstrate the potential of
using open-source and standalone SAST tools as a
way to assess the security risks of a software product
without the need to manually review all findings. Ad-
ditionally, we observed that there are CWEs reported
only by the Flawfinder SAST tool, as well as oth-
ers reported solely by the Visual Code Grepper SAST
tool. This highlights the need to use more than one
SAST tool in the development process, to cover dif-
ferent perspectives in the testing process (Kleiderma-
cher and Kleidermacher, 2012).

As future work, we intend to expand the number
of repositories, including different programming lan-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

400



Table 5: Quantities of vulnerabilities found by CWE.

CWE FF VCG CWE FF VCG CWE FF VCG
20 - 70 248 - 1 480 - 19.610
77 - 6 250 18 8 676 242 3
78 - 6 327 1.351 7 681 - 19.610

114 - 22 362 5.084 27 690 - 53
119 10.588 630 367 692 1.063 703 - 1.048
120 31.108 1.300 377 216 50 732 54 8
121 - 57 396 - 1 772 - 8
122 - 349 401 - 5.784 785 32 -
126 4.791 66 404 - 5.723 807 534 36
134 1.983 176 427 - 22 829 76 -
190 1.412 16 432 - 50

guages and exploring a broader range of projects. Fur-
thermore, we will incorporate new SAST tools with
distinct approaches. Additionally, we plan to compare
SAST, DAST, and IAST tools to provide a more com-
prehensive view of vulnerabilities at different stages
of the development lifecycle. We also want to inves-
tigate the occurrence of false positives and negatives.
Finally, we will apply the SAST tools in real produc-
tion environments to gather feedback from developers
and adjust/adapt the tools used.

ACKNOWLEDGMENTS

This work was partially funded by Lenovo as part
of its R&D investment under the Information Tech-
nology Law. The authors would like to thank CNPq
(316729/2021-3) and LSBD/UFC for the partial fund-
ing of this research.

REFERENCES

Ahmed, A. (2019). Devsecops: Enabling security by design
in rapid software development. Master’s thesis.

Baca, D., Carlsson, B., and Lundberg, L. (2008). Eval-
uating the cost reduction of static code analysis for
software security. In Proceedings of the third ACM
SIGPLAN workshop on Programming languages and
analysis for security, pages 79–88.

Baldissera, A. (2001). Pesquisa-ação: uma metodologia do
“conhecer” e do “agir” coletivo. Sociedade em De-
bate, 7(2):5–25.

de França, R. P. and da Silva, V. B. (2022). Devsecops-
integração da segurança contı́nua em pipelines de-
vops: um estudo de caso. In Anais Estendidos do XXII
Simpósio Brasileiro em Segurança da Informação e de
Sistemas Computacionais, pages 272–285. SBC.

Dias, R. d. C. W. B. et al. (2023). Avaliação comparativa
das metodologias na gestão de projetos.

Esposito, M., Falaschi, V., and Falessi, D. (2024). An exten-
sive comparison of static application security testing
tools.

Fagan, M., Megas, K. N., Scarfone, K., and Smith, M.
(2020). Atividades fundamentais de cibersegurança
para fabricantes de dispositivos iot.

Kleidermacher, D. and Kleidermacher, M. (2012). Embed-
ded systems security: practical methods for safe and
secure software and systems development. Elsevier.

Macedo, M. H. B. and Salgado, E. G. (2015). Gerencia-
mento de risco aplicado ao desenvolvimento de soft-
ware. Sistemas & Gestão, 10(1):158–170.

Parizi, R., Moreira, M., Couto, I., Marczak, S., and Conte,
T. (2020). A design thinking techniques recommen-
dation tool: An initial and on-going proposal. In Pro-
ceedings of the XIX Brazilian Symposium on Software
Quality, pages 1–6.

Rahul, B., Prajwal, K., and Manu, M. (2019). Implemen-
tation of devsecops using open-source tools. Interna-
tional Journal of Advance Research, Ideas and Inno-
vations in Technology, 5(3).

Santos, L. D. V. and de Santana Oliveira, C. V. (2017).
Introdução à garantia de qualidade de software. Cia
do eBook.

Shi, Z., Matyunin, N., Graffi, K., and Starobinski, D.
(2024). Uncovering cwe-cve-cpe relations with threat
knowledge graphs. ACM Trans. Priv. Secur., 27(1).

Wheeler, D. A. (2015). Secure programming howto. Wal-
ters Art Museum in Baltimore, Maryland.

Woody, C., Chick, T., Reffett, A., Pavetti, S., Laughlin, R.,
Frye, B., and Bandor, M. (2020). Devsecops pipeline
for complex software-intensive systems: Addressing
cybersecurity challenges. The Journal on Systemics,
Cybernetics and Informatics: JSCI, 18(5):31–36.

Evaluating the Use of Open-Source and Standalone SAST Tools for Detecting Vulnerabilities in C/C++ Projects

401


