
A Heuristic Approach to Localize CSS Properties for
Responsive Layout Failures

Tasmia Zerin, B. M. Mainul Hossain and Kazi Sakib
Institute of Inform haka, Bangladesh

{bsse1128, mainul, sakib}@iit.du.ac.bd

Keywords: Responsive Web Design, Localization, Web Testing.

Abstract: Responsive Layout Failures (RLFs) typically arise from CSS properties that hinder proper layout behavior
in different screen sizes. To find an accurate and effective solution for repairing RLFs, localization of those
problematic properties is necessary. However, existing approaches only detect RLFs and apply broad CSS
patches for them. The patches alter the entire layout without localizing the root cause of failure. To address this
gap, we propose a heuristic approach to identify the specific CSS properties that developers would typically
localize manually. The approach first detects the RLFs existing in a webpage and their affected elements.
Next, it localizes the nearby HTML elements using RLF direction and relative alignment of the elements
present in the RLF region. The involved CSS properties of those elements are then identified using a ranked
search set of CSS properties, created by analyzing Quora and Stack Overflow queries. Finally, elements and
their corresponding property pairs are ranked based on their impact on RLFs. We have implemented this
approach into a tool called LOCALICSS and evaluated it on a set of webpages using Top N Rank, MRR and
P@K metrics. The tool achieved localization accuracy ranging from 45.2% (Top-1) to 92.86% (Top-7), with
an MRR of 76% and a P@3 of 77.13%. Additionally, experienced front-end engineers manually localized the
RLFs as part of our evaluation. Their preferred CSS properties matched the suggestions from our approach in
42.86% of cases for Top-1 rankings and up to 90.48% for Top-7 rankings.

1 INTRODUCTION

In current world, developing websites responsive to
all screen sizes has gained popularity. This approach
is known as Responsive Web Design (RWD), which
allows webpages to render well across all resolutions
and screen sizes (Walsh et al., 2015). However,
ensuring responsiveness with the correct layout is
challenging, often results in visual failures, known
as Responsive Layout Failures (RLFs) (Walsh et al.,
2015). RLFs usually occur due to insufficient space
for webpage elements to render properly at a specific
screen size or across a range of sizes. These failures
include, HTML elements being cropped off the edge
of the screen or colliding over one another and over-
writing each other’s content. RLFs can occur into
designs and may remain unnoticed until webpages go
live, often because they occur at a very small range of
viewport sizes out of a very wide range. Although
many modern frameworks can now automatically
make websites responsive, many existing websites
and legacy platforms still rely on raw CSS styles,
making RLFs more common.

The root cause of an RLF usually lies in the
affected elements, but these elements may not always
be the actual source of the failure. For instance,
consider a row of elements e, where the leftmost
element is e1 and the rightmost element is e2. The
developer has added a large margin-right value to
e1, as a result e2 overflows its container. Here, while
e2 is the affected element, actual root cause lies in
the margin-right CSS property of e1. A developer
has to search or localize these properties manually,
change and verify each of them whether they are the
root cause.

Automating CSS localization can reduce this man-
ual trial and error while searching. However, this
localization should be effective enough to suggest
properties similar to manual localization. At the same
time, this approach needs to be efficient enough to
accurately localize these elements and CSS properties
responsible for RLFs.

In literature, approaches to detect and repair RLFs
exist, e.g., ReDeCheck (Walsh et al., 2017b) detects
RLFs of a webpage by comparing the layout in differ-
ent viewports. Layout DR (Althomali et al., 2022)

292
Zerin, T., Hossain, B. M. M. and Sakib, K.
A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures.
DOI: 10.5220/0013477500003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 292-303
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

generates CSS patches as hotfixes for the detected
RLFs. However, these patches modify CSS property
values of the entire layout. Whereas, repairing only
the RLF segment requires localizing the involved
properties. While other web application failures are
repaired through localization (Mahajan et al., 2018a;
Le-Cong et al., 2021), no existing approach has yet
worked on localizing the RLFs before repairing.

This paper presents a heuristic approach to local-
ize HTML elements and CSS properties responsible
for an RLF. We implemented this into a tool called
LOCALICSS (Localization of CSS). RLFs may occur
at a small range of screen widths, known as viewports.
Hence, we start by detecting RLFs at different view-
ports across a webpage. Next, we find the involved
elements by filtering surrounding elements of an RLF
based on its type, direction and alignment. To lo-
calize the problematic properties of these elements,
we created a ranked CSS property set for each RLF
by analyzing Quora and Stack Overflow queries with
expert’s opinion. Lastly, each element and property
pair is prioritized according to its impact on the
failure. The impact is measured based on the property
value and its rank in the CSS property set, with higher
values and lower ranks indicating greater impact.

We applied LOCALICSS to an existing set of 20
responsive webpages (Althomali et al., 2022; Walsh
et al., 2015). Our empirical study exhibits the accu-
racy of this approach in identifying the correct ele-
ment and property pairs using three evaluation metrics
- Top N Rank, Mean Reciprocal Rank (MRR) and
Precision at K (P@K). LOCALICSS accurately local-
ized and ranked the problematic pairs for 39 out of 42
detected RLFs. It achieved Top-1, Top-3, Top-5 and
Top-7 accuracy in 45.2%, 76.2%, 90.5% and 92.86%
of cases respectively. For MRR, 68% accuracy has
been achieved by LOCALICSS. After having experts
opinions, some RLFs were marked as No Problems
(NP). Excluding such cases gives us an MRR of 76%.
To measure relevance of the suggested properties,
P@3 is calculated, which is 66.67%. Excluding NP
ones leads to a higher P@3 value of 77.12%.

The detected RLFs were also provided to five
experienced front-end engineers for manual localiza-
tion. Our approach matches with their preferences
for Top-1 by 42.86%, which means their chosen
property is ranked 1 in the suggested list by our
approach. Similarly, for Top-3, 73.81% of the time
our suggested list contains the developer’s choice in
the top 3. Top-5 and Top-7 both give an accuracy
of 90.48%. These findings show that our proposed
approach can effectively identify problematic CSS
properties and can be used by a developer.

2 BACKGROUND

Responsive Web Design (RWD) is a design strategy to
develop webpages so that the layout of the HTML ele-
ments automatically adjusts to the available space, al-
lowing it to fit small mobiles to large desktop screens.
Developers currently use this to develop responsive
webpages. The available space or the width is known
as a viewport, and this viewport width is considered
from 320 pixels wide for a mobile device up to a
wide width of 1400 pixels for desktop screens. RWD
can be implemented using HTML and cascading style
sheet (CSS) code or frameworks such as Bootstrap
1, TailwindCSS 2, Bulma 3 and WindiCSS 4. These
help developers create a responsive page to fit every
viewport in a broad range of viewport sizes.

Despite these, Responsive Layout Failures (RLFs)
are frequently occurring in the responsive webpages,
as reported by Walsh et al. (Walsh et al., 2015). RLFs
are visual discrepancies in the rendering of a webpage
which causes the webpage to deviate from its intended
layout. There are five common RLF types that Walsh
et al. (Walsh et al., 2015) reported to be prevalent in
real life. To demonstrate these failures, screenshots of
responsively designed real-life web pages are shown
in Figure 1. Left part of this figure (Figure 1(a), (c),
(e), (g)) highlights each responsive layout failure, and
the right part (Figure 1(b), (d), (f), (h)) highlights a
correct layout of each of them respectively. These
RLF types are explained below:
Element Collision (EC). Elements collide into one
another due to insufficient accommodation space
when viewport width reduces. Figure 1(a) shows an
example of this type, where two buttons are colliding
with one another. In a wider layout, the buttons are
positioned correctly as shown in Figure 1(b).
Element Protrusion (EP). When the child element
is contained within its container, but as the viewport
width decreases, it lacks sufficient space to fit within
its parent. As a result, the child element protrudes out
of its container. In Figure 1(c) two buttons are getting
out of their container, as a result, RLF occurs. When
the viewport size is increased, the layout changes
while buttons are inside their parent container.
Viewport Protrusion (VP). As the viewport size
decreases, elements may not only overflow their con-
tainers but also protrude out of the viewable area of
the webpage (i.e., the <BODY> tag), causing them to
appear outside the horizontally visible portion of the
page. In Figure 1(f), there are multiple options in a

1Bootstrap
2Tailwind CSS
3Bulma CSS
4Windi CSS

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

293

row. When the viewport size decreases, some options
may overflow the viewport due to not having enough
space. As a result, in Figure 1(f) some options are
getting cropped on the right side of the webpage.
Wrapping Elements. When the container is not wide
enough but has a flexible height, horizontally aligned
elements contained within it no longer fit side by side,
causing “wrap” to a new line on the page. The text of
the first option of Figure 1(g) is wrapped to a new line,
but in a wider viewport, the text stays in one line. Due
to insufficient width space, this failure occurs.
Small-Range Failure. Responsively designed web-
sites typically rely on numerous CSS rules that are
triggered based on different media queries. In some
cases, multiple media queries may be enabled simul-
taneously for a given viewport width. For example, if
one rule applies when the viewport exceeds 768 pixels
and another applies when it is below 1024 pixels,
both rules will be active within the range of 769–1023
pixels. As it is only concerned to media-query rules
rather than CSS properties, we have not considered
this RLF type in this research.

RLFs are usually caused by one or multiple CSS
properties of an HTML element, here the element
can be one of the affected elements or any other
element from the neighborhood. Localization can
search all the probable problematic elements and their
properties to find the ones that most likely need to
be adjusted to resolve each RLF. From Figure 1(c),
manual inspection may reveal that the protruding
element is overflowing its container due to an extra
space between the elements above it. Similarly for
Figure 1(g), elements in the row have large space
between them; as a result, the first element is wrapped
to a new line. Such RLFs occur in a small range of
viewports due to inappropriate values of CSS proper-
ties. However, these problematic CSS properties may
not necessarily always be of the affected elements,
they can be located in other elements. Hence, local-
ization of these properties can play a significant role
in finding the root cause of an RLF.

3 APPROACH

The goal of our approach is to localize HTML ele-
ments and corresponding CSS properties responsible
for Responsive Layout Failures (RLF). The key idea
is to develop a heuristic approach that leverages the
intuitive reasoning a developer might naturally apply
to search for the responsible element properties for a
given failure. Identifying the problematic pairs of el-
ements and CSS properties is important for resolving
failures both automatically or manually.

In a responsively designed webpage, any of the
five common types of RLFs (Walsh et al., 2015) as
stated in Section 2 may happen. These RLFs typically
occur due to developers adding a wrong value to the
properties (Walsh et al., 2015). Hence, we solely
focus on searching the explicitly defined properties to
find the problematic ones.

The proposed approach is divided into three dis-
tinct phases, detection, localization and prioritization,
as shown in Figure 2. The approach takes a URL
(Figure 2(a)) of a webpage as input. The DOM of
this webpage is extracted and sent to Detection phase,
where RLFs along with the non-observable issues
are detected. This module generates a list of RLFs
and affected elements by the failures (Figure 2(b)).
After detection, its output is used in the Localiza-
tion phase. This module additionally searches for
the nearby problematic elements (Figure 2(c)), and
then identifies problematic CSS properties for both -
affected elements and nearby elements. To find the
properties, a predefined property set for each RLF is
used as a reference (Figure 2(d)). The result is a list
for each RLF containing XPath of involved elements
with the value of their problematic properties (Figure
2(e)). Finally, Prioritization phase applies ranking
criteria to create a ranked list of these properties
(Figure 2(f)).

3.1 Phase 1: Detection

Detection phase is divided into two modules, the first
one is to identify the RLFs existing in a webpage.
Second one is to detect whether the webpage has any
Non-Observable Issues in it. These two modules are
explained below:

3.1.1 RLF Detection

For this phase, we implemented a detection module
same as LAYOUT DR (Althomali et al., 2022). This
step outputs each of the detected RLFs, comprising
its type (one of five RLFs mentioned in Section 2),
details about the HTML elements involved in the
RLF, and the range of viewports, f ailmin... f ailmax,
where the failure occurs. Here f ailmin is the starting
viewport and f ailmax is the ending viewport of an RLF.

However, elements designed to scroll automati-
cally, such as carousel, slideshow change its con-
tents after a specific interval. Elements having such
behavior can be detected as a layout change and thus
labeled as a failure. To reduce these false positive
issues, we additionally identified the presence of CSS
transition and transform properties in each element.
Once such an element is found, it is excluded from the
search space for failure elements.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

294

Figure 1: Real-life examples demonstrating RLFs and correct layouts.

Figure 2: Overview of the Approach.

3.1.2 NOI Detection

RLFs are prone to a special type of false posi-
tives known as Non-Observable Issues (NOIs) (Walsh
et al., 2017a), issues that exist in the DOM but have
no visible appearance in the page. For instance, one
HTML element may overflow the viewable portion
of the page, as discovered by checking the element’s
coordinates in the DOM. However, if it is transparent
or contains the same colour as root element (i.e.,
<BODY>), the viewport protrusion will not be visible
to a human viewing the page. This type of case is
marked as NOI.

To determine the NOIs, we implemented VISER,
an automated visual verification method (Althomali
et al., 2019). This method analyzes the failure region
of an RLF through image processing by capturing
snapshots at various layers. The layers are then com-
pared to find differences in pixel level. If found, the
failure is considered observable to a human, otherwise
it is non-observable. It allows developers to review
NOIs if necessary. However, even VISER is not 100%
accurate, requiring manual checking.

The outputs of this phase are the detected RLFs
and NOI-marked failures. The affected elements are
listed along with each detected RLF.

3.2 Phase 2: Localization

Localization phase consists of two modules, the
first one searches for nearby problematic elements.
Properties of these elements are searched to identify
the problematic ones in the second module. These
modules are demonstrated below:

3.2.1 Contextual Search

A failure region analysis is performed to narrow down
the search space of HTML elements and CSS proper-
ties. The approach first extracts the coordinates of the
failure elements. These coordinates or positions of
the elements are used to determine the direction of the
RLF. If an RLF is an element protrusion, it is essential
to determine the direction of the failure—whether it
is horizontal or vertical—and identify the boundary
from which the element is protruding (top, bottom,
left, or right). Our approach also uses the coordinates
of the elements to calculate the relative alignments
and identify the relationship between them for a

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

295

specific range. For instance, Figure 1(c) shows a
vertical protrusion, indicating that any horizontally
aligned elements do not have an effect on the RLF.
The neighboring elements of a failure are filtered
using this alignment information.

3.2.2 Identify Problematic CSS Properties

To identify problematic CSS properties of the ele-
ments provided by the previous step, a pre-defined
set of CSS properties relevant to each RLF type is
introduced, denoted as Ptype. Properties that control
element dimensions (e.g., height, width) are relevant
across all RLF types, whereas properties such as
position and display differ from one type to another.
These sets are created by analyzing queries from
top two largest and most popular community among
developers, Quora and Stack Overflow. RLF-specific
terms - “div overlap”, “div overflow”, “container
overflow” and “element wrap” are used to search for
queries related to responsive layout failures. 5.

Top 20 answers having the highest number of
votes are analyzed to identify the involved CSS prop-
erties and add them to the sets. Five experienced
front-end engineers verified these sets. They man-
ually checked each property of the sets and marked
the ones that typically cause an RLF. Properties
marked by more than two engineers were taken in
the Ptype set. However, small-range failures do not
require any CSS property for localization, as it is
dependent on media-query rules. The four other types
of RLFs and their corresponding Ptype are shown in
TABLE 1. The Ptype is used to search for faulty
CSS properties in the elements for a specific RLF.
When such a property is found within an element,
the approach checks whether it is explicitly defined
by the developer. If developer-written, it is added to
the output set, E, of potentially problematic elements
with faulty properties for each RLF. For instance,
Figure 1(c) shows a vertical protrusion, where proper-
ties such as height, margin-top, margin-bottom, etc.
are potentially involved, while other properties like
margin-left, margin-right are irrelevant.

3.3 Phase 3: Prioritization

The goal of the last phase is to prioritize set E’s
elements in order of likelihood to have caused the
RLF. It gives a ranked list, ER by sorting each pair
(e, c) of set E, where e is an HTML element e ∈

5StackOverflow - Element Collision, Element Over-
flow, Element Going Outside Div, Element Overflowing
Page, Elements Wrapping, Quora - Divs Overlapping, El-
ement Overflow, Element Going Outside the Div, Element
Overflowing Page, Elements Wrapping

Table 1: Ranked Search Set of CSS Properties for each RLF.
Set Type Ranked CSS Properties
Element
Protrusion
(PEP)

1. position: absolute — 2. float — 3. Fixed height, width
(i.e., px) — 4. display — 5. margin, padding — 6. font-size
7. white-space

Element
Collision
(PEC)

1. position: absolute — 2. float — 3. -ve margin — 4. Fixed
height, width — 5. margin, padding — 6. If display:flex
Missing flex-wrap:wrap — 7. max-height, max-width

Viewport
Protrusion
(PV P)

1. position: absolute — 2. float — 3. Fixed height, width —
4. margin, padding — 5. font-size — 6. white-space

Wrapping
Elements
(PWE)

1. If parent has no display:flex and flex:nowrap — 2. float —
3. parent width — 4. margin, padding — 5. font-size

E and c is a CSS property c of e. Typically, CSS
properties assigned with larger numeric values tend
to be the reason behind a failure. As a result, sorting
by property value is done in descending order.

For properties having non-numeric value, RLF-
specific ranking criteria RCtype are used to prioritize
the properties. These criteria are based on the proper-
ties of set associated with each RLF Ptype mentioned
in the previous section. Using the obtained answers of
queries from Stack Overflow and Quora (mentioned
in Sub Section 3.2.2), we took count of the properties
mentioned as problematic ones in those answers. TA-
BLE 1 shows these rankings for each RLF. Specific
properties with non-numeric values tend to be the
actual root cause of RLFs, e.g., position. Hence, they
are given the top positions, e.g., in TABLE 1, for PEC
the RCEC has position:absolute in the 1st rank.

If two properties have the same numeric value,
RCtype will be used to prioritize them. Properties are
also prioritized according to the element containing
that property. The elements affected by the failure
will get the highest priority, followed by their neigh-
boring elements. However, we have not considered
the height or width of parent container, as changing its
size may distort the layout. The sorted list shows the
localized (e, c) pairs in descending order of impact.

4 CASE STUDY

Our proposed approach is applied on a sample case
using a real-world webpage, and the step by step
execution flow is demonstrated here. For this purpose,
we have chosen du.ac.bd, an educational website of
a renowned top institution in Bangladesh. We ap-
plied our approach to this website and systematically
walked through each of the steps. Figure 3 illustrates
the steps and their outputs, using labeled markers to
distinguish different outputs.
Detection Phase. At the beginning, in Figure 3(a),
the URL of this webpage is given as input. The
detection phase takes this webpage, runs through RLF

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

296

Detection and NOI Detection modules to find any
RLFs hidden in the webpage, including NOIs. Here,
one RLF is detected, which is an Element Protrusion.
Its affected elements are pointed in 3(b). The dashed
button element “+ Read More” is overflowing out
of the outer-dashed parent container. These elements
will act as inputs to the next phase, localization.
Localization Phase. In this phase, affected elements
are used to find their nearby elements which may be
problematic. Contextual search is used to identify
them by calculating the direction of the RLF. Here,
as the button is protruding from the bottom of the
container, it can be stated that the RLF direction is
vertical. Hence, nearby elements that are vertically
aligned can be potentially problematic. In 3(c1), the
date and title elements are the nearby ones as they
are situated on top of the affected button. The CSS
properties are also extracted for all these elements in
3(c2). To find the problematic properties, only those
related to vertical alignment will be considered, such
as margin-top, height, margin-bottom etc. These
properties are underlined in 3(c2). Observing the
extracted CSS properties will help to understand the
process of finding the problematic ones. Here, CSS
of the button includes margin-top, width, but width
will not be considered in this case as it does not affect
the vertical protrusion.
Now localization generates a list consisting of (e, c)
pairs, e = element and c = its property, as shown in
3(e). The list here contains the underlined properties
of 3(c2), such as, margin-top of the button (Xpaths
of the elements are shown), height of the element
immediate above the button. The pairs are ranked in
the next phase.
Prioritization Phase: To rank these pairs, the pro-
posed approach utilizes the ranked search set of CSS
Properties for each RLF (shown in Table 1). Figure
3(d) illustrates this list for Element Protrusion. The
final output, presented in Figure 3(f), shows the ER
list, where the properties are sorted in descending
order based on their values. In this case, since
the height property has the highest value within the
RLF, it is ranked at the top, followed by margin-top,
padding, and so on. When properties have the same
value, the ranked property set from Figure 3(d) is
used to determine their order. Finally, the list (Figure
3(f)) presents the involved elements along with their
respective ranks, indicating their level of impact.

5 EXPERIMENTAL RESULTS

We designed an empirical study to answer the fol-
lowing research questions and evaluate our proposed

Figure 3: Real-life case study on a webpage demonstrating
outputs of different phases by the proposed approach.

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

297

approach:
RQ1: How accurately can the proposed approach
localize a pair of HTML element and its CSS
property for any detected RLF?
RQ2: How does the automated localization per-
form compared to manual localization?
We carried out the study on a set of 20 real-life
webpages containing RLFs. The result is a ranked list
of identified (e,c) pairs, where e is an HTML element
and c is a CSS property of e. We gave the RLFs
to five experienced front-end Engineers for manual
localization. Then the results of our approach were
compared with the performance of those Engineers.

5.1 Evaluation Metrics

The accuracy of the proposed approach is assessed
using Top N Rank, Mean Reciprocal Rank (MRR)
and Precision at K (P@K), which are widely used for
ranking models, such as (Rahman et al., 2017; Kim
et al., 2024). For all of these, the higher the value is,
the better the performance will be. The details of the
metrics are given below:
Top N Rank. For each RLF, if there is a problematic
(e,c) pair within the Top N rank (N = 1, 3, 5, 7 for this
system), it is counted as 1. For example, N = 3 means
if the (e,c) pair for RLFi is obtained within top 3
suggestions, isCSSPropertyinTop3(RLFi) of Equation
1 will be counted as 1. Top N rank is used to evaluate
our approach in two ways, (1) if any pair from Top
N is the root cause, and (2) if the engineers preferred
(e,c) pair exists in Top N of our suggestions.

Top-N =
1

|RLFcount |

|RLFcount |

∑
i

isCSSPropertyinTopN(RLFi)

(1)

MRR. A reciprocal rank is the multiplicative inverse
of the rank of the first correct result of a query
(Rahman et al., 2017). For example, if a property
is localized in rank position 2, the reciprocal rank is
1/2. MRR is the mean of Reciprocal Ranks across all
queries, represented by Equation 2. So, the range of
MRR is 0 ≤ MRR ≤ 1. Here, |RLFcount | denotes the
total count of RLFs in a webpage, and HighestRanki
refers to the rank of the first correctly identified (e,c)
pair for each RLF. MRR measures the effectiveness
of identifying the actual root cause of RLFs.

MRR =
1

|RLFcount |

|RLFcount |

∑
i=1

1
HighestRanki

(2)

MRRtotal for the whole subject set is calculated using
the same Equation (1), where |RLFcount | is the total

number of detected RLFs by the proposed approach.
Precision at K (P@K). It measures the proportion of
relevant CSS properties for solving any RLF among
the top K retrieved (e,c) pairs. Higher P@K indicates
that more relevant results appear within the top K
ranks. P@Ki for the ith webpage is measured using
Equation 3.

P@Ki =
Number of relevant results in the top K

K
(3)

P@Ki is the average of all the individual P@K for
each webpages, presented in Equation 3. Here, N is
the number of webpages used.

P@K =
1
N

N

∑
i=1

P@Ki (4)

5.2 Experimental Setup and Subjects

We implemented the proposed approach into a
tool called LOCALICSS6. It is implemented with
JavaScript using Node v20.11.1. and Puppeteer
v20.7.3. In this tool, same as (Althomali et al.,
2022), we have set the viewport height to 1000 px and
width range to 320-1400 px, which varies from small
mobile screens to large desktop screen sizes. The tool
samples a page at every viewport width within the
range, step size = 1 px, similar to (Althomali et al.,
2022). After setting these configurations, the tool is
used to localize the RLFs of subject webpages.

Table 2: Subject Webpages.
Subj
ID Subject URL # Line

of HTML
Line
of CSS

1 3MinuteJournal 3minutejournal.com 79 3354
2 Accountkiller accountkiller.com/en 343 559
3 Airbnb airbnb.com 1469 5638
4 Ardour ardour.org 222 3774
5 Bower bower.io 370 844
6 BugMeNot bugmenot.com 41 237
7 CoveredCalendar coveredcalendar.com 147 5131
8 Cloudconvert cloudconvert.com 907 2831
9 Django djangoproject.com 242 4732
10 DjangoREST django-rest-framework.org 610 3787
11 Duolingo duolingo.com 816 16929
12 Honey joinhoney.com/install 460 3249
13 HotelWiFiTest hotelwifitest.com 358 4258
14 MantisBT mantisbt.org 247 7731
15 MidwayMeetup midwaymeetup.com 85 2942
16 Ninite ninite.com 640 2721
17 PepFeed pepfeed.com 342 4563
18 PDFescape pdfescape.com 176 794
19 Selenium selenium.dev 286 4980
20 WillMyPhoneWork willmyphonework.net 781 2022

We created our subject set using the webpages
studied by (Walsh et al., 2017a) and (Althomali et al.,
2022). In total, there were 45 webpages in their
online repository. We attempted to run LOCALICSS
on the landing page of those. Among them, pages

6https://anonymous.4open.science/r/LocaliCSS-4526

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

298

that did not respond or had no true positive RLFs
were discarded. Finally, we found 20 webpages as our
subjects, from which 42 distinct failures, including 13
Non-Observable Issues (NOIs) were obtained. TA-
BLE 2 lists these webpages, along with their HTML
and CSS line counts. The webpages vary from 41
lines of HTML and 237 lines of CSS to around
1,469 lines of HTML and 16,929 lines of CSS. The
variations in their size and complexity helped to form
a diverse subject set.

5.3 Empirical Evaluation

Answer to RQ1. We ran LOCALICSS on the subject
webpages and found 62 RLFs in total including True
Positive (TP) and NOIs. As one webpage can contain
the same RLF in different segments, the first author
of this paper manually verified the detected RLFs and
counted the unique ones. It makes the distinct true
positive RLF count 29 and NOI count 13, which are
shown in TABLE 3(a) including distinct RLF counts
for every subject webpage.

These RLFs are then localized using the pro-
posed approach, the output contains a ranked list of
problematic HTML elements and its CSS property
(e,c) pairs. TABLE 3(b) shows that LOCALICSS
successfully localized 39 out of 42 RLFs. Other 3
RLFs of Subject ID 9, 14 and 17 respectively were not
localized by the tool. Manual investigation revealed
that these RLFs have no problematic CSS properties;
rather, they are missing a property that is causing
RLFs. For instance, in Subject ID 9, an Element
Protrusion (EP) is caused by text overflow, which is
missing the line-break property. The other two RLFs
also lack properties, which are out of scope for our
tool to detect. Additionally, RLF of Subject ID 8 was
not detected by the detection approach we relied on,
hence it is missing from localized RLFs section.

We manually inspected each generated (e, c) pair
to verify that (1) it can remove the original RLF if
we modify that CSS property (c), (2) it does not
introduce more RLFs when the detection module is
rerun. These two rules are considered as ground truth
for our first evaluation. If a pair meets both criteria, it
is categorized as Top-1, Top-3, Top-5 or Top-7 based
on its position in the generated ranked list. In TABLE
3(c), Top-1 indicates the first pair in the generated
list is the problematic pair for 45.2% of 42 RLFs. In
76.19% of the cases, one or all of the first three pairs
are likely the root cause of the RLF. Similarly, Top-
5 and Top-7 both achieve accuracies of 90.5% and
92.86%, respectively.

MRR for each of the Subject webpages is also cal-
culated and shown in TABLE 3(d). The results show

that MRRtotal of LOCALICSS is 68%, indicating that
the problematic pair is, on average, ranked among
top 2 in the generated list. Among the 20 subject
webpages, 14 webpages achieved an MRR of at least
50%, indicating significant localization performance.
Remaining webpages had an MRR between 20%
and 50%, indicating the correct localization appeared
lower in the ranked list. Through manual investiga-
tion of those webpages, it was found that webpages
having wrapping failure were not localized properly.
Some localized properties were distorting the layout
of the wrapped elements, resulting in no proper solu-
tion and thus not localizable. Manual localization by
our engineers also confirmed these cases as non RLFs.
After excluding such cases, we achieved an MRR of
a minimum 50% for all webpages except Subject ID
17, as shown in TABLE 3(e). On the contrary, for
Subject ID 17, MRR is 31% due to the developer’s
use of unnecessary float and position properties,
making layout adjustments more challenging.

P@K is measured in the similar way as MRR,
shown in TABLE 3(f) and (g). K=3 is optimal for this
measurement, as K=1 only considers the top result
like Top-1 and K=5, K=7 includes too many results,
making it less precise. Here P@3 for LOCALICSS
is 66.67%, showing that for any detected RLF, our
approach provides relevant properties in the first 3
positions 66.67% of the time. As some Wrapping
Element failures are not considered RLF by the en-
gineers, excluding those failures increases the P@3
to 77.13%. P@3 measures how many of the first 3
properties from the output can fix an RLF. Suppose
for an RLF, P@3 = 1.0 (100%), it means the RLF
can be repaired by using any of those three properties.
Thus P@3 shows the proportion of relevant (e,c) pairs
generated by our approach for any given RLF.
Answer to RQ2. We asked five front-end engineers,
each with two years of experience, to manually verify
the detected RLFs and localize their problematic
properties. They verified all 42 RLFs as TPs and
performed localization for them. These localized
properties for each RLF are considered as ground
truth for this evaluation.

TABLE 4(a) shows these results for all RLFs.
Since engineers may suggest different (e,c) pairs, we
took opinions from two engineers for each RLF. We
used that if both suggested (e, c)s were the same.
Otherwise, took an opinion from a third engineer.
If that differed too, we chose one from three of
them. Five cases required a third opinion, and
only one was resolved based on our decision. The
engineers marked 9 failures as NP (No Problem).
These detected issues were not considered failures
by them. For instance, when there is not enough

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

299

Table 3: Top-N Accuracy Results for LocaliCSS.

Subj
ID

(a) Detected Failures (b) Localized Failures (c) Top-N Accuracy
(d)

MRR (%)

(e)
MRR

w/o WE
(%)

(f)
P@3

(g)
P@3

w/o WE

Total Distinct RLF(s) EP EC VP WE SR Total
Distinct
RLF(s)

Top-1 Top-3 Top-5 Top-7
TP NOI

1 1 3 3 - 1 - - 4 3 4 4 4 87.50 87.50 0.92 0.92
2 1 - - - - - 1 1 1 1 1 1 100 100 1 1
3 2 - - - - 2 - 2 - 2 2 2 50 - 0.67 -
4 2 - 1 - 1 - - 2 - 2 2 2 50 50 0.5 0.5
5 3 - 1 1 1 - - 3 2 3 3 3 77.78 77.78 0.89 0.89
6 2 - 1 - - 1 - 2 1 1 2 2 62.50 62.50 0.5 0.5
7 1 - - - - 1 - 1 - - 1 1 20 - 0 -
8 0 - - - - - - 0 - - - - - - - -
9 2 2 2 - - 1 - 3 2 3 3 3 62.50 66.67 1 1
10 1 - - - 1 - - 1 - 1 1 1 50 50 0.67 0.67
11 2 - - - - 1 1 2 1 2 2 2 75 100 0.67 0.67
12 1 - - - - 1 - 1 - - 1 1 20 - 0 -
13 1 - - - 1 - - 1 1 1 1 1 100 100 1 1
14 1 3 2 - - 1 - 3 1 2 3 3 43.75 50 0.44 0.41
15 1 - 1 - - - - 1 1 1 1 1 100 100 1 1
16 1 - - - - 1 - 1 - 1 1 1 50 - 0.67 -
17 2 2 1 1 1 - - 3 - 2 3 3 31.25 31.25 0.56 0.56
18 3 - 1 - 2 - - 3 2 2 3 3 75 75 0.67 0.67
19 1 3 2 1 - 1 - 4 3 3 3 4 79.17 79.17 0.75 0.75
20 1 - 1 - - - - 1 1 1 1 1 100 100 1 1

Total 29 13 16 3 8 10 2 39 19
(45.2%)

32
(76.2%)

38
(90.5%)

39
(92.86%) 68% 76% 0.66

(66.67%)
0.77

(77.13%)

Note: Complete detection result can be viewed in LocaliCSS1 repository

horizontal space to fit every icon side-by-side in the
footer, they wrap to a new line, triggering wrapping
RLF. However, this behavior is typically intentional
by developers to fit icons on small screens. One
RLF from Subject ID 8 was manually detected but
not identified by the detection approach we relied on.
This makes one additional RLF manually localized.

TABLE 4(b) shows Top N accuracy results for the
effectiveness of our approach. We searched manually
localized (e,c)manual pairs in our generated ranked
list. If (e,c)manual is same as the first one (e,c)generated
in the list, it is categorized as Top-1, similarly Top-3,
Top-5 and Top-7 are also calculated. However, for
4 RLFs of Subject ID 9, 14, 17 and 19 respectively,
properties selected by engineers did not appear in
the generated list. The reasons for cases of Subject
ID 9, 14 and 17 as explained earlier. They lack an
additional property which the engineers identified, but
localization of these properties is beyond the tool’s
scope. For subject ID 19, our tool correctly localized
4 RLFs, of which two are categorized as Top-1 and
Top-3. The 3rd RLF is caused by padding of a
parent and its child. Engineers, with more contextual
knowledge, may know which one to give preference.
In this, LOCALICSS suggested modifying the par-
ent’s padding for its larger value, while engineers
preferred adjusting the child’s padding — both are
valid choices. This (e,c)generated was ranked 5th in
our generated list, causing this pair to be in Top-
5. For the 4th RLF, wrapping element, the tool
gave priority on changing the large width value of
the wrapped item. On the other hand, engineers

suggested changing the small margin value for each
item of the row, which is a more effective solution
than the automated one. However, properties from
the generated list can also give a fix.

In case of the No Problem (NP) marked failures,
we took Top N results of those from TABLE 3(c)
since the tool was able to localize them. We cal-
culated our result by excluding the RLF of Subject
ID 8, as it was not detected by LOCALICSS. This
makes a total of 42 RLFs. Among these, the tool
successfully found the problematic (e, c) pairs of 18
cases at the first one, making Top-1 accuracy 42.86%.
Top-3 accuracy is 73.81%, which is also satisfactory.
Finally, Top-5 and Top-7 show that LOCALICSS can
localize 90.48% accurately as developers do.

1 3 5 7

0

20

40

60

80

100

Top-N Rank

A
cc

ur
ac

y
(%

)

Compared to Manual Accuracy

Figure 4: Top-N Accuracy Comparison for Automated and
Manual Localization.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

300

Table 4: Top-N Accuracy Compared to Manual Localization.

Subject
ID

(a) Manual Localization (b) Top-N Accuracy
EP EC VP WE SR Total Distinct RLF(s) Top-1 Top-3 Top-5 Top-7

1 3 - 1 - - 4 3 4 4 4
2 - - - - 1 1 1 1 1 1
3 - - - 2 NP - 2 - 2 2 2
4 1 - 1 - - 2 - 2 2 2
5 1 1 1 - - 3 2 3 3 3
6 1 - - 1 - 2 1 1 2 2
7 - - - 1 NP - 1 - - 1 1
8 - 1 - - - 1 - - - -
9 3 - - 1 NP - 4 2 3 3 3
10 - - 1 - - 1 - 1 1 1
11 - - - 1 NP 1 2 1 2 2 2
12 - - - 1 NP - 1 - - 1 1
13 - - 1 - - 1 1 1 1 1
14 3 - - 1 NP - 4 1 2 3 3
15 1 - - - - 1 1 1 1 1
16 - - - 1 NP - 1 - 1 1 1
17 1 2 1 - - 4 - 2 3 3
18 1 - 1 (1 NP) - - 3 2 2 3 3
19 2 1 - 1 - 4 2 2 3 3
20 1 - - - - 1 1 1 1 1

Total 18 5 8 10 2 43
18

(42.86%)
31

(73.81%)
38

(90.48%)
38

(90.48%)

Figure 4 holds a comparative study between the
results of automated and manual localization using
two different metrics. The Top-N ranking for the
accuracy of our approach is similar to that compared
to manual localization. It indicates that the first
correct CSS property identified by our approach is
also the one proposed by the engineers. As N
increases, the accuracy of our approach continues to
improve, closely following the manual localization.
By Top-5 and Top-7, the results converge, reaching
around 90-95% accuracy. This similarity proves that
our approach successfully identifies problematic CSS
properties in a way that matches how developers
manually find them.

5.4 Threats to Validity

One threat to the validity of the results is the gener-
alizability of the webpages used in our study. To ad-
dress this concern, we selected webpages of varying
sizes and types, as shown in Table 2. This approach is
consistent with prior studies (Althomali et al., 2022;
Walsh et al., 2017a), which also focused on diverse
webpage samples.

Another possible threat comes from the detection
module, developed as Layout DR (Althomali et al.,
2022), which identifies RLFs. Since we rely on this
module for detection, its accuracy directly influences
the results. The ranked search set of CSS proper-
ties (Table 1) was derived from the top 20 queries

collected from two prominent platforms, verified by
experts. In the future, this set can be expanded by
incorporating a broader range of queries and addi-
tional platforms. While multiple keywords were used
to retrieve the relevant queries, increasing the variety
of keywords could strengthen this derivation process.

Finally, subjectivity remains a potential threat
when manually localizing RLFs. To reduce this, we
consulted two engineers for each RLF localization,
and in cases of disagreement, we took a third opinion
to ensure accuracy.

6 RELATED WORK

Research on detecting and repairing Responsive Lay-
out Failures (RLFs) has not yet been extensively
explored. Most of the work focuses on detecting
RLFs, while comparatively less focus on automated
approaches to repair them.

For webpages, Walsh et al. (Walsh et al., 2015)
first introduced a method to automatically detect
RLFs. They implemented a graph called Responsive
Layout Graph (RLG), which has HTML elements as
nodes and their relationships as edges. To identify
changes, their method compares between RLGs of
previous and current version of a webpage. They also
developed a tool called REDECHECK (Walsh et al.,
2017b) for this purpose. However, the limitation of

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

301

this approach is requiring a previous version available
for a webpage to detect regressions.

Addressing this issue, Walsh et al. (Walsh
et al., 2017a) later presented another version of
REDECHECK to check the layout of a responsive
web page against itself. It uses the RLG to search
for changing alignments and relationships among the
elements. It compares the relative positioning of
elements at different viewport widths. Thus, it does
not require any explicit oracle, e.g., mockup images
or a graph model of the page to compare against.
The study introduced five types of RLFs prevalent in
real-world web pages. These RLF types have been
extensively used in the following works, including
this paper. They are, Element Collision, Element
Protrusion, Viewport Protrusion, Small-Range and
Wrapping Elements. Section 2 shows these types with
their definitions. Although REDECHECK reliably
detects these RLFs in a responsive page, it does not
provide an automatic repair of a reported RLF.

To repair RLFs, Jacquet et al. (Jacquet et al.,
2021) presented an approach using linear program-
ming to repair such layout failures. Their technique
requires a developer to set constraint specifications
of the desired layout of a webpage. Moreover, it
only works with a fixed viewport of any webpage,
hence not suitable for responsive webpages. Later on,
Althomali et al. (Althomali et al., 2022) proposed a
tool called LAYOUT DR, which sources layouts from
either side of the affected viewport range, free from
RLFs. The layouts are scaled and transformed within
the failure range to create two potential “hotfixes”.
The entire layout is modified in this process, which
fixes the affected element but causes a change to
almost every other property value explicitly defined
by developers. However, localizing and addressing
only the CSS properties can be a more suitable option.

Apart from RLFs, detection and localization ap-
proaches have been used for other web application
failures. For instance, “Alignment Graph” (AG)
(Choudhary et al., 2013) models layout for detecting
cross-browser issues (XBIs). Mahajan et al. used
search-based (Mahajan et al., 2018b; Mahajan et al.,
2021) techniques to detect presentational failures and
localize HTML elements responsible for the failure.
Later on, Mahajan et al (Mahajan et al., 2018a)
worked on mobile friendly problems, such as font-
size, tap-target etc. They introduced an automated
method to localize CSS and generate patches to solve
those issues of a web page. Later on, a better approach
was proposed by (Le-Cong et al., 2021), which was
an automated repair approach for mobile friendly
problems based on meta-heuristic algorithms. This
approach assured both usability and aesthetics. Zhe

Liu et al. presented “Nighthawk” (Liu et al., 2023)
to detect GUIs with display issues and locate region
of the issue for guiding developers to fix the bug.
Research on web accessibility also uses detection and
localization approaches, such as (Chiou et al., 2024),
a novel technique to automatically detect reflow ac-
cessibility issues and localize the failure elements in
web pages for keyboard users. Apart from responsive-
ness, numerous techniques have been developed to
evaluate webpages from various perspectives, includ-
ing the automation of web testing through different
approaches (Leotta et al., 2024b; Leotta et al., 2024a;
Nama, 2024).

All of the techniques discussed in this section
tackle specific types of webpage failures. None of
them, however, worked on localizing RLFs as does
this paper. Another difference is, existing repair
approaches still lack complete usability as they are a
hotfix, not a permanent solution. Generating a repair
to be used as a patch and sent to production is yet
to be done. Thus, LOCALICSS, presented in this
paper, attempts to enhance the existing state-of-the-
art work on web page repair by doing its prior step,
localization.

7 CONCLUSION AND FUTURE
WORK

The paper introduces an approach to heuristically
search for HTML elements that are potentially re-
sponsible to cause an RLF. The involved CSS proper-
ties are then localized. By using the ranked properties
set for each RLF, it prioritizes the potential properties
based on their value and rank. The approach outputs a
set of elements and their properties that have the most
impact on an RLF.

Our approach localized the correct properties with
an accuracy of 45.2% to 92.86% for Top-1 to Top-
7 respectively. The approach also achieves an MRR
of 76%, indicating that the correct result is achieved
among the top 2 properties of the generated list.
Additionally, P@3 is 77.13%, meaning that the top
3 suggested properties are relevant to the developers
77.13% of the time. The comparison with manual
localization revealed that our suggested list contains
their preferred choices in Top-1 to Top-7 by 42.86%
to 90.48% respectively. Overall, these results indicate
that our approach can assist developers in localizing
any RLF, reducing the time and manual effort re-
quired, especially for complex webpage designs. By
identifying the relevant CSS properties, developers
can quickly verify and address the localized issues,
making the RLF repair process easier.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

302

In future, the research can be directed to de-
crease differences between manual and automated
localization. Increasing the Top-1 accuracy of our
approach will match the suggested properties with
the developers preferences more accurately. Better
localization will play a significant role in generating a
more suitable repair solution for the RLFs.

ACKNOWLEDGEMENTS

This research is supported by the Fellowship from
ICT Division, Government of Bangladesh; No-
56.00.0000.052.33.002.24-61, dated 06.06.2024.

REFERENCES

Althomali, I., Kapfhammer, G. M., and McMinn, P. (2019).
Automatic visual verification of layout failures in re-
sponsively designed web pages. In 12th IEEE Confer-
ence on Software Testing, Validation and Verification,
ICST 2019, Xi’an, China, April 22-27, 2019, pages
183–193. IEEE.

Althomali, I., Kapfhammer, G. M., and McMinn, P. (2022).
Automated repair of responsive web page layouts. In
15th IEEE Conference on Software Testing, Verifica-
tion and Validation, ICST 2022, Valencia, Spain, April
4-14, 2022, pages 140–150. IEEE.

Chiou, P. T., Winn, R., Alotaibi, A. S., and Halfond, W. G. J.
(2024). Automatically detecting reflow accessibility
issues in responsive web pages. In Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE 2024, ICSE ’24, pages
1811–1823, New York, NY, USA. ACM.

Choudhary, S. R., Prasad, M. R., and Orso, A. (2013). X-
PERT: accurate identification of cross-browser issues
in web applications. In Proceedings of the IEEE/ACM
35th International Conference on Software Engineer-
ing, ICSE 2013, San Francisco, CA, USA, May 18-26,
2013, pages 702–711. IEEE Computer Society.

Jacquet, S., Chamberland-Thibeault, X., and Hallé, S.
(2021). Automated repair of layout bugs in web pages
with linear programming. In 21st International Con-
ference on Web Engineering, ICWE 2021, Biarritz,
France, May 18-21, 2021, pages 423–439. Springer
International Publishing.

Kim, Y., Kim, M., and Lee, E. (2024). Noisy token removal
for bug localization: The impact of semantically con-
fusing misguiding terms. IEEE Access, 12:172396–
172409.

Le-Cong, T., Le, X. B. D., Huynh, Q. T., and Nguyen, P. L.
(2021). Usability and Aesthetics: Better Together
for Automated Repair of Web Pages . In IEEE
32nd International Symposium on Software Reliability
Engineering, ISSRE 2021, Wuhan, China, October
25-28, 2021, pages 173–183. IEEE Computer Society.

Leotta, M., Paparella, D., and Ricca, F. (2024a). Mutta:
a novel tool for e2e web mutation testing. Software
Quality Journal, 32(1):5–26.

Leotta, M., Ricca, F., Marchetto, A., and Olianas, D.
(2024b). An empirical study to compare three web test
automation approaches: Nlp-based, programmable,
and capture&replay. Journal of Software: Evolution
and Process, 36(5):e2606.

Liu, Z., Chen, C., Wang, J., Huang, Y., Hu, J., and Wang,
Q. (2023). Nighthawk: Fully Automated Localizing
UI Display Issues via Visual Understanding . IEEE
Transactions on Software Engineering, 49(01):403–
418.

Mahajan, S., Abolhassani, N., McMinn, P., and Halfond,
W. G. J. (2018a). Automated repair of mobile friendly
problems in web pages. In Proceedings of the 40th
International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 140–150. ACM.

Mahajan, S., Alameer, A., McMinn, P., and Halfond, W.
G. J. (2018b). Automated repair of internationaliza-
tion presentation failures in web pages using style
similarity clustering and search-based techniques. In
11th IEEE International Conference on Software Test-
ing, Verification and Validation, ICST 2018, Västerås,
Sweden, April 9-13, 2018, pages 215–226. IEEE
Computer Society.

Mahajan, S., Alameer, A., McMinn, P., and Halfond,
W. G. J. (2021). Effective automated repair of in-
ternationalization presentation failures in web appli-
cations using style similarity clustering and search-
based techniques. Software Testing, Verification and
Reliability, 31(1-2):e1746.

Nama, P. (2024). Integrating AI in testing automation: En-
hancing test coverage and predictive analysis for im-
proved software quality. World Journal of Advanced
Engineering Technology and Sciences, (13):01.

Rahman, S., Rahman, M. M., and Sakib, K. (2017).
A statement level bug localization technique using
statement dependency graph. In Proceedings of the
12th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2017,
Porto, Portugal, April 28-29, 2017, pages 171–178.
SciTePress.

Walsh, T. A., Kapfhammer, G. M., and McMinn, P. (2017a).
Automated layout failure detection for responsive web
pages without an explicit oracle. In Proceedings of
the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017, pages 192–202. ACM.

Walsh, T. A., Kapfhammer, G. M., and McMinn, P. (2017b).
Redecheck: an automatic layout failure checking tool
for responsively designed web pages. In Proceedings
of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017, pages 360–363. ACM.

Walsh, T. A., McMinn, P., and Kapfhammer, G. M. (2015).
Automatic detection of potential layout faults follow-
ing changes to responsive web pages (N). In 30th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015, pages 709–714. IEEE Com-
puter Society.

A Heuristic Approach to Localize CSS Properties for Responsive Layout Failures

303

