
Design of a Serious Game on Exploratory Software Testing to Improve
Student Engagement

Niels Doorn1,2 a, Tanja E. J. Vos1,3 b and Beatriz Marín3 c

1Open Universiteit, The Netherlands
2NHL Stenden University of Applied Sciences, The Netherlands

3Universitat Politècnica de València, Spain

Keywords: Software Testing Education, Exploratory Testing, Game Based Learning.

Abstract: Teaching software testing in computer science education faces challenges due to its abstract nature and stu-
dents’ focus on approaches using paradigms based on rationalism. Exploratory testing, which uses a paradigm
based on empiricism and employs reflective learning, is under-represented in computer science curricula. To
address this gap, game-based learning presents promising approaches to enhance engagement and foster criti-
cal thinking in software testing education. This position paper presents the design of a serious game to support
the teaching of exploratory software testing to improve the students’ engagement. The game integrates soft-
ware testing tours and uses Socratic questioning as scaffolding to promote deeper reflection-in-action, allowing
students to experience hands-on learning in software testing. Using a mapping review, this study identifies the
most effective gamification techniques for software testing education and principles of Socratic questioning.
Based on these findings, we designed a game that focusses on exploratory testing scenarios, where players
follow a tour-based test strategy on a system under test.

1 INTRODUCTION

Software testing is a crucial component of the soft-
ware development life cycle and a highly valued skill
in the industry. However, integrating software testing
effectively into Computer Science curricula has been
a challenge for educators (Garousi et al., 2020)(Scat-
alon et al., 2020).

Other studies investigated how students approach
testing, revealing that many adopt the so-called ‘de-
veloper approach’ rooted in a design paradigm based
on rationalism (Doorn et al., 2021)(Doorn et al.,
2023). This approach focusses on algorithmic prob-
lem solving and structured planning, often leading
to incomplete testing practices. This approach lacks
exploration and context awareness, which is essen-
tial to gain insight into software quality. To address
this, a paradigm shift based on empiricism is pro-
posed that encourages experimentation, asking ques-
tions, and critical thinking (Doorn et al., 2021)(Doorn
et al., 2023).

In this paper, we state our position that the sense-
making of students in learning testing within an

a https://orcid.org/0000-0002-0680-4443
b https://orcid.org/0000-0002-6003-9113
c https://orcid.org/0000-0001-8025-0023

empiricism-based paradigm can be effectively en-
hanced and supported by employing software testing
tours, scaffolded by Socratic questioning, through the
serious game we propose.

Software Testing tours (Bolton, 2009)(Kaner
et al., 1993) are testing heuristics that use metaphori-
cal "tours" to guide testers through different areas of
an application, helping them detect defects, improve
usability, and identify edge cases. Each tour serves as
a specific approach or perspective for examining the
software, such as concentrating on its features, data,
configuration, or user behaviour. For instance, the
Feature Tour is designed to help testers become famil-
iar with the application’s primary features, whereas
the Complexity Tour delves into the most complicated
portions of the system where defects are prone to oc-
cur. These tours motivate testers to think analytically,
systematically alter inputs and conditions, and inves-
tigate areas that might be neglected in other testing
methods. Testing tours prove to be highly effective
in exploratory testing due to their focus on creativity,
flexibility, and thorough evaluation of the software.

Socratic questioning (Paul and Elder, 2019) is a
pedagogical method that fosters critical thinking, re-
flective inquiry, and problem solving by challeng-
ing assumptions and encouraging deeper analysis. In
software testing, it complements empirical testing

806
Doorn, N., Vos, T. E. J. and Marín, B.
Design of a Serious Game on Exploratory Software Testing to Improve Student Engagement.
DOI: 10.5220/0013476200003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 806-813
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



by promoting exploration, iterative learning, and a
deeper understanding of system behaviour. By guid-
ing students to question their approaches and consider
alternative test scenarios, it aligns naturally with the
investigative nature of exploratory testing.

Serious games (Deterding et al., 2011) Facilitate
learning by simulating real-world scenarios, allow-
ing students to experiment and learn in a safe and
controlled environment. Moreover, serious games
offer personalised learning experiences, adapting to
the player’s skill level to maintain an optimal bal-
ance of challenge and ability to keep students en-
gaged and let them receive instant feedback, help-
ing them identify and correct errors in real time, and
ultimately enhancing their learning experience. In
general, gamification. has shown positive effects in
improving the teaching of complex topics (Dicheva
et al., 2015)(de Sousa Borges et al., 2014)(Caponetto
et al., 2014)

The main contribution of this position paper is
the design of a serious game we call BugOutbreak,
where students apply testing strategies through inter-
active game play, with Socratic questioning integrated
to stimulate critical thinking, and guided by software
testing tours.

In earlier work, we designed a learning activ-
ity based on Risk Storming using TestSphere (Bib,
2020) cards together with Socratic questioning us-
ing a digital tool to randomly select a Socratic ques-
tion.Although beneficial for learners, the design of
this teaching activity lacked sufficient elements to cre-
ate a fully immersive experience that is needed to be
useful as an effective educational instrument. In this
paper, we address this limitation by designing a seri-
ous game to support the learning of exploratory soft-
ware testing.

The paper is organised as follows. Section 2 states
our position on the use of a game we designed to teach
exploratory software testing. Section 3 details the de-
sign of the game. Section 4 presents strategies for
integrating the game into educational contexts. Sec-
tion 5 provides strategies for integration of the game
into education. Section 6 presents relevant related
work in the field. Finally, Section 7 concludes the
work.

2 HOW TO TEACH TESTING

In this section, we elaborate on the role of sensemak-
ing and Socratic questioning and argue why our pro-
posed game-based learning approach is well-suited to
support teaching testing according to the paradigm
based on empiricism.

Sensemaking is the cognitive process through
which individuals construct meaning from complex
and ambiguous situations (Odden and Russ, 2019).
In software testing, this involves developing an un-
derstanding of the system under test (SUT), identify-
ing potential issues, and iteratively refining the test-
ing strategies. Good testing requires testers to contin-
uously adapt their understanding based on empirical
observations.

In the context of learning, effective sensemaking
in testing involves cycles of hypothesis generation,
empirical observation, and reflection as depicted in
Figure 1.

Figure 1: The sensemaking cycle representing the dynamic
nature of sensemaking during testing.

Students must develop the ability to recognise pat-
terns, ask meaningful questions about software be-
haviour, and refine their mental models of the sys-
tem. However, without proper guidance, students
may struggle to engage in the necessary sensemaking,
leading to ineffective testing approaches that rely too
heavily on structured methodical techniques instead
of embracing the exploratory nature of the task.

To support the sensemaking in testing, we pro-
pose Socratic questioning as a scaffolding technique.
When applied to testing, Socratic questioning guides
students to challenge their assumptions about the
SUT, explore different strategies, and reflect on their
findings.

High-level examples of Socratic questions rele-
vant to testing include: What assumptions are we
making about the expected behaviour of the system?
What happens if we interact with this feature uninten-
tionally? How does this component behave under ex-
treme or unexpected inputs? Finally, how do we know
that this issue is critical, and what additional evidence
can we gather?

To guide students into exploratory testing, we pro-
pose the use of software testing tours.

Given these theoretical foundations, our hypoth-
esis is that a game-based learning approach integrat-
ing Socratic questioning will foster an effective sense-
making process aligned with the paradigm based on
empiricism for test education. The key advantages of
this approach include:

Active Engagement in Sensemaking. The game re-
quires players to continuously observe, hypothe-
sise, and experiment, ensuring that sensemaking
remains active and iterative.

Design of a Serious Game on Exploratory Software Testing to Improve Student Engagement

807



Guided Reflection Through Socratic Questioning.
By embedding Socratic prompts, students receive
ongoing guidance that challenges their assump-
tions and encourages deeper inquiry.

Reinforcement of Empirical Testing Principles.
Players experience first-hand how to adapt their
strategies based on real-time observations and
feedback.

Guidance into Exploratory Testing. The use of
software testing tours helps students follow dif-
ferent testing strategies.

Collaborative Learning Opportunities. The coop-
erative mechanics of the game allow students to
learn from the testing approaches of each other.

By combining these elements into a structured yet
flexible learning experience, our approach addresses
key challenges in software testing education and sup-
ports the development of critical skills needed for ef-
fective exploratory testing.

In the following sections, we detail the design and
implementation of our game and discuss how it can
be integrated into educational contexts to maximise
its impact on student learning.

3 THE DESIGN OF OUR GAME

3.1 Conceptual Design

The goal of the game is for players to collaboratively
test a SUT in order to evaluate the quality. Each
player will be assigned a different testing tour. Each
of these tours focusses on a different aspect of the sys-
tem and comes with a set of relevant Socratic ques-
tions to support students in designing tests. Examples
of tours and their Socratic Questions are in Table 1.

In each turn, a player is presented with a Socratic
question related to the tour assigned to that player.
As players progress through their tours, they use the
SUT to identify possible issues. This is done by in-
teracting with the SUT simulated in the game. The
SUT will generate a response that the player can ver-
ify in order to determine whether the SUT behaves
according to expectations. If it does, the player did
not find an issue. If not, potential issues have been
found. In both cases, the player has advanced in test-
ing the SUT. Points are awarded for successfully iden-
tifying issues or defects. These scores are displayed
individually on the game leaderboard, adding a com-
petitive aspect to the collaborative experience. The
players also learn from each other’s actions as they
follow different tours.

Students win if they successfully identify enough
issues before time or resources run out. The student
with the highest score is the winner. The game is lost
if too many critical bugs remain unidentified, causing
a cascade of system failures, or if time runs out be-
fore the software is fully tested. Individual scores can
be used as personalised feedback for players. After
the game is finished, there is the option to evaluate
each other and their own performance. The flow of
the game is depicted in Figure 2.

3.2 Typical Game Play Scenario

Based on the game design, a typical game play sce-
nario with three players could be as follows.

The SUT in this example is a program that calcu-
lates the average age of customers who booked vaca-
tions with a travel company. It retrieves data from a
remote server in a .txt file where each line contains
the customer’s name and date of birth. The objec-
tive of the players is to test and verify the programs
ability to handle various data inputs, identify critical
bugs, and ensure accurate results. The three players in
this session are randomly assigned the following test-
ing tours: Player 1 takes the Data Tour, focussing on
input validation; Player 2 takes the Feature Tour, fo-
cussing on core functionality; and Player 3 takes the
Back Alley Tour, exploring rarely tested areas.

Player 1 begins by reviewing known details about
the program and identifies data validation as a criti-
cal area for testing. Prompted by the Socratic ques-
tion, "What assumptions have you made on the form
and the values of the data that the system needs to
process?". This question stimulates the player to con-
sider using invalid date formats. Player 1 simulates
inputs containing valid names but invalid ages (e.g.,
"John Doe, -5" or "Alice Smith, abc"), as well
as lines missing age information (e.g., "Jane Doe,").
The SUT attempts to calculate the average, but throws
errors or returns an incorrect result due to the invalid
data. This allows Player 1 to identify a critical bug,
earning points for detecting it and expanding the test
coverage.

Player 2 takes the next turn, focussing on the core
functionality of the program. After reviewing the pur-
pose of SUT, Player 2 reflects on the Socratic ques-
tion, "What happens if a feature is misused, either
intentionally or accidentally?". This question makes
the player think about how to misuse the system and
helps the player to come up with a test in which dif-
ferent input files are uploaded to the system. Player
2 then tests the SUT by uploading files with varying
numbers of valid entries, such as 10, 100 (maximum
capacity), and an edge case of an empty file. The SUT

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

808



Table 1: Software testing tours from (Bolton, 2009).

Tour Type Description and Example Socratic Questions

Feature Explore core features of the software, testing their functionality and integration with other features.
Example: "What is the primary purpose of this feature? How does it interact with other parts of the
system?"

Data Input various types of data (valid, invalid, edge cases) to uncover issues with data handling and val-
idation. Example: "What kinds of data is this system expected to handle? How might it respond to
unexpected input?"

Back Alley Focus on testing obscure or rarely used features to identify hidden bugs. Example: "What features or
pathways are less likely to be explored? Why might they be overlooked?"

Money Test the most critical revenue-generating features of the system to ensure they perform flawlessly. Ex-
ample: "What features are most critical to the system’s success? How could failures in these areas
affect the system’s value?"

Bad-
Neighbourhood

Test areas of the software that have historically had many bugs or stability issues. Example: "What
areas of the system have caused problems in the past? What underlying factors might contribute to
instability here?"

Figure 2: Simplified game flow of the cooperative software testing game for exploratory testing.

handles smaller inputs correctly but throws an excep-
tion for the empty file, revealing an issue with edge
case handling. Player 2 documents this bug and earns
points for increasing test coverage and identifying an-
other critical issue.

Player 3 takes a different tour, focussing on rarely
tested or obscure areas of the system. Guided by the
Socratic question, "What assumptions are we making
about the reliability of these features?". This makes
the player hypothesise that the feature might not
have been tested with data containing special char-
acters. The player tests the SUT by uploading a file
with names containing special characters (e.g., "José
Álvarez, 34") and another corrupted file with ran-
dom binary content. The SUT processes the file with
special characters correctly but fails to handle the cor-
rupted file. Player 3 documents the issue and suggests
an enhancement for more informative error messages,
earning points for identifying a rare issue, and provid-
ing actionable feedback.

After the initial round, the players collaborate to
discuss their findings. Player 1 highlights the need for
improved input validation, Player 2 emphasises bet-

ter error handling for edge cases like empty files, and
Player 3 suggests focussing on server interaction and
non-standard file formats.

As the game progresses, players identify several
critical bugs and gain insight into the SUT’s interac-
tions with the remote server. They ultimately win the
game by achieving sufficient test coverage and iden-
tifying all critical issues before running out of time
or resources. A scoreboard shows individual scores
based on contributions and a collaborative reflection
reinforces the importance of teamwork and shared
learning.

3.3 Development of the Game

For the development of the game, we are consider-
ing both a physical game and digital options, and a
hybrid form. While a digital variant has the benefit
of supporting multiple releases through one channel,
the use of physical games in Computer Science pro-
grammes has the benefit of enabling direct collabora-
tion and avoiding distractions. The game design sup-
ports both options and can be relatively easily con-

Design of a Serious Game on Exploratory Software Testing to Improve Student Engagement

809



structed as a prototype game using paper cards and a
printable game board. Once the game development is
complete, a final offline version can be produced and
distributed through existing channels to universities.
To enable some parts that are easier to create digi-
tally, a hybrid variant is also considered. This would
mean that players would use both the game board and
cards, combined with an app on their phone to enable
a more comprehensive evaluation of tests and to sup-
port custom feedback.

4 INTEGRATION INTO
EDUCATIONAL CONTEXT

One of the complications of integrating software test-
ing into existing computer science courses, such as
introductory programming or software engineering
courses, is the lack of resources available to lectur-
ers. Therefore, this game is designed with this in mind
and integration does not require a complete overhaul
of existing courses. It can be integrated into different
forms of education. For example, it could be part of a
tutorial on software testing, it could be recommended
to students as part of a group work assignment, or it
could be used as a classroom activity during a testing
workshop.

The game is designed as a digital product, mak-
ing the dissemination of new releases possible and the
large-scale distribution feasible. This means that the
game can be used in many different learning environ-
ments.

The game is designed as a supportive tool for
teaching and learning exploratory testing, particularly
for computer science students. Given the complexity
of exploratory testing, the game focusses on practi-
cal learning experiences and is not suitable for sum-
mative evaluation. Summative assessments typically
measure learning outcomes at the end of a course or
unit and are often used in formal, high-stakes situa-
tions (Black and Wiliam, 1998). Since the game is not
designed to be a safe assessment environment, mean-
ing that it does not provide standardised controlled
conditions to evaluate all students uniformly, it is un-
suitable for summative purposes.

However, the game can serve multiple less formal
assessment purposes in educational contexts.

It can be used as a diagnostic assessment tool at
the start of a course to identify student prior knowl-
edge, misconceptions, and skill gaps in exploratory
testing, helping instructors tailor their teaching strate-
gies (Popham, 2009).

As a formative assessment, the game offers on-
going feedback throughout the learning process, al-

lowing instructors to observe students’ strategies in
real-time and provide guidance to improve their un-
derstanding and application of testing methods.

The game also supports self-assessment, empow-
ering students to reflect on their performance, identify
areas for improvement, and develop critical thinking
skills, essential in exploratory testing (Boud, 2013).

Furthermore, the game facilitates performance-
based assessment, as it simulates real-world test-
ing tasks, such as identifying bugs without prede-
fined scripts, allowing students to demonstrate active
problem-solving and decision-making skills.

Finally, it is suitable for informal assessments,
where instructors can observe student progress in a
low pressure environment, providing immediate in-
sight into their learning (Bell and Cowie, 2001).

5 INTEGRATION INTO
EDUCATION

This game has been designed to enable seamless in-
tegration without necessitating a comprehensive re-
design of existing curricula. It can be incorporated
into various educational settings. For example, it
could serve as part of a tutorial on software testing,
be suggested for group assignments, or be used as a
classroom activity during hands-on testing sessions.

Due to the complexity of exploratory tests, the
game emphasises practical learning tasks and is not
suitable for summative evaluation. Summative as-
sessments are generally used to evaluate student
learning after completing a course or unit and are of-
ten used in formal, critical scenarios (Black and Wil-
iam, 1998). Since the game is not set up to provide
standardised controlled conditions for consistently as-
sessing students, it is not designed for summative use.
However, within educational contexts, the game is
suitable for various informal assessment roles. It can
be employed as a diagnostic assessment tool at the
course onset to detect students’ prior understanding,
misconceptions, and skill deficiencies in exploratory
testing, helping instructors adapt their pedagogical
approaches (Popham, 2009).

As a formative assessment, the game provides
continuous feedback during the learning journey, al-
lowing instructors to monitor students’ approaches in
real time and offer advice to improve their compre-
hension and use of testing techniques (Sadler, 1989).
The game also supports self-assessment, empowering
students to reflect on their performance, identify ar-
eas for improvement, and develop critical thinking
skills, essential in exploratory testing.In addition, the
game supports performance-based assessment, as it

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

810



simulates authentic testing tasks, such as identify-
ing bugs without predetermined instructions, allow-
ing students to exhibit active problem-solving and
decision-making abilities.Lastly, it is appropriate for
informal assessments, where educators can track stu-
dent progress in a stress-free setting, providing imme-
diate insights into their learning.

5.1 Evaluation Metrics

The study aims to measure students’ autotelic expe-
riences using a survey based on Sillaots’ design (Sil-
laots and Jesmin, 2016). We will use a survey includ-
ing open-ended questions for personal reflections,
with demographic queries, and the participants’ game
scores to gather additional information.

To evaluate the impact of the game on the learn-
ing effectiveness of exploratory testing and the fu-
ture intention to use the game, we will use well-
known questionnaires such as the System Usability
Scale (SUS) (Brooke, 1996) and the Game Expe-
rience Questionnaire (GAMEX) (IJsselsteijn et al.,
2013) to collect perceptions of the lecturers using the
game.

6 RELATED LITERATURE

In a previous study (Doorn et al., 2024) on the need
to shift from a paradigm based on rationalism to a
paradigm based on empiricism in the education of
software testing with the help of gamification, we re-
viewed the literature. on serious games in computer
science education, specifically focussing on software
testing. The results indicated that gamification tech-
niques, such as real-world scenarios, immediate feed-
back, and collaboration, have proven to be effective in
computer science education. It emphasises the impor-
tance of competitive, collaborative, and inquiry-based
learning methods in enhancing engagement and criti-
cal thinking in students.

The existing body of knowledge shows that while
gamification and game-based learning are being ap-
plied in software testing education, none incorporate
Socratic questioning. These two aspects, game-based
learning and Socratic questioning, are key elements
in the design of our game. To extend the litera-
ture review, we performed an additional mapping re-
view (Kitchenham et al., 2011) of recent literature fo-
cused on two additional aspects: the use of gamifi-
cation and game-based learning in exploratory testing
and suitable frameworks to use in the evaluation of
game design. The search process gathered 172 can-
didate articles, and we selected 17 articles applying

the inclusion criteria. The complete protocol can be
found online1.

6.1 Gamification and Game Based
Learning on Exploratory Testing

The integration of gamification into educational set-
tings, particularly in the field of exploratory software
testing, has been shown to improve engagement and
improve learning outcomes. For example, (Yan et al.,
2019) demonstrated that gamification improves stu-
dent participation in assessments, creating a more in-
teractive learning environment. Similarly, the use
of structured gamified strategies to teach exploratory
testing, as described in (Costa and Oliveira, 2019),
makes the learning process more hands-on and effec-
tive for students. In addition, the study by (Blanco
et al., 2023) further supports the positive impact of
gamification on software testing education, highlight-
ing improvements in student comprehension and mo-
tivation when applying testing frameworks.

Frameworks combining gamification with ex-
ploratory testing, such as those in (Costa and Oliveira,
2020), improve the learning process by encourag-
ing active participation and practical experimentation.
Real-world experiences in teaching exploratory test-
ing through gamified methods, reported by (Lorincz
et al., 2021), highlight increased student engagement.

Despite these positive outcomes, there are chal-
lenges in implementing gamification, as outlined
in (McCallister, 2019). These include technical diffi-
culties in integrating gamification into existing learn-
ing platforms and balancing the fun aspect with ed-
ucational objectives. Important for our objective are
the study results that show that gamification contin-
ues to play an important role in student engagement,
particularly in fostering active learning environments,
as highlighted by (Adams, 2019). In addition, the
use in assessments, as explored by (Zainuddin et al.,
2023), improves motivation by making the learning
process more interactive and aligned with learning ob-
jectives such as the SOLO taxonomy (Biggs and Col-
lis, 1982).

6.2 Frameworks for Game Design

Educational games around testing often draw on es-
tablished frameworks to create engaging and effective
learning experiences. The principles of James Paul
Gee (Gee, 2003) emphasise the importance of ac-
tive learning, critical thinking, and situated meaning.
These principles can guide students to actively ex-

1https://research.nielsdoorn.nl

Design of a Serious Game on Exploratory Software Testing to Improve Student Engagement

811



plore software systems and develop testing hypothe-
ses, much as testers do when solving real-world prob-
lems. Reflection and analysis of errors further re-
inforce learning through iterative testing processes,
making these principles particularly useful for our ex-
ploratory testing games.

The Game-Based Learning (GBL) frame-
work (Ma et al., 2011)(Squire, 2011) emphasises
the need for clear goals, immediate feedback, and
challenge-reward structures. Immediate feedback on
test progress ensures that players remain engaged,
while progressively difficult testing scenarios provide
a rewarding sense of accomplishment as they improve
their skills.

Flow theory (Nakamura et al., 2009), focusses
on maintaining player immersion by matching game
challenges with player abilities. In testing games, this
can be achieved by adjusting the difficulty of the bug
or the complexity of the system to ensure a continu-
ous state of flow. Clear goals and immediate feedback
loops are essential to keep players engaged, allowing
them to feel control over their actions as they explore
and test software systems.

The Cognitive Apprenticeship model (Dennen and
Burner, 2008) highlights learning through guided
practice, reflection, and scaffolding. This scaffolding
process mirrors how real-world testing skills are de-
veloped through practice and feedback. Scaffolding is
also part of the 4C/ID model (Van Merriënboer et al.,
2002). Both models emphasise learning through par-
ticipation in authentic real-world tasks, with a focus
on complex skill development.

Finally, Self-Determination Theory (SDT) (Deci
and Ryan, 2012) and the LM-GM model (Lim et al.,
2015) emphasise autonomy, competence, and relat-
edness, with game mechanics designed to align with
learning objectives. Our game allows players to ex-
plore systems and develop competence by solving in-
creasingly complex testing challenges.

7 CONCLUSION

Testing education is flawed because it follows
paradigms based on rationalism while neglecting em-
piricism, which emphasises learning through experi-
ence and observation. In this position paper, we argue
that game-based learning using software testing tours
and Socratic questioning can improve the teaching of
empirical testing.

To support this position, we conducted a mapping
review and found that there is work on game-based
learning for software testing, and specifically for ex-
ploratory testing, but they face challenges in balanc-

ing the fun activities with educational goals. To over-
come these challenges, we discuss the frameworks for
game design and evaluation of student engagement
that we use.Based on this, we presented the design
of a game to support the teaching of exploratory soft-
ware testing. Using different software testing tours
and Socratic questions to scaffold their testing ef-
forts, players simulate real-world challenges, in or-
der to create an engaging experience to train their ex-
ploratory software testing skills.

Immediate future work is related to the develop-
ment of the game. Future work also includes the eval-
uation of the game in software engineering and soft-
ware testing courses.

ACKNOWLEDGEMENTS

This work was funded by ENACTEST - European in-
novation alliance for testing education (ERASMUS+
Project number 101055874, 2022-2025).

REFERENCES

(2020). Risk-storming. [Online; accessed 13. Jan. 2024].
Adams, S. (2019). The Role of Gamification in the Facili-

tation of Student Engagement: An Exploratory Appli-
cation. PhD thesis, University of Stellenbosch.

Bell, B. and Cowie, B. (2001). Formative assessment and
science education. Springer Science & Business Me-
dia.

Biggs, J. B. and Collis, K. F. (1982). Evaluating the Quality
of Learning: The SOLO Taxonomy (Structure of the
Observed Learning Outcome). Academic Press, New
York.

Black, P. and Wiliam, D. (1998). Inside the black box: Rais-
ing standards through classroom assessment. Kings
College London School of Education London.

Blanco, R., Trinidad, M., and Suarez-Cabal, M. (2023). Can
gamification help in software testing education? find-
ings from an empirical study. Journal of Systems and
Software, 200:111647.

Bolton, M. (2009). Of testing tours and dashboards. Ac-
cessed: 2024-10-03.

Boud, D. (2013). Developing student autonomy in learning.
Routledge.

Brooke, J. (1996). Sus: A quick and dirty usability scale. In
Usability evaluation in industry, pages 189–194. Tay-
lor & Francis.

Caponetto, I., Earp, J., and Ott, M. (2014). Gamification
and education: A literature review. In European Con-
ference on Games Based Learning, volume 1, page 50.
Academic Conferences Int. Ltd.

Costa, I. and Oliveira, S. (2019). A systematic strategy
to teaching exploratory testing using gamification. In

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

812



14th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pages
307–314. scitepress.

Costa, I. and Oliveira, S. (2020). The use of gamification to
support the teaching-learning of software exploratory
testing: An experience report. In IEEE Frontiers in
Education Conference (FIE).

de Sousa Borges, S., Durelli, V., Reis, H., and Isotani, S.
(2014). A systematic mapping on gamification applied
to education. In 29th ACM SAC, pages 216–222.

Deci, E. and Ryan, R. (2012). Self-determination the-
ory. Handbook of theories of social psychology,
1(20):416–436.

Dennen, V. and Burner, K. (2008). The cognitive appren-
ticeship model in educational practice. In Handbook
of research on educational communications and tech-
nology, pages 425–439. Routledge.

Deterding, S., Dixon, D., Khaled, R., and Nacke, L. (2011).
From game design elements to gamefulness: defin-
ing" gamification". In 15th international academic
MindTrek conference: Envisioning future media en-
vironments, pages 9–15.

Dicheva, D., Dichev, C., Agre, G., and Angelova, G. (2015).
Gamification in education: A systematic mapping
study. Journal of educational technology & society,
18(3):75–88.

Doorn, N., Vos, T., and Marín, B. (2024). From rational-
ism to empiricism in education of software testing us-
ing gamification. In 18th INTED, pages 3586–3595.
IATED.

Doorn, N., Vos, T., Marín, B., Passier, H., Bijlsma, L., and
Cacace, S. (2021). Exploring students’ sensemaking
of test case design. an initial study. In 21st Int. Con-
ference on Software Quality, Reliability and Security
Companion, pages 1069–1078. IEEE.

Doorn, N., Vos, T. E., and Marín, B. (2023). Towards un-
derstanding students’ sensemaking of test case design.
Data & Knowledge Engineering, page 102199.

Garousi, V., Rainer, A., Lauvås Jr, P., and Arcuri, A.
(2020). Software-testing education: A systematic lit-
erature mapping. Journal of Systems and Software,
165:110570.

Gee, J. P. (2003). What video games have to teach us
about learning and literacy. Computers in entertain-
ment (CIE), 1(1):20–20.

IJsselsteijn, W., de Kort, Y., and Poels, K. (2013). The game
experience questionnaire. Technical report, Technis-
che Universiteit Eindhoven.

Kaner, C., Falk, J., and Nguyen, H. Q. (1993). Testing Com-
puter Software. Wiley, 2nd edition.

Kitchenham, B., Budgen, D., and Brereton, O. (2011). Us-
ing mapping studies as the basis for further research–a
participant-observer case study. Information and Soft-
ware Technology, 53(6):638–651.

Lim, T., Carvalho, M., Bellotti, F., Arnab, S., De Freitas,
S., Louchart, S., Suttie, N., Berta, R., and De Gloria,
A. (2015). The lm-gm framework for serious games
analysis. Pittsburgh: University of Pittsburgh.

Lorincz, B., Iudean, B., and Vescan, A. (2021). Experience
report on teaching testing through gamification. In 3rd

Int. Workshop on Software Testing Education, pages
15–22. ACM.

Ma, M., Oikonomou, A., and Jain, L., editors (2011). Seri-
ous Games and Edutainment Applications. Springer,
London.

McCallister, A. (2019). The Technical Challenges Of Im-
plementing Gamification: A Qualitative Exploratory
Case Study. PhD thesis, Capella University.

Nakamura, J., Csikszentmihalyi, M., et al. (2009). Flow
theory and research. Handbook of positive psychol-
ogy, 195:206.

Odden, T. and Russ, R. (2019). Defining sensemaking:
Bringing clarity to a fragmented theoretical construct.
Science Education, 103(1):187–205.

Paul, R. and Elder, L. (2019). The thinker’s guide to So-
cratic questioning. Rowman & Littlefield.

Popham, W. J. (2009). Assessment literacy for teachers:
Faddish or fundamental? Phi Delta Kappan Interna-
tional.

Sadler, R. D. (1989). Formative assessment and the de-
sign of instructional systems. Instructional Science,
18(2):119–144.

Scatalon, L. P., Garcia, R., and Barbosa, E. (2020). Teach-
ing practices of software testing in programming ed-
ucation. In Frontiers in Education Conference (FIE),
pages 1–9. IEEE.

Sillaots, M. and Jesmin, T. (2016). Multiple regression anal-
ysis: Refinement of the model of flow. In 10th Eu-
ropean Conference on Games Based Learning, pages
606–616.

Squire, K. (2011). Video Games and Learning: Teaching
and Participatory Culture in the Digital Age. Teachers
College Press, New York.

Van Merriënboer, J., Clark, R., and De Croock, M. (2002).
Blueprints for complex learning: The 4c/id-model.
Educational technology research and development,
50(2):39–61.

Yan, Y., Hooper, S., and Pu, S. (2019). Gamification and
student engagement with a curriculum-based mea-
surement system. International Journal of Learning
Analytics and Artificial Intelligence.

Zainuddin, Z., Alba, A., and Gunawan, T. (2023). Im-
plementation of gamification and bloom’s digital
taxonomy-based assessment: A scale development
study. Interactive Technology and Smart Education,
20(4):512–533.

Design of a Serious Game on Exploratory Software Testing to Improve Student Engagement

813


