
Influence of Quantization of Convolutional Neural Networks on Image
Classification of Pollen-Bearing Bees

Tiago Mesquita Oliveira1, José Maria Monteiro1, José Wellington Franco2 and Javam Machado1

1Computer Science Department, Federal University of Ceará, Brazil
2Federal University of Ceará, Crateús, Brazil

Keywords: Pollen Bearing Bees, Deep Learning, Quantization.

Abstract: Automatic recognition of pollen-carrying bees can provide important information about the operating condi-
tions of bee colonies. It can also show the intensity of pollination activity, a fundamental aspect for many
plant species and of great commercial interest for agriculture. This work analyzes fourteen deep convolutional
neural network models for classifying pollen-carrying and non-pollen-carrying bees in images obtained at the
hive entrance. We also analyze how the quantization process influences these results. Quantization allows you
to reduce the inference time and the size of models because it performs calculations and stores numbers in a
lower-precision structure. Due to the everyday use of embedded systems to obtain this image with memory
and processing space restrictions, quantized models can be advantageous. We show that improving the infer-
ence time and/or the model’s size is possible without decreasing the accuracy, precision, recall, F1-score, and
false positive rate performance metrics.

1 INTRODUCTION

Agricultural production that depends on pollinating
animals such as bees has quadrupled in the last 5
decades (Food and Agriculture Organization of the
United Nations, 2016). In this way, they are crucial
for agriculture and human existence (Rodriguez et al.,
2018). Bees are probably the most important pollina-
tors in the world and ensure the stability of the ecosys-
tem (Stojnić et al., 2018).

In addition to pollination, bees produce honey,
royal jelly, propolis, pollen, and beeswax. Each of
these substances brings nutritional or health benefits.
They also behave in complex social ways, includ-
ing hierarchy, roles, schedules, and interactions. To
understand these behaviors, it is necessary to make
meticulous observations and records. Inspecting the
activities of pollen-producing bees can be beneficial
not only for beekeepers, but also for agriculture, ecol-
ogy, and biology (Zacepins et al., 2015). For beekeep-
ers, the number of honey bees that leave and enter a
hive and the number of honey bees that bring pollen
are the most important indicators of a hive’s health.

Observation of bee activity began to be carried
out manually by bee specialists, being a very time-
consuming and expensive task that requires long peri-

ods of observation and, sometimes, specific knowl-
edge to be meaningful. In (Berkaya et al., 2021),
the authors reported the extreme difficulty of obtain-
ing accurate records through counts made at the en-
trance to the hive. However, conducting daily hive in-
spections can be detrimental to the entire bee colony.
Frequent disturbances serve as a source of stress and
create unease within the swarm. To prevent un-
controlled swarming, it is essential to adopt a non-
invasive method capable of monitoring the health of
the bee colony without the need to open the hive.

In recent years, small embedded systems for auto-
matic monitoring of bee health have become increas-
ingly accessible. These systems typically incorporate
modules for bee counting and sensors to monitor tem-
perature, humidity, and hive weight changes. Further-
more, this technological advancement enables the in-
tegration of imaging sensors, which require signifi-
cant computational resources, into low-cost devices.
In this context, computer vision provide a framework
for automatically analyzing insect images, providing
valuable new insights (Yang and Collins, 2019).

In this work, we evaluate fourteen deep convo-
lutional neural network models for classifying bees
carrying pollen versus those not carrying pollen in
images captured at the hive entrance. Additionally,

Oliveira, T. M., Monteiro, J. M., Franco, J. W. and Machado, J.
Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees.
DOI: 10.5220/0013475700003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 147-157
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

147



we examine the impact of the quantization process
on these results. Quantization can reduce inference
time and model size by performing calculations and
storing numbers in a lower-precision format. Given
the frequent use of embedded systems for image ac-
quisition, which are often constrained in memory and
processing capacity, quantized models can offer sig-
nificant advantages. Our findings demonstrate that, in
the evaluated dataset, it is possible to enhance infer-
ence time and/or model size without compromising
the performance metrics, including accuracy, preci-
sion, recall, F1-score, and false positive rate (FPR).

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work. Section 3 pro-
vides an overview of the key concepts utilized in this
study. Section 4 presents the experiments and their
results, while Section 5 concludes with the final re-
marks and insights.

2 RELATED WORK

Babic et al. (Babic et al., 2016) proposed a simple
and non-invasive system for detecting pollen-carrying
honey bees in surveillance video captured at the hive
entrance. The method operates in real time on embed-
ded systems colocated with the hive. It employs tech-
niques such as Background Subtraction, Color Seg-
mentation, and Morphological operations for bee seg-
mentation. The segmented images are then catego-
rized into two classes: bees with pollen and bees with-
out pollen. For the classification task, a nearest mean
classifier was utilized, relying on a straightforward
descriptor based on color variations and eccentricity
features. The system achieved a correct classification
rate of 88.7%, using 50 training images from a custom
in-house dataset.

Stojnić et al. (Stojnić et al., 2018) analyze some
of the methods for detection of pollen bearing honey
bees in images obtained at hive entrance. The pro-
posed approach is divided into two parts. In the
first part the authors used two segmentation meth-
ods based on color descriptors to segment honey bees
from images. In the second part, they used these seg-
ments to classify bees into two classes with or without
pollen. Classification is performed by Support Vec-
tor Machines (SVM) trained on variations of VLA-
Decoded and SIFT descriptors. For the classification
task, the proposed method was evaluated using Area
Under a Curve (AUC), obtaining a score of 91.5% for
classification on a dataset of 1000 images acquired at
the hive entrance.

Rodriguez et al. (Rodriguez et al., 2018) used an
onboard system to film bees entering the hive. These

recordings were later cut and transformed into images
of two classes of bees with and without pollen. In
the classification task, three classic machine learning
algorithms were used: K-Nearest Neighbor (KNN),
Naive Bayes statistical, and SVM with linear and non-
linear kernel functions. Furthermore, two shallow
Convolutional Neural Network (CNN) models with
one and two layers and three deep models (VGG16,
VGG19, and ResNet50) were used. The comparison
was also made using three color variations. The best
accuracy results were for SVM with PCA (Principal
Component Analysis) preprocessing technique using
the Gaussian feature map at 91.16% in classical al-
gorithms, 96.4% in shallow models for one and two
layers, and 90.2% for deep models with VGG19.

Sledevic et al. (Sledevič, 2018) tested the classi-
fication of images of bees with or without pollen by
testing CNN from 1 to 3 hidden layers and up to 15
filters in one layer and filter sizes from 15x15 to 3x3
to create low-cost implementation in an FPGA (field-
programmable gate array). The three hidden layers
of CNN were selected as a trade-off between perfor-
mance and the number of operations required, with an
accuracy of 94%.

Yang and Collins et al. (Yang and Collins, 2019)
introduced a new model which applies deep learn-
ing techniques to pollen sac detection and measure-
ment on honeybee monitoring video. The outcome of
the proposed model is a measurement of the number
of pollen sacs being brought to the beehive, so that
beekeepers will not need to open beehives frequently
to check food storage. The pollen sacs are detected
on individual bee images which are collected using a
bee detection model on the entire video frame. The
dataset used in the experiments consists of 1,400 im-
ages, including 1,200 images of pollen-carrying bees
and 200 images of non-pollen-carrying bees. The pro-
posed method for pollen detection was built using a
deep convolutional neural network (CNN). The au-
thors used a faster RCNN architecture with a VGG16
core network. The trained network can also detect
whether a bee is carrying pollen or not, allowing it
to be counted, and is also combined with a tracking
model. The work demonstrated a 93% classification
rate (whether a bee is carrying pollen or not).

Ngo et al. (Ngo et al., 2021) presented an efficient
method for automatically monitoring the pollen for-
aging behavior and environmental conditions through
an embedded imaging system. The imaging sys-
tem uses an off-the-shelf camera installed at the bee-
hive entrance to acquire video streams that are pro-
cessed using the developed image processing algo-
rithm. A lightweight real-time object detection and
deep learning-based classification model, supported

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

148



by an object tracking algorithm, was trained for
counting and recognizing honey bee into pollen or
non-pollen bearing class. The YOLOv3-tiny model
was applied to accurately recognize the pollen and
non-pollen bearing honey bees. The F1-score was
0.94 for pollen and non-pollen bearing honey bee
recognition, and the precision and recall values were
0.91 and 0.99, respectively.

In Berkaya et al. (Berkaya et al., 2021), deep
learning-based image classification models are pro-
posed for beehive monitoring. The proposed mod-
els particularly classify honey bee images captured at
beehives and recognize different conditions, such as
healthy bees, pollen-bearing bees, and certain abnor-
malities, such as Varroa parasites, ant problems, hive
rob beries, and small hive beetles. These models uti-
lize transfer learning with seven pre-trained deep neu-
ral networks (AlexNet, DenseNet-201, GoogLeNet,
ResNet- 101, ResNet-18, VGG-16 and VGG-19) and
also a support vector machine classifier with deep fea-
tures, shallow features, and both deep and shallow
features extracted from these DNNs. Three bench-
mark datasets, consisting of a total of 19,393 honey
bee images for different conditions, were used to train
and evaluate the models. The best results were ob-
tained using GoogLeNet which achieved an accuracy
of 0.9907, a recall of 1.0, and a F1-score of 0.9905.

In Monteiro et al. (Monteiro et al., 2021), the
authors analyzed nine Convolutional Neural Net-
works (VGG16, VGG19, ResNet50, ResNet101,
InceptionV3, Inception-ResNetV2, Xception,
DenseNet201 and DarkNet53) for detection of pollen
bearing bees in images obtained at hive entrance.
They also evaluated four different color image
preprocessing techniques (original images, grayscale
images, Contrast Limit Adaptive Histogram Equal-
ization, and Unsharp Masking). The best results
were achieved by applying image pre-processing
with Unsharp Masking, yielding 99.1% accuracy
with the DarkNet53 model and 98.6% accuracy with
the VGG16 model. This work provided a baseline
for pollen bearing bees recognition based in deep
learning.

In Benahmed et al. (Benahmed et al., 2022), the
authors evaluated the use of two deep learning mod-
els, YOLO and StrongSORT, for detecting and track-
ing honey bees. Initially, for detection, they employed
the YOLO model using a data set of 1000 ground truth
images. Next, for tracking, they used the StrongSORT
approach. Results show that the detector performs
well in both classes of honey bees (with or without
pollen).

In Pat-Cetina et al. (Pat-Cetina et al., 2023), the
authors proposed a method for classifying images

of bees based on their pollen-carrying status. They
present two approaches: the first method utilizes a
convolutional neural network (CNN) to classify orig-
inal RGB images, while the second method enhances
pollen regions in the images using digital image pro-
cessing techniques before training the CNN. The re-
sults of the classification metrics demonstrated the ef-
fectiveness of the proposed methods, with the second
method achieving higher accuracy values and reduced
loss compared to the first one.

In Nguyen et al. (Nguyen et al., 2024), the authors
introduced an efficient method for pollen-bearing bee
detection. Initially, they furnish a comprehensive
dataset, dubbed VnPollenBee, meticulously anno-
tated for pollen-bearing honey bee detection and clas-
sification. The dataset comprises 60,826 annotated
boxes that delineate both pollen-bearing and non-
pollen-bearing bees in 2,051 images captured at the
entrances of beehives under various environmental
conditions. Next, they propose the incorporation of
diverse techniques into two baseline models, namely
YOLOv5 and Faster RCNN, to effectively address the
imbalance that arises during the detection of pollen-
bearing bees due to their number being typically
much lower than the total number of bees present at
hive entrances. The experimental results demonstrate
that the proposed approach outperforms the baseline
models on the VnPollenBee dataset, yielding Preci-
sion, Recall, and F1 score of 99%, 93%, and 95%,
respectively. Specifically, the improvements obtained
are 3% and 2% in Recall and F1 score when using
YOLOv5, and 3%, 2%, and 2% in Precision, Recall,
and F1 score when using Faster RCNN.

In Bilik et al. (Bilik et al., 2024), the authors con-
ducted a survey analyzing over 50 research projects
on automated beehive monitoring methods utilizing
computer vision techniques. The majority of the ap-
proaches reviewed focus on facilitating pollen detec-
tion, Varroa mite identification, and bee traffic moni-
toring.

In Rohafauzi et al. (Rohafauzi et al., 2024), the
authors presented a review on honey production and
prediction modeling for stingless bees. The study an-
alyzed and compared approximately 54 previous re-
search works to identify research gaps. Addition-
ally, a framework for modeling the prediction of stin-
gless bee honey production was developed. The re-
sults include a detailed comparison and analysis of
Internet of Things (IoT) monitoring systems, honey
production estimation methods, convolutional neural
networks (CNNs), and automatic identification tech-
niques for bee species. This study provides valuable
insights for researchers aiming to develop predictive
models for stingless bee honey production, which is

Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees

149



crucial for ensuring economic stability and food se-
curity.

Table 1 presents the main features of the related
works, including the classification accuracy, whether
the work employs quantization, and the number of
classifiers evaluated in the experiments. It is worth
noting that, unlike previous studies, the present work
focuses on a specific task: evaluating the impact of
applying the quantization technique.

3 FUNDAMENTAL CONCEPTS

In this section, we present the key concepts necessary
to understand the evaluation conducted in this study.

3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of
deep neural network used for processing data with a
grid pattern, one of its applications being image pro-
cessing. They are inspired by the organization of the
visual cortex of animals, designed to learn automat-
ically and adaptively, where individual neurons re-
spond to stimuli in specific regions of the visual field
(Monteiro et al., 2021). They are widely used in com-
puter vision tasks, such as image classification, which
is the problem addressed in this work. A significant
advantage of convolutional neural networks (CNNs)
is their ability to automatically perform feature ex-
traction, eliminating the need for manual intervention
in this process. CNNs are structured as follows:

• Convolution Layer: The fundamental layer of a
convolutional neural network (CNN) is the con-
volutional layer. In this layer, a filter (or ker-
nel) slides across regions of the input image in
a process known as convolution, systematically
traversing the entire image. This operation gen-
erates a feature map that highlights patterns such
as edges and textures. Three key hyperparameters
can be configured in this process: the number of
filters to be applied, the stride, which determines
the number of pixels the filter moves across the
image, and zero-padding, which is used to ensure
the filters fit the image dimensions (IBM Contrib-
utors, 2024). In summary, the convolution layer is
crucial for enabling the network to learn and iden-
tify important features that are essential for tasks
such as image classification, object detection, and
more.

• Pooling Layer: Despite the loss of information
at this stage, it has the advantages of reducing
the dimensionality of the feature maps and con-
sequently the number of parameters in the input,

keeping the most important information and mak-
ing the network more efficient in addition to limit-
ing the risk of overfitting. Like the convolutional
layer, the pooling operation uses a filter that ap-
plies an aggregation function to the values. The
main poolings used are: Maximum Pooling in
which the filter moves and selects the pixel with
the maximum value and Average Pooling in which
the filter moves through the input and calculates
the average value within the field (IBM Contribu-
tors, 2024).

• Fully Connected Layers: The final layers of CNN.
Each node in the output layer connects directly
to a node in the previous layer. This layer per-
forms the classification task based on the features
extracted through the previous layers and their
different filters. They typically use an activation
function producing a probability of 0 to 1(IBM
Contributors, 2024). Figure 1 represents the vgg-
16 CNN architecture as an example of a CNN
model (LearnOpenCV, 2024).

3.2 Quantization

We must properly use the available computational re-
sources to develop solutions using machine learning
models to provide a more efficient and optimized de-
ployment on servers and edge devices. To this end,
we can employ the quantization provided by the Py-
Torch framework (Raghuraman Krishnamoorthi and
Weidman, 2024).

Quantization refers to techniques for performing
calculations and storing numbers in a lower precision
structure. A model, when quantized, may perform
some or all operations at reduced precision rather than
full precision values. This can allow for a more com-
pact representation of operations, resulting in higher
performance on many hardware platforms. Usually,
models are represented in 32-bit floating points; quan-
tization can represent them in 16-bit floating points or
8-bit integers, for example. In some cases, quanti-
zation allows a fourfold (4x) reduction in model size
and a fourfold (4x) reduction in memory bandwidth
requirements (PyTorch Contributors, 2023). This re-
duction in memory can allow for better use of the sys-
tem cache and other aspects of the (Wu et al., 2020)
system. Additionally, 8-bit integer calculations are
typically 2 to 4 times faster than 32-bit floating point
calculations. Reduced computational complexity also
results in lower energy consumption.

Thus, quantization is a technique that allows you
to accelerate inference time due to reduced bandwidth
and faster calculations, in addition to reducing the size

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

150



Table 1: Main Features of Related Works.

Work Classification Accuracy Quantization Number of Classifiers
(Babic et al., 2016) 0.89 No 2

(Stojnić et al., 2018) 0.92 No 2
(Rodriguez et al., 2018) 0.96 No 8

(Sledevič, 2018) 0.94 No 3
(Yang and Collins, 2019) 0.93 No 2

(Ngo et al., 2021) 0.94 No 1
(Berkaya et al., 2021) 0.99 No 10
(Monteiro et al., 2021) 0.99 No 9

(Benahmed et al., 2022) 0.99 No 2
(Pat-Cetina et al., 2023) 0.99 No 2

(Nguyen et al., 2024) 0.98 No 3
(This Work) 0.99 Yes 14

Figure 1: Vgg-16 CNN Architecture.

of models and reducing energy consumption, mak-
ing it more suitable for use in devices edge devices
such as smartphones and devices used in the inter-
net of things (IoT) and which have less storage and
processing capacity and a limited amount of energy
in battery-powered devices. Due to these character-
istics of reducing the model size and running infer-
ence faster, can mean the difference between a model
achieving quality of service goals or adapting to the
constraints often imposed by a mobile device (Raghu-
raman Krishnamoorthi and Weidman, 2024). When
using quantization we must consider some factors
such as:

• Loss of accuracy: When the problem involved is
complex, quantization can result in a loss of accu-
racy introduced by the approximations made by
the quantization process;

• Approach used: There are several forms of quan-
tization and it can be carried out in different layers
and with different parameters, making it possible
to investigate the best scenarios.

3.3 Transfer Learning

Transfer learning is a machine learning technique
where a model trained to solve a specific task is reused
as a starting point to address a different but related
task. This approach leverages the knowledge gained
from one problem to improve performance or effi-
ciency in another, often reducing the need for large
datasets and extensive computational resources.

The core idea of transfer learning lies in using pre-
trained models, which are initially trained on large
datasets, typically for general-purpose tasks like ob-
ject recognition in images. These models learn to cap-
ture basic features (such as edges and textures) and

Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees

151



more complex patterns (such as shapes and semantic
meanings). They can then be fine-tuned for a spe-
cific task in a process called fine-tuning. During this
process, some layers of the model may remain fixed,
while others are retrained to learn new, task-specific
features.

This technique is particularly useful when the
available data for the target task is limited or when the
computational cost of training a model from scratch is
too high. Furthermore, transfer learning is most effec-
tive when the tasks share similar feature representa-
tions, such as in various image recognition problems.

The main benefits of this approach include faster
training times, improved model performance with less
data, and reduced computational resource require-
ments. Transfer learning is, therefore, a powerful tool
that allows machine learning practitioners to leverage
pre-trained models to tackle new challenges more effi-
ciently. Typical applications include computer vision,
where models like YOLO and VGG are fine-tuned for
tasks such as image analysis or object detection.

4 EXPERIMENTAL SETUP

4.1 Classifiers

In this work, fourteen different classification models
were used using the deep learning approach to clas-
sify images of bees with and without pollen. Af-
ter surveying related work, fourteen different clas-
sification models were selected. Most of the mod-
els had not yet been tested at the time of this re-
search on this bee classification problem, such as
the models: efficientnet b0, efficientnet b1, mnas-
net0 5, mnasnet1 3, mobilenet v2, regnet x 400mf,
regnet y 1 6gf, regnet y 400mf and regnet y 800mf.
Other models such as: alexnet, googlenet and vgg16
were selected based on the good results obtained in
other works.

4.2 Configurations

To carry out the experimental tests on the fourteen
CNN architectures adopted, the transfer learning tech-
nique was used in which the models are previously
trained on a database and provide a set of weights that
serve as a starting point for more specific sets of im-
ages. The images from the database used were nor-
malized and resized according to the specifications of
each model.

The images were divided into 75% for training
and 25% for testing and the training images are ran-
domly rotated horizontally in training. The batch size

used was 16, the learning rate was 0.0003, the opti-
mizer used was Root Mean Square Propagation (RM-
Sprop) and the number of epochs specified was 15.
The training was carried out on the Google Colab
platform using Python 3 and Google Compute En-
gine backend (GPU) with 12.7GB of RAM and 15GB
GPU RAM. At the time of carrying out this work, Py-
torch does not allow running inference on quantized
models using a GPU (Raghuraman Krishnamoorthi
and Weidman, 2024). Therefore, the inference tests
shown in table 2 in all its variations (float32, float16
and int8) were carried out on a Ryzen 4600G CPU
with 16GB of RAM. For coding, the Pytorch libraries
were used for the image classification part and sklearn
for calculating the metrics.

In carrying out this work, the dynamic quantiza-
tion technique was used. After training, each of the 14
selected models were converted into quantized mod-
els. The models were quantized using the 16-bit float
and 8-bit int types resulting in 42 tests performed.

4.3 Performance Metrics

To evaluate the classification performance in the bee
database, several metrics were used based on the con-
fusion matrix as shown in Figure 2.

True Positive (TP): Number of images of bees
with pollen that were correctly classified as images
of bees carrying pollen.

False Negative (FN): Number of images of bees
with pollen that were incorrectly classified as images
of non-pollen-bearing bees.

False Positive (FP): Number of images of bees
without pollen that were incorrectly classified as im-
ages of bees carrying pollen.

True Negative (TN): Number of images of pollen-
free bees that were correctly classified as images of
non-pollen-bearing bees.

The metrics calculated according to the confusion
matrix were as follows:

Accuracy: Calculates the general probability of
success. This way, accuracy considers the successes
of the two classes, pollen-carrying bees and non-
pollen-carrying bees, under all errors and successes.

Precision: Calculates the proportion of predic-
tions from the positive image class, which in the case
studied correspond to non-pollen-carrying bees, how
many actually were from non-pollen-carrying bees.

Recall: Calculates the probability of correctly
identifying the positive image class, that is, of the im-
ages of non-pollen-carrying bees as many as were cor-
rectly predicted.

F1-score: Takes stock comparing precision and re-
call. It is calculated through the harmonic mean of

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

152



Figure 2: Example of Confusion Matrix for classification of Pollen-bearing Bees and non Pollen-bearing Bees.

precision and recall, providing a result that balances
these two quantities.

False positive rate (FPR): Calculates the propor-
tion of negative classes, which in the case studied cor-
respond to pollen-carrying bees, which are incorrectly
predicted as images of non-pollen-carrying bees.

The formulas for calculating accuracy, precision,
recall, f1-score and FPR are illustrated respectively in
equations 1, 2, 3, 4 and 5.

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1-score =
2×Recall×Precision

Recall+Precision
(4)

FPR =
FP

FP+T N
(5)

4.4 Dataset

The dataset used in this work was created in 2018 by
(Rodriguez et al., 2018). This dataset contains high-
resolution images (180 × 300) of pollen-carrying and
non-pollen-carrying bees and their respective labels,
as shown in Figure 3. It contains a total of 714 bees
annotated images, with 369 labeled as pollen bearing
and 345 as not pollen. It is important to highlight that
it was the first public dataset using natural light, good
resolution imaging and manual annotation of the bee
position and orientation1. Following (Le et al., 2023),
We removed some images that were wrongly labeled.
To reduce the imbalance between classes and enhance
the effect of horizontal rotation on the images, 7 train-
ing images from the class without pollen were copied,
resulting in a dataset with 715 images, 365 images la-
beled as Pollen bearing and 350 as Not Pollen.

5 EXPERIMENTAL RESULTS

The classification results are summarized in Table 2.
To maintain a compact presentation, only the model

1https://github.com/piperod/PollenDataset

Figure 3: Examples of images of bees: in the first line bees
with pollen and in the second without pollen.

names are included, as all three variations tested
(float32, float16, and int8) yielded identical values
in terms of accuracy, precision, recall, F1-score, and
false positive rate (FPR). For instance, the AlexNet
model consistently achieved an accuracy of 0.98 and
a precision of 0.99 across all its variations (float32,
float16, and int8). Then, we conclude that quantiza-
tion did not change the values of these metrics.

Analyzing Table 2, we can observe that the eval-
uated models achieved accuracy values ranging from
0.72 to 0.99. The highest accuracy was obtained by
the regnet y 400mf and mnasnet1 3 models, while
the lowest accuracy was observed in the mnasnet0 5
model. Regarding the precision metric, the evalu-
ated models achieved values ranging from 0.99 to 1.
Note that the worst model for the precison metric was
AlexNet, which achieved a value of 0.99. All other
models achieved a precision value of 1. Recall values
varied between 0.63 and 0.99. The regnet y 400mf
and mnasnet1 3 models achieved the highest recall of
0.99, whereas the mnasnet0 5 model had the lowest
recall of 0.63. The F1-scores of the models ranged
from 0.78 to 0.99. The regnet y 400mf and mnas-
net1 3 models achieved the highest F1-scores of 0.99,
while the lowest score of 0.78 was recorded by the
mnasnet0 5 model. Finally, the false positive rate
(FPR) values ranged from 0 to 0.01. Most mod-
els achieved an FPR of 0, with the exception of the

Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees

153



Table 2: Classification results. To make the table more compact, only the model name was included, as the 3 variations tested
(float32, float16 and int8) had the same results.

Model Accuracy Precision Recall F1-score False Positive Rate
alexnet 0.98 0.99 0.98 0.98 0.01
efficientnet b0 0.98 1 0.96 0.98 0
efficientnet b1 0.95 1 0.91 0.96 0
googlenet 0.98 1 0.97 0.98 0
mnasnet0 5 0.72 1 0.63 0.78 0
mnasnet1 3 0.99 1 0.99 0.99 0
mobilenet v2 0.98 1 0.97 0.98 0
mobilenet v3 large 0.97 1 0.94 0.97 0
mobilenet v3 small 0.97 1 0.94 0.97 0
regnet x 400mf 0.95 1 0.91 0.96 0
regnet y 1 6gf 0.97 1 0.93 0.97 0
regnet y 400mf 0.99 1 0.99 0.99 0
regnet y 800mf 0.97 1 0.94 0.97 0
vgg16 0.98 1 0.97 0.98 0

alexnet model, which recorded the highest FPR value
of 0.01.

Table 3 presents the results of the 42 tests con-
ducted. In the ”Model´´ column, the original float32
model appears first, followed by the quantized mod-
els, which are identified by appending ”int8´´ or
”float16´´ to the original model name to indicate their
respective quantization types. The ”Time Test´´ col-
umn represents the total time required by each model
to process the 176 test images, while the ”Time Test
Average´´ column displays the average time needed
to infer a single image. The ”Time Difference from
Original´´ column shows the percentage change in
inference time between the quantized models (float16
or int8) and the original float32 model. The ’Time
Test’ values shown in Table 3 show a trend as they
may vary between different executions as the machine
has several processes in parallel competing for CPU
use. The ”Size Difference Compared to the Origi-
nal´´ column provides the percentage difference in
model size between the original model and its quan-
tized variations. For the ”Time Difference from Orig-
inal´´ and ”Size Difference Compared to the Orig-
inal´´ columns, negative values signify reductions
relative to the original float32 model. These reduc-
tions highlight the performance improvements and in-
creased efficiency achieved through quantization to
float16 or int8.

The classification time for the 176 images (time
test) across the models ranged from 2.3902 seconds to
41.6023 seconds. The time test average values, rep-
resenting the average time to classify a single image,
ranged from 0.0136 seconds to 0.2364 seconds.

5.1 Quantization Analysis

It is noteworthy that all models and their quantized
versions exhibited identical performance in terms of
accuracy, precision, recall, F1-score, and FPR met-
rics, as shown in Table 2. This consistent performance
may be attributed to the relatively simple nature of the
problem, as it involves binary classification.

Regarding testing time, the majority of the evalu-
ated models showed improved performance with the
quantization process. However, two models, efficient-
net b1 quantized to int8 and regnet y 1 6gf quan-
tized to int8, performed worse than their float32
counterparts, being 3.33% and 5.2% slower, respec-
tively. These findings demonstrate that quantiza-
tion does not guarantee better inference times in all
cases. Still regarding the test time, most models
performed better when quantized to float16. Six of
the evaluated models (alexnet, mnasnet0 5, mnas-
net1 3, mobilenet v3 small, regnet x 400mf and reg-
net y 400mf) obtained better results when quantized
to int8. Notably, the best result was obtained with
alexnet quantized to int8, achieving a test time of
2.3902 seconds, which was the shortest inference time
among all models analyzed. On the other hand, the
worst inference time, 41.6023 seconds, was obtained
by the efficientnet b1 model quantized to int8, fur-
ther illustrating that int8 quantization does not guar-
antee optimal performance. The models that benefited
the most in terms of reduced testing time were from
the efficientnet family when quantized to float16. The
efficientnet b0 model achieved the largest percentage
reduction, with a time decrease of 64.25%, followed

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

154



Table 3: Time and size results.

Model Time
Test (s)

Time Test
Average

Difference in
Time Compared
to the Original in %

Model
Size (kb)

Size Difference
Compared to
the Original in %

alexnet 4.3961 0.025 - 228037.87 -
alexnet int8 2.3902 0.0136 -45.63 64449.816 -71.7372
alexnet float16 3.1421 0.0179 -28.52 228039.832 0.0009
efficientnet b0 32.7901 0.1863 - 16335.098 -
efficientnet b0 int8 27.1998 0.1545 -17.05 16332.122 -0.0182
efficientnet b0 float16 11.7209 0.0666 -64.25 16335.898 0.0049
efficientnet b1 40.2625 0.2288 - 26491.898 -
efficientnet b1 int8 41.6023 0.2364 3.33 26488.922 -0.0112
efficientnet b1 float16 14.4434 0.0821 -64.13 26492.634 0.0028
googlenet 9.7841 0.0556 - 22581.394 -
googlenet int8 9.623 0.0547 -1.65 22579.174 -0.0098
googlenet float16 9.6046 0.0546 -1.83 22582.182 0.0035
mnasnet0 5 3.9081 0.0222 - 3942.436 -
mnasnet0 5 int8 3.6046 0.0205 -7.77 3939.45 -0.0757
mnasnet0 5 float16 3.756 0.0213 -3.89 3943.162 0.0184
mnasnet1 3 7.1776 0.0408 - 20309.476 -
mnasnet1 3 int8 6.6175 0.0376 -7.8 20306.49 -0.0147
mnasnet1 3 float16 7.0074 0.0398 -2.37 20310.202 0.0036
mobilenet v2 16.4975 0.0937 - 9145.312 -
mobilenet v2 int8 13.8495 0.0787 -16.05 9142.394 -0.03
mobilenet v2 float16 9.0975 0.0517 -44.86 9146.106 0.01
mobilenet v3 large 6.6647 0.0379 - 17020.654 -
mobilenet v3 large int8 6.461 0.0367 -3.06 13332.09 -21.67
mobilenet v3 large float16 6.1732 0.0351 -7.38 17022.202 0.01
mobilenet v3 small 3.6438 0.0207 - 6210.85 -
mobilenet v3 small int8 3.2061 0.0182 -12.01 4439.982 -28.51
mobilenet v3 small float16 3.5005 0.0199 -3.93 6212.398 0.02
regnet x 400mf 5.2535 0.0298 - 20694.986 -
regnet x 400mf int8 4.9288 0.028 -6.18 20694.632 -0.0017
regnet x 400mf float16 5.1895 0.0295 -1.22 20695.72 0.0035
regnet y 1 6gf 14.5459 0.0826 - 41708.004 -
regnet y 1 6gf int8 15.3027 0.0869 5.2 41706.178 -0.0044
regnet y 1 6gf float16 13.0503 0.0741 -10.28 41708.738 0.0018
regnet y 400mf 6.6522 0.0378 - 15867.638 -
regnet y 400mf int8 5.6538 0.0321 -15.01 15867.156 -0.003
regnet y 400mf float16 5.972 0.0339 -10.23 15868.372 0.0046
regnet y 800mf 7.7305 0.0439 - 22846.754 -
regnet y 800mf int8 7.7032 0.0438 -0.35 22845.248 -0.0066
regnet y 800mf float16 6.7945 0.0386 -12.11 22847.488 0.0032
vgg16 31.9778 0.1817 - 537069.974 -
vgg16 int8 27.3269 0.1553 -14.54 178447.028 -66.774
vgg16 float16 24.7501 0.1406 -22.6 537072.18 0.0004

by the efficientnet b1 model, which saw a reduction
of 64.13%. These results highlight the significant per-
formance improvements that float16 quantization can
offer, particularly for certain model architectures.

Regarding model sizes, the smallest model was
mnasnet0 5, with a size of 3942.436 KB. How-

ever, this model also had the poorest performance
in terms of accuracy, precision, recall, F1-score, and
FPR. All models experienced size reductions when
quantized to int8 compared to their float32 counter-
parts. For some models, including efficientnet b0,
efficientnet b1, googlenet, mnasnet0 5, mnasnet1 3,

Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees

155



mobilenet v2, regnet x 400mf, regnet y 1 6gf, reg-
net y 400mf, and regnet y 800mf, the reductions
were minimal, with decreases of less than 0.01%. In
contrast, other models achieved significant size re-
ductions with int8 quantization. Notably, the vgg16
model saw a size reduction of 66.774%, while the
alexnet model achieved the largest reduction, with a
71.7372% decrease compared to its original size. On
the other hand, quantization to float16 resulted in a
slight increase in size across all models, with the in-
crease being less than 0.01%. These results demon-
strate that while int8 quantization can be highly effec-
tive in reducing model sizes, float16 quantization may
lead to negligible size increases.

Overall, the model that achieved the best results
in the quantization process was AlexNet. Not only
did it maintain its performance in terms of accuracy,
but when quantized to int8, it also obtained the short-
est inference time among all the evaluated models.
Furthermore, it demonstrated substantial reductions
in both inference time (-45.63%) and model size (-
71.7372%), making it a standout performer in the
quantization analysis.

6 CONCLUSIONS

In this study, we analyze fouteen deep convolutional
neural network models for the classification of bees
carrying pollen versus those not carrying pollen in
images taken at the hive entrance. Furthermore,
we investigate the effects of the quantization pro-
cess on these models’ performance. Quantization
can reduce inference time and model size by using
lower-precision formats for calculations and data stor-
age. Considering the frequent use of embedded sys-
tems for image acquisition, which are often limited
in memory and computational resources, quantized
models provide notable advantages. Our results show
that, for the evaluated dataset, it is possible to improve
inference time and/or model size without compromis-
ing key performance metrics such as accuracy, preci-
sion, recall, F1-score, and false positive rate (FPR).

Considering all the results obtained, no single
model excels in all aspects compared to the others.
Therefore, setting priorities is crucial in an imple-
mentation project, and testing the available options is
essential to make a choice that best aligns with the
specific requirements of the problem. If the prior-
ity lies in performance metrics such as accuracy, pre-
cision, recall, F1-score, and FPR, the recommended
choices would be mnasnet1 3 quantized to int8 or reg-
net y 400mf quantized to int8. Among these, reg-
net y 400mf has a slight edge due to better inference

time and smaller model size. For applications where
inference time is the critical factor, alexnet quantized
to int8 stands out as the best choice. It achieved the
shortest inference time while maintaining strong over-
all performance, with an accuracy of 0.98. If model
size is the priority, the smallest model was mnas-
net0 5 quantized to int8. However, its low accuracy
of 0.72 makes it a less ideal choice. A better alterna-
tive might be mobilenet v3 small quantized to int8,
which offers a reduced size (4439.982 KB compared
to 3942.436 KB for mnasnet0 5) while achieving a
much higher accuracy of 0.97. This balance of size
and accuracy makes it a more practical option for sce-
narios where both factors are important.

As future work, we plan to evaluate additional
datasets. We anticipate that conducting more exten-
sive tests will provide deeper insights into the limi-
tations of the models, ultimately leading to improved
classification performance. Besides, we plan to com-
bine different CNNs in order to further improve the
performance.

ACKNOWLEDGMENTS

This work was partially funded by Lenovo as part of
its R&D investment under the Information Technol-
ogy Law. The authors would like to thank LSBD/UFC
for the partial funding of this research.

REFERENCES

Babic, Z., Pilipovic, R., Risojevic, V., and Mirjanic, G.
(2016). Pollen bearing honey bee detection in hive
entrance video recorded by remote embedded system
for pollination monitoring. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 3:51–57.

Benahmed, H. K., Bensaad, M. L., and Chaib, N. (2022).
Detection and tracking of honeybees using yolo and
strongsort. In 2022 2nd International Conference on
Electronic and Electrical Engineering and Intelligent
System (ICE3IS), pages 18–23.

Berkaya, S. K., Gunal, E. S., and Gunal, S. (2021). Deep
learning-based classification models for beehive mon-
itoring. Ecological Informatics, 64:101353.

Bilik, S., Zemcik, T., Kratochvila, L., Ricanek, D., Richter,
M., Zambanini, S., and Horak, K. (2024). Machine
learning and computer vision techniques in continu-
ous beehive monitoring applications: A survey. Com-
puters and Electronics in Agriculture, 217:108560.

IBM Contributors (2024). What are convolutional
neural networks? https://www.ibm.com/think/
topics/convolutional-neural-networks.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

156



Le, T.-N., Thi-Thu-Hong, P., Nguyen, H.-D., Thi-Lan, L.,
et al. (2023). A novel convolutional neural network
architecture for pollen-bearing honeybee recognition.
International Journal of Advanced Computer Science
and Applications, 14(8).

LearnOpenCV (2024). Understanding convolutional neural
networks (cnn).

Monteiro, F. C., Pinto, C. M., and Rufino, J. (2021). To-
wards precise recognition of pollen bearing bees by
convolutional neural networks. In Iberoamerican
Congress on Pattern Recognition. Springer.

Ngo, T. N., Rustia, D. J. A., Yang, E.-C., and Lin, T.-T.
(2021). Automated monitoring and analyses of honey
bee pollen foraging behavior using a deep learning-
based imaging system. Computers and Electronics in
Agriculture, 187:106239.

Nguyen, D., Le, T., Phung, T., Nguyen, D., Nguyen, H.,
Pham, H., Phan, T., Vu, H., and Le, T. (2024). Improv-
ing pollen-bearing honey bee detection from videos
captured at hive entrance by combining deep learning
and handling imbalance techniques. Ecol. Informat-
ics, 82:102744.

Pat-Cetina, J. E., Orozco-del Castillo, M. G., López-Puerto,
K. A., Bermejo-Sabbagh, C., and Cuevas-Cuevas,
N. L. (2023). Recognition of pollen-carrying bees us-
ing convolutional neural networks and digital image
processing techniques. In Mata-Rivera, M. F., Zagal-
Flores, R., and Barria-Huidobro, C., editors, Telemat-
ics and Computing, pages 253–269, Cham. Springer
Nature Switzerland.

PyTorch Contributors (2023). Introduction to quantization.
https://pytorch.org/docs/stable/quantization.html.

Raghuraman Krishnamoorthi, James Reed, M. N. C. G.
and Weidman, S. (2024). Introduction to quan-
tization on pytorch. https://pytorch.org/blog/
introduction-to-quantization-on-pytorch/.

Rodriguez, I. F., Megret, R., Acuna, E., Agosto-Rivera,
J. L., and Giray, T. (2018). Recognition of pollen-
bearing bees from video using convolutional neural
network. In 2018 IEEE winter conference on appli-
cations of computer vision (WACV), pages 314–322.
IEEE.

Rohafauzi, S., Kassim, M., Ja’afar, H., Rustam, I., and
Miskon, M. T. (2024). A review on internet of things-
based stingless bee’s honey production with image de-
tection framework. International Journal of Electri-
cal and Computer Engineering (IJECE), 14(2):2282–
2292.

Sledevič, T. (2018). The application of convolutional neu-
ral network for pollen bearing bee classification. In
2018 IEEE 6th Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE), pages
1–4. IEEE.

Stojnić, V., Risojević, V., and Pilipović, R. (2018). De-
tection of pollen bearing honey bees in hive en-
trance images. In 2018 17th International Symposium
INFOTEH-JAHORINA (INFOTEH), pages 1–4. IEEE.

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius,
P. (2020). Integer quantization for deep learning in-
ference: Principles and empirical evaluation. arXiv
preprint arXiv:2004.09602.

Yang, C. and Collins, J. (2019). Deep learning for pollen
sac detection and measurement on honeybee monitor-
ing video. In 2019 International Conference on Image
and Vision Computing New Zealand (IVCNZ), pages
1–6. IEEE.

Zacepins, A., Brusbardis, V., Meitalovs, J., and Stalidzans,
E. (2015). Challenges in the development of precision
beekeeping. Biosystems Engineering, 130:60–71.

Influence of Quantization of Convolutional Neural Networks on Image Classification of Pollen-Bearing Bees

157


