
Manim-DFA: Visualising Data Flow Analysis and Abstract
Interpretation Algorithms with Automated Video Generation

Lucas Berg a, Gonzague Yernaux b, Mikel Vandeloise c and Wim Vanhoof d

Faculty of Computer Science, University of Namur, Belgium
{lucas.berg, gonzague.yernaux, mikel.vandeloise, wim.vanhoof}@unamur.be

Keywords: Visual Learning, Video Generation, Abstract Interpretation, Data Flow Analysis, Static Analysis.

Abstract: In this paper, we introduce Manim-DFA, an extension of the Manim library for generating video visualisations
to teach data flow analysis and abstract interpretation. Despite the importance of data flow analysis in static
program analysis, educational visualisation tools remain scarce. Manim-DFA addresses this gap by enabling
educators to animate control flow graphs and lattice structures, illustrating their transformation during program
analysis. Currently, the tool supports automated animation of the worklist algorithm, as well as lattice visu-
alisation. Designed with established pedagogical principles, Manim-DFA promotes active learning, reduces
cognitive load, and enhances conceptual understanding. Preliminary evaluations suggest that it effectively
complements traditional resources and supports autonomous learning.

1 INTRODUCTION

Data flow analysis examines how data enters, evolves,
and exits a program (Khedker et al., 2017). This
can be achieved with dynamic analysis techniques,
which observe program behaviour through concrete
executions. However, dynamic analysis sometimes
becomes impractical due to the vast number of possi-
ble inputs. Instead, with static analysis, it is possible
to infer program properties without having to execute
the programs, providing a more scalable solution.

A foundational milestone in static analysis is in-
carnated by Kildall’s algorithm, which was intro-
duced in the 1970s for compiler optimisation (Kildall,
1973). It was followed by the definition and formal-
isation of abstract interpretation by the Cousot cou-
ple (Cousot and Cousot, 1977). Abstract interpreta-
tion underpins the design of most modern data flow
analyses, and its results are notably used to drive op-
timisation, bug detection, and program comprehen-
sion (Khedker et al., 2017). As such, they play a cru-
cial role in computer science, particularly in compiler
design (Lattner et al., 2021; Marat Akhin, 2011).

Despite their importance, data flow analysis algo-
rithms tend to remain difficult to grasp by computer
science students. This is mainly due to their reliance

a https://orcid.org/0009-0008-8595-1986
b https://orcid.org/0000-0001-6430-8168
c https://orcid.org/0009-0002-0858-471X
d https://orcid.org/0000-0003-3769-6294

on abstract interpretation notions, which require a
different mental model than traditional programming
(Norman, 2014). The current advent of generative
AI may further accentuate these mental model gaps,
since the developers tend to write less code lines
themselves (Prasad and Sane, 2024). Meanwhile,
computer science education research tends to high-
light the role of program and algorithm visualisa-
tion in addressing programming difficulties, due to
their effectiveness in fostering accurate mental mod-
els and improving learning outcomes (Sorva et al.,
2013; Hundhausen et al., 2002).

To the best of our knowledge, no tools currently
exist that provide visualisations for data flow anal-
ysis algorithms. To address this gap, we introduce
Manim-DFA, an extension of the Manim library that
generates illustrative videos of key data flow analy-
sis concepts. The videos use tabular, textual, as well
as graphical representations to depict successive it-
erations of the worklist algorithm, a procedure de-
rived from Kildall’s algorithm that loops through a
program’s control flow graph in order to approximate
some properties of interest. The application is de-
signed so that its inputs can be easily parametrised by
pedagogical teams, while its outputs serve to guide
students in step-by-step analysis executions, all in
compliance with core pedagogical principles.

604
Berg, L., Yernaux, G., Vandeloise, M. and Vanhoof, W.
Manim-DFA: Visualising Data Flow Analysis and Abstract Interpretation Algorithms with Automated Video Generation.
DOI: 10.5220/0013472000003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 1, pages 604-611
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



2 TECHNICAL BACKGROUND

Algorithm and program visualisation are often distin-
guished as follows (Price et al., 1993):

• Algorithm Visualisation (AV) represents high-
level visualisations illustrating algorithmic be-
haviour without displaying underlying code.

• Program Visualisation (PV) refers to low-level
visualisations that explicitly depict code execu-
tion and runtime data structure changes.
Interestingly, the visualisation of data flow analy-

sis presents a conceptual challenge for this taxonomy.
By incarnating both an algorithm and an abstract exe-
cution method, it tends to exhibit a hybrid nature that
incorporates aspects of both categories. We now de-
fine the notions that will be used throughout the paper.

Mental models of program execution are uncon-
scious and subjective representations of program flow.
Students should develop accurate models in order to
reason effectively about code behaviour (Sorva et al.,
2013). One way to foster mental models is through
the concept of notional machines (Du Boulay, 2013)
which provide simplified yet sufficiently detailed rep-
resentations of program execution.

Control-flow graphs (CFGs) are widely used pro-
gram representations in data flow analysis. A CFG
visually maps all possible execution paths within
a program. Nodes correspond to instructions or
code blocks, while edges denote control flow transi-
tions (Allen, 1970).

As for abstract interpretation, it is a field essen-
tially concerned with statically approximating pro-
gram behaviour by tracking concrete program val-
ues (such as the value held in a variable) by using
so-called abstract values, the latter being generalised
or over-approximative representations of the concrete
values, that still preserve essential properties of inter-
est. Abstract values are typically organised within a
partial order that defines their relative specificity. This
structure is formalised using the mathematical notion
of a lattice, which amounts to a partially ordered set in
which any pair of elements has both a common upper
bound and a lower bound. Depending on the underly-
ing domain, lattices can be finite or infinite.

3 RELATED WORK

At the moment of writing, the development of tools
specifically tailored for the visualisation of data flow
analysis algorithms (independent of a given program-
ming language) is, to the best of our knowledge, still
at point zero. However, various education-driven PV
and AV tools have been developed over the years. In

this section, we give a (non exhaustive) overview of
some major approaches in the field.

Jeliot (Moreno et al., 2004) aids novice Java pro-
grammers to visualise object-oriented concepts, while
VILLE (Rajala et al., 2007), supporting both Java
and C++, has been shown to improve student per-
formance (Kaila et al., 2010). Meanwhile, Python
Tutor (Guo, 2013), a program widely used on-
line, enhances comprehension in Python, C/C++, and
Java (Karnalim and Ayub, 2017; Karnalim and Ayub,
2018). PITON (Elvina et al., 2018) and its extension
PITON-DS (Nathasya et al., 2019) integrate both PV
and AV features and have demonstrated benefits in the
support of programming tasks. Some other tools are
tailored to visualise control flow graphs (CFGs), typ-
ically using Sugiyama-style layouts (Sugiyama et al.,
1981), which is often achieved via Graphviz’s dot al-
gorithm (Gansner et al., 1993). Example of such im-
plementations include CFGExplorer (Devkota and
Isaacs, 2018) and CCNav (Devkota et al., 2020).

The various programs (and papers) mentioned
above primarily target compiler experts and re-
searchers, as their focus is mostly set on debugging
and optimisation tasks. Their output visualisations,
which are typically optimised for reducing edge inter-
sections, often result in complex and dense layouts,
with similar structures being potentially represented
differently across a given graph. Consequently, these
approaches are challenging for students to interpret
and, hence, can be considered unsuitable for educa-
tional purposes, where clarity and accessibility are
paramount (Mayer, 2002).

4 RESEARCH QUESTIONS

Visualising data flow analysis algorithms, along with
their corresponding CFGs, thus still represents a sig-
nificant challenge, especially in a context where un-
derstanding programs tends to become as crucial as
writing code oneself (Liu et al., 2024).

Research Question 1 (RQ1): How Can One Cre-
ate a Tool that Enables Teachers and Students to
Visualise Data Flow Analysis with Minimal Effort
and Maximum Pedagogical Value? Since it will
be used in an educational context, such a tool should
be particularly helpful to visualise small-scale pro-
grams, prioritising clarity for students and ease of
use for educators. More specifically, RQ1 entails the
search for an adequate format for schematising data
flow analysis algorithms. It also entails to decide
which program, framework, or library should be used
in the development of the envisioned tool. Moreover,

Manim-DFA: Visualising Data Flow Analysis and Abstract Interpretation Algorithms with Automated Video Generation

605



outputs should be easily shared, while their pedagog-
ical effectiveness should be maximised. As for the
inputs, these should preferably be resilient to the use
of different programming languages or styles.

Additionally, since data flow analysis operates di-
rectly on CFGs rather than on the code itself or on
it executions, its visualisation requires that of clear-
to-read CFGs. The evolution of abstract values com-
puted throughout an analysis should be clearly de-
picted as well, and the tool should provide a clear and
structured representation of the underlying lattice(s),
while addressing challenges such as readability and
mixed (or complex) value types. Then, beyond CFGs
and lattices, elements like text and table displays are
required for visualising a program analysis. The crit-
ical challenge is to design an intuitive interface that
allows educators to create animations without requir-
ing extensive technical expertise.

RQ2: Can Such Visualisations Help Students Un-
derstand Data Flow Analysis Algorithms and Per-
ceive Their Educational Value? This question fo-
cuses on assessing whether the tool enhances compre-
hension and aligns with the benefits of existing visu-
alisation tools for programming education.

5 METHODOLOGY

Selecting an appropriate format for visualisations is
crucial. Unlike conventional program visualisation,
which typically targets a specific programming lan-
guage and execution model, data flow analysis vi-
sualisation involves multiple interpretations of the
same programming language, depending on the type
of analysis being conducted. This requires a flexi-
ble tool that educators can easily customize and dis-
tribute. Additionally, deploying dedicated applica-
tions for each analysis tends to impractical. Non-
interactive formats like videos, GIFs, or slides offer a
widely supported, cross-platform alternative that inte-
grates seamlessly with educational platforms and re-
quires no additional installation. Among these, videos
were chosen for their ability to show the dynamic evo-
lution of data flow analysis processes in a step-by-step
manner, thereby enhancing engagement and compre-
hension (Seo et al., 2021; Zhang et al., 2006).

To minimise the effort required to create video vi-
sualizations while ensuring maintainability, flexibil-
ity, resource availability and mathematical support,
we evaluated candidate tools. Manim (The Manim
Community, 2024) emerged as a practical choice due
to its strong support for LATEX, graph manipulation,
and educational features, that have contributed to its

Figure 1: A control flow graph visualisation.

Figure 2: Lattice visualisation, height limited to 6.

widespread adoption. Alternatives such as Javis.jl
(Humans of Julia Discord Community, 2025), Rean-
imate (Himmelstrup, 2025) and Makie.jl (Danisch
and Krumbiegel, 2021) were considered but deemed
less suitable due to limited mathematical capabilities
and documentation or less active communities.

We first extended Manim with a new graph lay-
out adapted to depict CFGs, excluding flow-breaking
constructs (e.g. break, continue, goto). Our plugin
greedily optimises edge placement, which reduces in-
tersections and improves branch visibility when com-
pared to Manim’s native graph visualisation algo-
rithms. An example CFG is given in Figure 1.

The same holds for lattices. Our custom algorithm
builds upon Sugiyama layouts, the main addition be-
ing the support for infinite lattices, which are depicted
by incrementally linking nodes from both ends to the
middle. For this to be possible, the lattices must be
bounded with well-defined top and bottom elements.
Figure 2 shows an example lattice representation.

For now, Manim-DFA is limited to visualising data
flow analysis algorithms that use the so-called work-
list approach. The worklist algorithm is one of the
most widespread implementations of the Kildall al-
gorithm (Kildall, 1973) mentioned above. The algo-
rithm indeed boils down to calculating abstract values
by looping through the program instructions (follow-
ing the edges of its CFG) until a fixed point is reached

CSEDU 2025 - 17th International Conference on Computer Supported Education

606



Figure 3: Overview of Manim-DFA’s workflow.

for each computed abstract value.
While being widely used in program analysis, and

in particular in introductory courses, the worklist al-
gorithm is not the only technique for computing ab-
stract values in an input program. Manim-DFA is de-
signed to be extensible on that regard; animating other
algorithms does, however, require some more man-
ual operations. For example, when working with the
well-known GEN/KILL algorithm, which is concerned
with computing program properties enclosed in sets
(rather than classical abstract values) (Fernandes and
Desharnais, 2004), one can easily leverage the previ-
ously developed CFG and lattice visualisation meth-
ods, along with the features provided by Manim, to
animate the algorithm.

The mandatory inputs to Manim-DFA are:
• an imperative program, represented as an abstract

syntax tree (AST);
• a lattice structure defining the abstract domain;
• flow functions and condition update functions

specifying how abstract value are updated during
the analysis.
As shown in Figure 3, these inputs are required

to comply to specific classes and interfaces. Then,
Manim-DFA generates an animation that demonstrates
the execution of the analysis on the input program(s).
Educators can optionally integrate a text parser; this
allows to convert raw source code from any language
into an abstract syntax tree, to alleviate (and gener-
alise) the input requirements.

Manim-DFA is written in object-oriented Python,
using the core Manim library as well as our lattice
and CFG visualisation helpers. The code is avail-
able as an online repository1. The different classes
of Manim-DFA implement general interfaces in such
a way that one can generate videos without the need
to place the elements directly on the screen. A sep-

1See https://tinu.be/ManimDFA.

Figure 4: Removal of the current program point from W .

Figure 5: Update of abstract values based on flow and con-
dition update functions.

arate repository is used to store the source code and
documentation of a lightweight compiler for the so-
called Small toy language, being a simplistic imper-
ative language that can be used to illustrate program
analysis concepts in classrooms. The documentation
of this example source language can be found along
with its compiler’s source code in a separate reposi-
tory2. The Small compiler has been implemented us-
ing ANTLR 4 (Parr, 2013); however, as detailed above,
the user is free to use any language as input to the
analysis process included in the first repository, for as
long as its programs can be translated into compati-
ble abstract syntax trees– which is the reason why the
Small compiler is stored in a separate repository.

Figure 6: Storage of updated abstract values and selection
of the next program point.

As an illustration of Manim-DFA’s typical output,
Figure 4 displays the removal of an item from the

2See https://tinu.be/SmallCompiler.

Manim-DFA: Visualising Data Flow Analysis and Abstract Interpretation Algorithms with Automated Video Generation

607



worklist W after an iteration of the eponym algorithm
on an example Small program given as input, while
Figure 5 shows how the abstract interpretation func-
tions are then used to update the abstract values as-
sociated with program variables. Lastly, Figure 6 il-
lustrates how the worklist algorithm proceeds to store
the new abstract values and mark the following Small
program instruction to be handled, resulting in the
new worklist value W = {3}. These three figures are
screenshots of video frames created by Manim-DFA.

6 PEDAGOGICAL ASPECTS

To ensure the effectiveness of our visualisation tool,
we anchored its design in established educational
theories and frameworks. Below is an overview of
largely adopted cognitive pedagogy principles, which
steered the design and development of Manim-DFA at
every stage of its conception.

First, Bruner’s discovery learning theory high-
lights the importance of active exploration in build-
ing meaningful knowledge (Bruner, 2009), while
Ausubel states that meaningful learning is more
effectively achieved when new information is ex-
plicitly linked to prior knowledge (Ausubel, 1963).
Manim-DFA aligns with both these statements by en-
abling learners to observe program state transfor-
mations, which are structured into clear, conceptual
stages, and supported by examples that help integrate
new knowledge.

Similarly, Flavell’s concept of metacognition em-
phasises the importance of monitoring and adapting
learning strategies (Flavell, 1979). The sequential
and detailed visualisations provided by Manim-DFA
encourage learners to identify and address their mis-
conceptions, thereby enabling a certain degree of au-
tonomy in problem-solving.

In fact, by illustrating algorithmic branching de-
cisions, Manim-DFA transforms abstract concepts into
interactive visual experiences. This is also in line with
Kolb’s experiential learning model, which stresses
the role of concrete experiences in knowledge acqui-
sition (Kolb, 2014).

Yet another framework, Gagné’s nine learning
events model, identifies a series of steps that op-
timise learning, ranging from capturing attention to
providing feedback (Driscoll, 2005). Manim-DFA fol-
lows the progression detailed in his work, e.g. by
using dynamic animations to maintain engagement,
gradually presenting concepts, and delivering imme-
diate visual feedback that reinforces understanding.
Related notions such as Mayer’s segmentation ef-
fect and Sweller’s cognitive load theories are also

covered by this. Simply put, these two intuitive
frameworks respectively suggest that breaking down
complex tasks into smaller segments enhances un-
derstanding (Mayer, 2009) and that learning methods
should minimise the number of unnecessary cognitive
demands (Paas et al., 2004).

Manim-DFA combines animations with explana-
tory annotations. In that regard, it also complies
to Paivio’s dual coding framework, which states
that learning improves when information is processed
both visually and verbally (Paivio and Clark, 2006).

By integrating these eight core principles,
Manim-DFA aims to enable a comprehensive and last-
ing understanding of complex concepts, such as the
rather intricate worklist algorithm. To do this, the
tool reduces cognitive barriers and promotes active
engagement, encourages reflective thinking, and al-
lows an extensive transfer of knowledge to new con-
texts. This is, at least, our conjecture; the next section
describes an evaluation carried out based on a con-
crete use of our tool.

7 PRELIMINARY EVALUATION

We conducted a questionnaire following empirical
standards in software engineering (Ralph and al.,
2021). The survey targeted Master’s students in
computer science at the University of Namur, all of
whom had already completed a course on program-
ming language semantics. They were provided with
Manim-DFA-generated videos as supplementary re-
sources in their program analysis course, which was
graded based on an individual project.

Participation to the survey was voluntary and re-
sponses were anonymised. The questionnaire com-
bined Likert-scale questions for quantitative analysis
with an optional open-ended section. Out of seven-
teen students, six completed the questionnaire (n= 6),
four of which had watched the videos.

The students ranked various activities based on
their usefulness in understanding data flow analysis
(Table 1). Videos and slides were rated the least use-
ful, whereas practical work and theoretical courses
were ranked highest.

Next, the Likert responses denoted in Table 2 sug-
gest that, while students generally found available re-
sources sufficient and clear, opinions varied on the
clarity in the course’s project statement. The project
was also perceived as challenging.

Students who watched the videos rated their effec-
tiveness, as shown in Table 3. The videos were con-
sidered useful complements to other resources, with
clear animations aiding comprehension. However, the

CSEDU 2025 - 17th International Conference on Computer Supported Education

608



Table 1: Usefulness of resources (1=lowest, 7=highest).

Activity/Resource Mean Std Min Max
Videos 2.67 1.37 1 4
Textbook 4.67 1.75 2 7
Slides 2.00 1.55 1 5
Practical works 5.50 1.05 4 7
Example project 3.67 2.34 1 7
Course 5.00 1.41 3 7
Individual project 4.50 2.43 2 7

Table 2: Statements (1=strongly disagree, 5=fully agree).

Statement Mean Std Min Max
Lack of resources 3.00 1.41 1 5
Theoretical/practical
courses were clear

4.33 0.52 4 5

Addit. resources
were clear

4.17 0.41 4 5

Project instructions
were clear

3.67 1.21 2 5

Project instructions
were too complex

2.50 1.05 1 4

Example project was
helpful

4.17 1.17 2 5

students suggested using shorter videos and including
verbal explanations.

The students who did not watch the provided
videos declared that it was due to a lack of time, or
because they did not feel the need for it (Table 4). All
students, however, saw value in educational videos,
provided they included verbal explanations (Table 5).
Then, when asked to rate some statements about re-
sources or activities, the students expressed an over-
all interest in additional course materials, particularly
videos (Table 6).

8 DISCUSSION AND
CONCLUSIONS

By leveraging the Manim library, Manim-DFA auto-
mates the animation of hard-to-grasp data flow analy-
sis techniques into instructional videos, all while

Table 4: Reasons for not watching the videos.

Reason Value
I did not have time 50%
I did not feel the need 100%
The videos are too long or too slow 0%
I did not find them 0%

Table 5: Potential improvements for videos.

Answer Value
The videos should be commented 100%
The videos should be more theoretical 0%
The videos are fine as-is 0%
The videos are not useful at all 0%

Table 6: Suggestions (1=strongly disagree, 5=fully agree).

Activity / Resource Mean Std Min Max
More exercises 3.83 1.17 2 5
More videos 4.17 0.75 3 5
More example
projects

3.83 1.17 2 5

Improve practical
sessions

3.17 1.33 1 5

Improve theoretical
course

2.33 1.21 1 4

Improve slides 3.5 1.38 1 5
Improve textbook 2.17 1.47 1 4
Improve videos 3.0 1.10 1 4

adhering to well-established learning methodologies.
Although preliminary feedback suggests it enhances
comprehension, limited adoption and mixed reactions
to the video format highlight areas for refinement.

For instance, integrating Manim-DFA more seam-
lessly into formal coursework could enhance its adop-
tion and impact. Future versions of the tool could ad-
dress student feedback by incorporating shorter, more
focused videos and enriching them with verbal expla-
nations so as to accommodate diverse learning prefer-
ences.

Future work will also focus on expanding the
scope of supported algorithms, such as incorporat-
ing the GEN/KILL framework and other common data
flow analysis techniques.

Table 3: Likert answers regarding the videos (1=strongly disagree, 5=fully agree).

Statement Mean Std Min Max
The videos effectively complement other educational resources 4.25 0.5 4 5
The videos allowed me to understand something new 4.0 0.0 4 4
The videos are too long 3.25 0.957 2 4
The videos would be better if they were commented 4.25 0.5 4 5
The animations used in the videos are clear 4.5 0.577 4 5
The content of the videos is adapted to my level of understanding 4.0 1.414 2 5
I interacted with the videos (e.g. pause, rewind) 4.25 1.5 2 5
The videos helped me memorize concepts better than other media 3.0 0.0 3 3
The videos helped me progress autonomously in understanding concepts 3.5 0.577 3 4
The videos encouraged me to test or reproduce the concepts myself 2.5 1.732 1 5

Manim-DFA: Visualising Data Flow Analysis and Abstract Interpretation Algorithms with Automated Video Generation

609



Moreover, improving user accessibility, e.g. by
simplifying the interface and streamlining the process
of defining analyses, should enable educators with
limited technical expertise to benefit more freely from
the tool. We also plan on investigating the potential
for interactivity, such as allowing students to directly
manipulate visualisations or test hypothetical scenar-
ios.

Collaborations with educators from other institu-
tions and disciplines may also uncover new use cases
and drive broader adoption.

Additionally, refining the visual and structural de-
sign of animations, particularly for complex lattice
structures and large control flow graphs, is part of the
planned ongoing work as the tool evolves.

As specified in the empirical standards for surveys
and questionnaires (Ralph and al., 2021), so-called
”threats to validity” may affect the precision and cred-
ibility of our findings in Section 7. In particular, the
small sample size, due to course enrolment and re-
sponse rates, obviously limits broader applicability or
generalisation of the results. Future research should
extend the study to larger and more diverse cohorts.
Secondly, biases may persist in the questionnaire, as
respondents were students actively engaged in the
course. While efforts were made to ensure repre-
sentativeness through anonymity and brevity, the or-
der of the questions, for example, remains potentially
confusing. Thirdly, despite our best efforts, evalu-
ating comprehension is inherently complex. Future
studies should incorporate objective measures, such
as project grades, to complement self-reported learn-
ing outcomes. Lastly, future iterations should assess
the questionnaire’s consistency across different stu-
dent groups.

REFERENCES

Allen, F. E. (1970). Control flow analysis. ACM SIGPLAN
Notices, 5(7):1–19.

Ausubel, D. P. (1963). The Psychology of Meaningful Ver-
bal Learning. Grune & Stratton.

Bruner, J. S. (2009). The Process of Education. Harvard
university press.

Cousot, P. and Cousot, R. (1977). Abstract interpretation:
A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages -
POPL ’77, pages 238–252, Los Angeles, California.
ACM Press.

Danisch, S. and Krumbiegel, J. (2021). Makie.jl: Flexible
high-performance data visualization for Julia. Journal
of Open Source Software, 6(65):3349.

Devkota, S., Aschwanden, P., Kunen, A., Legendre, M., and
Isaacs, K. E. (2020). CcNav: Understanding compiler
optimizations in binary code. IEEE transactions on
visualization and computer graphics, 27(2):667–677.

Devkota, S. and Isaacs, K. E. (2018). CFGExplorer:
Designing a Visual Control Flow Analytics System
around Basic Program Analysis Operations. Com-
puter Graphics Forum, 37(3):453–464.

Driscoll, M. P. (2005). Psychology of learning for instruc-
tion. Person Education.

Du Boulay, B. (2013). Some difficulties of learning to pro-
gram. In Studying the Novice Programmer, pages
283–299. Psychology Press.

Elvina, E., Karnalim, O., Ayub, M., and Wijanto, M. C.
(2018). Combining program visualization with pro-
gramming workspace to assist students for complet-
ing programming laboratory task. JOTSE: Journal of
Technology and Science Education, 8(4):268–280.

Fernandes, T. and Desharnais, J. (2004). Describing gen/kill
static analysis techniques with kleene algebra. In
Kozen, D., editor, Mathematics of Program Construc-
tion, pages 110–128, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Flavell, J. H. (1979). Metacognition and cognitive monitor-
ing: A new area of cognitive–developmental inquiry.
American psychologist, 34(10):906.

Gansner, E. R., Koutsofios, E., North, S. C., and Vo,
K.-P. (1993). A technique for drawing directed
graphs. IEEE Transactions on Software Engineering,
19(3):214–230.

Guo, P. J. (2013). Online python tutor: Embeddable web-
based program visualization for cs education. In Pro-
ceeding of the 44th ACM Technical Symposium on
Computer Science Education, pages 579–584, Denver
Colorado USA. ACM.

Himmelstrup, D. (2025). Reanimate: Build
declarative animations with svg and haskell.
https://reanimate.github.io/.

Humans of Julia Discord Community (2025). Javis.Jl.
https://juliaanimators.github.io/.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T.
(2002). A meta-study of algorithm visualization effec-
tiveness. Journal of Visual Languages & Computing,
13(3):259–290.

Kaila, E., Rajala, T., Laakso, M.-J., and Salakoski, T.
(2010). Effects of course-long use of a program
visualization tool. In Proceedings of the Twelfth
Australasian Conference on Computing Education-
Volume 103, pages 97–106.

Karnalim, O. and Ayub, M. (2017). The use of python tutor
on programming laboratory session: Student perspec-
tives. Kinetik: Game Technology, Information Sys-
tem, Computer Network, Computing, Electronics, and
Control, pages 327–336.

Karnalim, O. and Ayub, M. (2018). A Quasi-Experimental
Design to Evaluate the Use of PythonTutor on Pro-
gramming Laboratory Session. International Journal
of Online Engineering, 14(2).

Khedker, U., Sanyal, A., and Sathe, B. (2017). Data Flow
Analysis: Theory and Practice. CRC Press.

CSEDU 2025 - 17th International Conference on Computer Supported Education

610



Kildall, G. A. (1973). A unified approach to global program
optimization. In Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages - POPL ’73, pages 194–206,
Boston, Massachusetts. ACM Press.

Kolb, D. A. (2014). Experiential Learning: Experience as
the Source of Learning and Development. FT press.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache,
N., and Zinenko, O. (2021). MLIR: Scaling com-
piler infrastructure for domain specific computation.
In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 2–14.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. (2024). Is
your code generated by chatgpt really correct? rigor-
ous evaluation of large language models for code gen-
eration. Advances in Neural Information Processing
Systems, 36.

Marat Akhin, M. B. (2011). Control- and data-
flow analysis - Kotlin language specification.
https://kotlinlang.org/spec/control–and-data-flow-
analysis.html.

Mayer, R. E. (2002). Cognitive theory and the design of
multimedia instruction: An example of the two-way
street between cognition and instruction. New Direc-
tions for Teaching and Learning, 2002(89):55–71.

Mayer, R. E. (2009). Segmenting principle. Multimedia
learning, 2:175–188.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M.
(2004). Visualizing programs with Jeliot 3. In Pro-
ceedings of the Working Conference on Advanced Vi-
sual Interfaces, pages 373–376, Gallipoli Italy. ACM.

Nathasya, R. A., Karnalim, O., and Ayub, M. (2019). Inte-
grating program and algorithm visualisation for learn-
ing data structure implementation. Egyptian Informat-
ics Journal, 20(3):193–204.

Norman, D. A. (2014). Some observations on mental mod-
els. In Mental Models, pages 15–22. Psychology
Press.

Paas, F., Renkl, A., and Sweller, J. (2004). Cognitive load
theory: Instructional implications of the interaction
between information structures and cognitive archi-
tecture. Instructional science, 32(1/2):1–8.

Paivio, A. and Clark, J. M. (2006). Dual coding theory and
education. Pathways to literacy achievement for high
poverty children, 1:149–210.

Parr, T. (2013). The Definitive ANTLR 4 Reference. Prag-
matic Bookshelf, 2nd edition.

Prasad, P. and Sane, A. (2024). A self-regulated learning
framework using generative ai and its application in
cs educational intervention design. In Proceedings of
the 55th ACM Technical Symposium on Computer Sci-
ence Education V. 1, SIGCSE 2024, page 1070–1076,
New York, NY, USA. Association for Computing Ma-
chinery.

Price, B. A., Baecker, R. M., and Small, I. S. (1993). A prin-
cipled taxonomy of software visualization. Journal of
Visual Languages & Computing, 4(3):211–266.

Rajala, T., Laakso, M.-J., Kaila, E., and Salakoski, T.
(2007). VILLE: A language-independent program vi-

sualization tool. In Proceedings of the Seventh Baltic
Sea Conference on Computing Education Research-
Volume 88, pages 151–159. Citeseer.

Ralph, P. and al. (2021). Empirical Standards for Software
Engineering Research.

Seo, K., Dodson, S., Harandi, N. M., Roberson, N., Fels,
S., and Roll, I. (2021). Active learning with online
video: The impact of learning context on engagement.
Computers & Education, 165:104132.

Sorva, J., Karavirta, V., and Malmi, L. (2013). A Review of
Generic Program Visualization Systems for Introduc-
tory Programming Education. ACM Transactions on
Computing Education, 13(4):1–64.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man, and Cy-
bernetics, 11(2):109–125.

The Manim Community (2024). Manim – a community
maintained python library for creating mathematical
animations. https://www.manim.community/.

Zhang, D., Zhou, L., Briggs, R. O., and Nunamaker, J. F.
(2006). Instructional video in e-learning: Assessing
the impact of interactive video on learning effective-
ness. Information & Management, 43(1):15–27.

Manim-DFA: Visualising Data Flow Analysis and Abstract Interpretation Algorithms with Automated Video Generation

611


