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Abstract: The Secure and Sustainable Supply of Raw Materials for EU Industry – S34I project is researching and 

innovating new data-driven methods to analyze Earth Observation (EO) data, supporting systematic mineral 

exploration and continuous monitoring of extraction, closure, and post-closure activities to increase European 

autonomy regarding raw materials (RM) resources, and to use EO not only for the management of technical 

and environmental issues for a green transition but also to support public awareness, mining's social 

acceptance, and better legislation. S34I uses data from satellites, airborne, unmanned aerial vehicles, ground-

based sensors, underwater hyperspectral imaging and conventional in-situ techniques/methods and fieldwork. 

The S34I project is supporting the technical experiments and pilot validations/demonstrations for the six pilot 

use cases and at different phases of the mining life-cycle to address the challenges of the topic: Onshore 

exploration (Aramo in Spain); Shallow water exploration (Ria de Vigo in Spain); Extraction (Gummern in 

Austria); and Closure/post-closure (Lausitz in Germany, Aijala and Outokumpu in Finland). The S34I project 

involves 19 partners from 12 European countries. The project started in January 2023 and ends in June 2025. 

 

 

a  https://orcid.org/0000-0002-8043-6431 
b  https://orcid.org/0000-0001-8265-3897 
c  https://orcid.org/0000-0001-8171-6411 
d  https://orcid.org/0000-0002-3698-908X 
e  https://orcid.org/0000-0002-0174-5894 
f  https://orcid.org/0000-0002-7843-3565 
g  https://orcid.org/0009-0002-0012-1729 

h  https://orcid.org/0000-0001-7515-001X 
i  https://orcid.org/0000-0002-3004-7104 
j  https://orcid.org/0000-0002-7672-9346 
k  https://orcid.org/0009-0003-1180-2519 
l  https://orcid.org/0000-0001-9975-5726 
m  https://orcid.org/0000-0002-4887-7798 

Teodoro, A. C., Cardoso-Fernandes, J., Gheorghe, M., Falabella, F., Calò, F., Pepe, A., Hanelli, D., Knobloch, A., De La Rosa, R., Farahnakian, F., Georgalas, G. P., Sanz-Ablanedo, E.,
Williams, V. and Oštir, K.
S34I Project: Secure and Sustainable Supply of Raw Materials for EU Industry.
DOI: 10.5220/0013470500003935
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2025), pages 277-285
ISBN: 978-989-758-741-2; ISSN: 2184-500X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

277



1 INTRODUCTION 

Sustainable mining practices, i.e., the minimization of 

environmental damage, social responsibility, 

reduction of ecological footprints, rehabilitating 

mined land, managing waste effectively, and 

conserving biodiversity, are a very hot topic and have 

been a concern for many years (Laurence, 2011; Chen 

et al., 2024).  

The Critical Raw Materials Act (CRMA), 

proposed by the European Commission, seeks to 

address the challenges faced by the European Union 

(EU) in securing a stable and sustainable supply of 

critical raw materials (European Commission, 2023). 

Its primary goal is to reduce the EU's reliance on 

external sources for these materials while ensuring 

their availability to support strategic sectors, 

including those vital for decarbonization and 

advancing green technologies (Hool et al., 2024). The 

Act sets several benchmarks by 2030 along the 

strategic raw materials value chain and for the 

diversification of the EU supplies: (i) at least 10% of 

the EU's annual consumption for extraction; (ii) at 

least 40% of the EU's annual consumption for 

processing; and (iii) at least 25% of the EU's annual 

consumption for recycling no more than 65% of the 

EU's annual consumption from a single third country. 

Satellite data is crucial in sustainable mining 

practices by offering tools and insights to minimize 

environmental impact, optimize operations, and 

ensure compliance with sustainability standards 

(Farahnakian et al., 2024; Li et al., 2023; Persello et 

al., 2022). 

Regarding the applications of satellite data in 

sustainable mining, using these data and image-

processing techniques reduces the environmental 

impact by identifying high-potential areas remotely 

(Rajan Girija & Mayappan, 2019). Remote sensing 

has the ability to help exploration companies explore 

much larger and often more remote and inaccessible 

areas whilst at the same time focusing time and costs 

on identifying specific target areas for further testing 

(Pour et al., 2019; Beiranvand Pour et al., 2018). This 

will lead to more efficient timelines for discovery. 

Mineral mapping can analyze mine waste (tailings) 

for recoverable resources, turning waste into reusable 

materials and reducing the need for fresh extraction 

(Gulicovski et al., 2024; Rodríguez-Hernández et al., 

2019; Zoran et al., 2009). 

The recent advances in Artificial Intelligence (AI) 

algorithms and Earth Observation (EO) free data are 

aspects that broadly support several Sustainable 

Development Goals and promote sustainable mining 

(Chen et al., 2024; Persello et al., 2022).  

The S34I project has explored new data-driven 

methods to analyze EO data for systematic mineral 

exploration, continuous extraction monitoring, 

closure and post-closure activities, increasing 

European autonomy regarding raw materials 

(Farahnakian et al., 2024; Carvalho et al., 2025). The 

consortium is composed of 19 partners from 12 

countries (11 from the EU, plus Norway) (see Figure 

1). The partners are 50% from academia and national 

research centres and 50% from private 

companies/industries. The project started in January 

of 2023 and will end in June 2025. 

 

 

Figure 1: S34I project partners. 

The main objective of this work is to present the 

project's main objectives and some preliminary 

results. The project tackles the entire mining life cycle 

(exploration, extraction, mine closure) by focusing on 

six distinct pilot sites. Each mining phase and pilot 

presents different challenges that were addressed 

using EO data and techniques. This work will 

summarize the S34I approach to address these 

challenges. First, all datasets used in S34I will be 

listed according to the mining phase. Then, an 

overview of the methods developed/adapted in the 

scope of S34I will be given. Preliminary results will 

be presented and discussed for selected methods. 

These methods and results will serve as a base to 

develop specific services to address the identified 

challenges. 

2 DATA 

S34I utilized data from Copernicus missions and 

Copernicus Contributing Missions (CCM) obtained 

from the European Space Agency and other satellite 

sensors, while additional platforms, which included 

airborne systems, unmanned aerial vehicles (UAVs), 

ground-based methods, in-situ techniques, and 
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fieldwork, were employed for calibration, validation, 

or to complement the satellite data. The data used 

varied depending on the mining phase and pilot site: 

 

▪ Exploration Phase - Onshore Pilot (Aramo 

Mine, Spain): Sentinel-1, Sentinel-2, Landsat-

9, Hyperspectral Precursor of the Application 

Mission (PRISMA), Advanced Land 

Observing Satellite (ALOS) Phased Array type 

L-band Synthetic Aperture Radar (PALSAR)-

2, Constellation of Small Satellites for 

Mediterranean basin Observation (COSMO-

SkyMed), airborne Light Detection and 

Ranging (LiDAR), hyperspectral data, and 

ground spectral libraries of rocks and soils. 

▪ Exploration Phase - Shallow Waters Pilot (Rias 

Baixas, Spain): Sentinel-1, Sentinel-2, 

Landsat-9, WorldView-2/-3, EnMap, 

Underwater Hyperspectral Imaging (UHI), 

complementary spectral libraries, and pre-

existing or newly acquired geological data. 

▪ Extraction Phase (Gummern, Austria): 

Pléiades Neo tri-stereo, WorldView-2, 

Sentinel-1, Sentinel-2, COSMO-SkyMed, 

UAV data, and ground Global Navigation 

Satellite Systems (GNSS) stations. 

▪ Closure and post-closure Phase (Lausitz and 

Outokumpu): Sentinel-2, PRISMA, 

WorldView-3, UAV data, and geochemical 

water data; and Sentinel-1, Sentinel-2, and 

COSMO-SkyMed data (Aijala). 

 

It should be noted that the S34I consortium 

worked together with the holders of the rights for 

exploration in Aramo and for exploitation in 

Gummern. 

3 METHODS 

The data and methodology employed in the S34I 

project depend on the pilot case and the mining phase 

addressed. However, the principal outcomes of the 

S34I project focus on processing Copernicus and 

CCM data.  

Several approaches were applied and developed, 

from traditional methods to new ensemble machine 

learning (ML) algorithms. Figure 2 presents the 

methods developed in the primary pilot area. The 

techniques have been developed in a specific location 

but later implemented in other pilot areas. 

 The methods were developed according to the 

type of EO data exploited (satellite and other data), as 

shown in Figure 3. 

 

Figure 2: Developed methods according to the primary pilot 

area.  

 

Figure 3: Developed methods according to the data.  

3.1 Exploration Phase 

For the onshore pilot (Aramo, Spain), various 

analytical methods were employed, including RGB 

combinations, band ratios, Principal Component 

Analysis (PCA), K-means clustering, end-member 

extraction, minimum wavelength mapping, Spectral 

Angle Mapper (SAM), Self-Organizing Maps 

(SOM), and Artificial Neural Networks (ANNs). A 

novel ensemble AI method was developed by 

integrating Support Vector Machines (SVM), 

Random Forest (RF), and ANNs. Additionally, a 

specialized AI algorithm was designed for automated 

pre-processing of hyperspectral airborne data, 

requiring minimal ground truth input. This was aided 

by pre-existing geochemical datasets, which 

minimized the requirement for a large part of follow-

up ground truthing.  

In the shallow water exploration pilot (Rias 

Baixas, Spain), RGB combinations, band ratios, 

PCA, K-means clustering, spectral unmixing, and 

Object-Based Image Analysis (OBIA) enhanced 

feature detection and classification. 
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3.2 Extraction Phase 

In the extraction pilot (Gummern, Austria), high-

resolution Digital Elevation Models (DEMs) were 

generated, and UAV photogrammetry was effectively 

performed using Structure from Motion (SfM) for 

detailed surface modelling. 

Interferometric Synthetic Aperture Radar 

(InSAR) and change detection techniques, including 

the Normalized Decorrelation Change Index (NDCI), 

were applied to Synthetic Aperture Radar (SAR) data 

for detailed surface analysis. Additionally, advanced 

AI models—Residual-in-Residual Dense Block 

(RRDB), Super-Resolution U-Net (SRUN), and 

Optical-Guided Super-Resolution Network 

(OGSRN)—were implemented to enhance the 

resolution and quality of SAR imagery. 

A Low-cost GNSS Monitoring System (LGMS) 

using low-cost GNSS receivers to monitor 

displacements with high precision was implemented. 

The LGMS receives and stores GNSS observations 

continuously, which are later post-processed to 

estimate daily displacements of the monitoring 

locations.  

3.3 Closure and Post-Closure Phase 

For closed mines affected by Acid Mine Drainage 

(AMD) (Lausitz, Germany and Outokumpu, 

Finland), unsupervised learning methods such as 

SOM and K-means clustering were utilized for 

pattern recognition and data analysis. Supervised 

classification techniques were applied to improve 

predictive accuracy, including ANN, logistic 

regression, RF, and K-nearest Neighbors (KNN). 

Additionally, image enhancement and change 

detection techniques were implemented at the Aijala 

pilot (Finland). 

4 RESULTS AND DISCUSSION 

In this section, some preliminary results will be 

presented and discussed.  

4.1 Exploration Phase 

In the onshore pilot study, SOM was applied for data 

exploration to analyze geochemical sample points. A 

K-means clustering algorithm was also applied to the 

SOM output to categorize the data into distinct 

clusters. This combination allows for identifying 

meaningful groupings and enhances the 

interpretability of spatial and spectral patterns. 

Ultimately, it improves understanding of Cobalt (Co) 

distribution captured by PRISMA and LiDAR data 

(Figure 4).  

 

 

Figure 4: SOM results from geochemical sample points of 

PRISMA: (a-c) Example variable SOMs related to the band 

information (band 1, 40 and 106). 
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A new ensemble AI method was developed by 

integrating SVM, RF, and ANN to exploit different 

satellite-based datasets. Emphasis was given to 

Copernicus data (Sentinel-2), Landsat-9 and 

PRISMA, combining multispectral and hyperspectral 

images. This classifier ensemble method employed a 

Soft Voting strategy. The ensemble classifier shows 

variable performance with different input data. 

PRISMA data allows for better class separability, but 

the model tends to overfit, indicating the need for 

better regularisation (Figure 5). 

 

Figure 5: Examples of prediction map of hydrothermal 

alteration area (coloured pixels) generated from PRISMA 

dataset on the onshore exploration phase. 

A spectral library was created, including 311 

samples of outcropping rocks, 371 samples of soils, 

and 208 samples from the old mine in Aramo. The 

mineralogical associations corresponding to the 

outcropping rocks and soils in the Aramo Plateau, 

their spectral signatures in the SWIR region and their 

relationship with the contents of Co and other 

elements (Nickel (Ni) and Copper (Cu)) were 

determined. Although no clear spectral signature for 

Co was identified, the study successfully defined nine 

distinct spectral signatures from the 11 mineralogical 

associations. This could be mainly attributed to the 

fact that the deposit is mainly enriched in Cu, but with 

associated Cu and Ni. Additionally, statistical 

correlations between mineralogical associations and 

geochemical data revealed that specific associations 

showed a higher probability of containing elevated 

Co, Ni, and Cu levels. 

A method was also developed for pre-processing 

airborne hyperspectral data. This involves converting 

digital counts from hyperspectral sensors into 

radiance values through several key steps. Geometric 

correction ensures that image pixels correspond to 

their correct geographic locations, while atmospheric 

correction mitigates the effects of the atmosphere, 

such as absorption and scattering, on the measured 

radiance. Additionally, spectral calibration ensures 

precise wavelength alignment to match known 

spectral features. A semi-automated workflow was 

implemented for the large-scale interpretation of 

hyperspectral data, integrating satellite, airborne 

platforms and UAVs, combined with ground 

spectroradiometer measurements to automate 

extracting meaningful features for geological 

interpretation. 

A methodology for utilizing EO data from 

airborne and/or UAVs to develop predictive mineral 

maps for the Aramo plateau during the exploration 

mining phase was also developed.   

Regarding the shallow waters pilot, a methodology 

was developed for identifying placer deposits using an 

OBIA and high-resolution satellite data. This analysis 

revealed distinct signatures for each material within the 

spectral resolution of the WorldView-3 satellite data, 

leading to the creation of a new band ratio for 

prospective deposit categorization (VNIR1-VNIR4 

band ratio to identify Ilmenite) and one for determining 

the geological background from vegetation (VNIR6-

VNIR8). Three different ML approaches are developed 

and compared with each other: a single-level model 

using the SVM algorithm, a multi-level model using 

the KNN algorithm, and a dynamic classification 

developed with a decision tree model. The outcome of 

implementing these methods is the production of maps 

illustrating the distribution of placer deposits within the 

coastal area of Vigo, which can be seen in Figure 6.  

 

Figure 6: Examples of prediction map generated using 

Single-level OBIA on the WorldView-3 dataset on the 

shallow waters pilot. 
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We also applied an innovative UHI for shallow 

water exploration to identify potential areas for the 

occurrence of CRMs. UHI data was acquired with 

field work and refers to three different sea zones in 

Ria de Vigo, along with seabed samples from the 

same areas. The methodology centres on the Mixture 

Tuned Matched Filtering (MTMF) algorithm to map 

seabed targets by matching known spectral signatures 

with UHI data. It also identified sediments with 

spectral signatures consistent with placer deposits 

found on Ria de Vigo beaches.  

Finally, we integrate traditional geological 

methodologies with EO techniques for delineating 

CRM prospective areas for placer deposits. 

4.2 Extraction Phase 

The experimental results include images at a global 

scale, as collected in the Sentinel-1 and -2 datasets. 

All models' performance was evaluated using PSNR 

(Peak Signal-to-Noise Ratio) and SSIM (Structural 

Similarity Index Measure). The Sentinel-2 enhanced 

model (OGSRN) performs less than the Dense 

Residual-in-Residual Dense Block (RRDB) model, 

based on Sentinel-1 only. Overall, it demonstrated 

how deep learning models can improve the resolution 

of SAR data, showing an increase of 18% for the 

PSNR score and about 2% for the SSIM score 

compared to the corresponding baseline bicubic 

scores. 

The Multigrid InSAR technique provides accurate 

measurements, with millimetre accuracy, of the 

ground deformations along the satellite radar line-of-

sight (LOS) direction. Combining multi-band and 

multi-orbit SAR data, the obtained LOS displacement 

measurements can be profitably exploited to compute 

three-dimensional (3D) ground movement (Figure 7). 

Deformation is due to soil compaction, so the material 

added to the waste dump naturally keeps compacting. 

The implementation of LGMSs at Gummern 

Mine includes two stable reference points (F1 and F3) 

placed on the stable ground and three observation 

points (ST1, ST2, and ST3), realized with metal 

poles, mounted in concrete pillars (Figure 8).  

Based on the one-year testing period, it can be 

stated that LGMS performed well and detected slow 

movement with sub-centimetre accuracy. The results 

indicated that horizontal and vertical displacements 

of 10 and 20 mm occurred in ST1, while larger 

displacements were noticed in ST2, which moved 25 

mm horizontally and 40 mm vertically. 

 

 

Figure 7: Gummern ground deformation map (a) and time 

series obtained from COSMO-SkyMed (b). 

 

Figure 8: Locations of measuring stations. 

An innovative methodology was also developed 

based on satellite images to continuously monitor the 

life and evolution of mining waste deposits. Initially, 

land surveying is conducted to establish ground 

control points (GCPs). Following this, UAV flights 

are undertaken to produce high-resolution DEMs. 

The data acquisition process involves SfM 

processing. The next stage involves acquiring new 

satellite image datasets for specific epochs. For each 

epoch, a different DEM and orthophoto are obtained. 

Comparative analysis of successive DEMs allows 

calculating geometric or volumetric changes in the 

waste dumps over time. The Pléiades Neo tri-stereo 

dataset was the first satellite imagery used in the 

study, captured in October 2023, approximately one 

month after the UAV flight. These images already 

showed notable changes in the waste dump. To 
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compare the UAV-derived high-resolution DEM (HR 

DEM) with the Pléiades Neo-derived DEM, the UAV 

HR DEM was resampled to match the resolution of 

the Pléiades Neo DEM (30 cm). WorldView-2 

images, taken in April 2024, six months after the 

Pléiades Neo tri-stereo images, provided an 

opportunity to study changes over a longer period. 

Figure 9 illustrates altitude differences between the 

DEM from WorldView-2 (12. 4. 2024) and the DEM 

from Pléiades Neo (1. 10. 2023). The volume changes 

in the areas where waste dumping occurred are 

summarized, with a total discharge volume of 

101,872 m³. 

 

 

Figure 9: Volumes of waste dumps between 12. 4. 2024 

(DEM from Pléiades NEO) and 1. 10. 2023 (DEM from 

WorldView 2). 

4.3 Closure and Post-Closure Phase 

Several ML algorithms were adapted to enhance pixel 

classification of AMD from Sentinel 2 imagery 

(Lausitz and Outokumpu) and also using space- and 

airborne- multispectral and hyperspectral imagery. 

SOM was also utilized to visualize and cluster high-

dimensional data to interpret complex spatial data for 

AMD mapping. The study also evaluates the potential 

of spaceborne hyperspectral imagery for AMD 

mapping.  

We also proposed ML algorithms, including RF, 

KNN, Logistic Regression (LR), and MLP. They are 

used to perform a pixel-based classification of the 

images into AMD or non-AMD classes, as well as to 

assess the severity of AMD by quantitative mapping 

of AMD constituents, such as iron concentration and 

pH values. The prediction map for three lakes in the 

Outokumpu area is shown in Figure 10. The 

visualization indicates that the RF model accurately 

classified the pixels, as the lakes were primarily 

contaminated by AMD rather than coastal areas. 

Additionally, the SOM method was also used to 

visualize and cluster high-dimensional data, 

simplifying the understanding and interpretation of 

complex spatial data for AMD mapping. The output 

of the SOM method is grid data, such as heatmaps or 

U-matrix plots, which provide insights into the 

clustering and organization of the data within the grid. 

The main objective was the identification of AMD-

affected areas. These experiments were conducted in 

three lakes located in Outokumpu, Finland.  

 

 

Figure 10: Prediction map of the best model (RF) for three 

study lakes and their water samples in Outokumpu. 

Finally, we perform cross-sensor analysis over 

water bodies to harmonize Worldview-3 and UAV 

multispectral datasets to Sentinel-2. Given the free 

availability of Sentinel-2 data and the typically high 

costs of high-resolution commercial EO datasets, we 

propose a methodology where MLP is trained using 

Sentinel-2 data over a large area in conjunction with 

extensive geochemical monitoring data and the 

established dependencies are applied to commercial 

high-resolution datasets for targeted identification of 

AMD in specific areas. This approach enables a cost-

efficient combination of free-of-charge and 

commercial EO datasets for AMD mapping. 

Despite the cessation of mining activities, a 

sudden ground collapse in February 2017 near the 

Aijala refinery highlighted ongoing environmental 

risks, demonstrating the need to monitor post-closure 

mining sites continuously. SAR image coherence 

measures how similar two radar images of the same 

area are, taken at different times. For the temporal 

decorrelation analysis, we proposed calculating a new 

index, the Normalized Decorrelation Change Index 

(NDCI), presented in Figure 11. The method's 

effectiveness was validated by comparing results with 
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Sentinel 2A images and relevant background 

information about the Aijala site.  

 

 

Figure 11: NDCI depicting ongoing high disturbances in the 

Aijala post-closure site between 2015-2017. 

5 CONCLUSIONS 

In this work, we present the preliminary results of the 

S34I HORIZON project. At the moment, the methods 

are being validated and verified in the pilots and also 

with the end-users. 

Based on the methods developed under the scope 

of S34I, we prototyped EO-based services that cater 

to the specific needs of mining stakeholders. These 

services aim to address three key areas: 

1. RM Deposits Mapping: This involves using 

EO data to identify and map potential mineral 

deposits, both on land and in shallow waters. 

2. Early Warnings: The focus here is on 

developing EO-based systems that can provide early 

warnings of potential hazards at mining sites, such as 

ground instability. 

3. Environmental Monitoring: This 

encompasses the use of EO data to monitor the 

environmental impact of mining activities, such as the 

detection of AMD. 

In the future, these services will be available for 

the stakeholders and end-users. 

The result of this project will be an important step 

forward in monitoring all phases of the mining cycle 

using EO data, contributing to more sustainable 

mining practices. 
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