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Abstract: This paper is concerned with markets of Virtual Things, which are parameterized specifications of products or
services that can be realized and delivered on demand. Reported in this paper is the design and development
of OptiGuide+, an interactive recommender system designed to guide users in choosing and optimally instan-
tiating Virtual Things. OptiGuide+ enhances decision-making by dynamically integrating user preferences
with multi-objective optimization. It supports (1) real-time interactive utility extraction from user-selected
preferences on Pareto-optimal alternatives; (2) seamless integration of virtual things’ specifications; (3) cross-
platform web-based deployment capability; and (4) an intuitive user interface for visualizing trade-offs to
explore Pareto-optimal alternatives. OptiGuide+ is unique in its ability to leverage utility-driven decision
guidance methodology for markets of parameterized products and services and demonstrate it in real-world
applications.

1 INTRODUCTION

In this paper, we report on the design and devel-
opment of OptiGuide+: an interactive recommender
system to guide users in choosing and optimally in-
stantiating Virtual Things (VT’s). Virtual Things are
parameterized specifications of products, services, or
anything of value, associated with analytic models
that describe the consumer-interesting characteristics,
which can be instantiated and fulfilled on demand
(Han and Brodsky, 2022).

To illustrate the concept, consider an example of
a virtual bike. Unlike a physical, off-the-shelf prod-
uct, a virtual bike is defined by a parametric design
specification, against which it can be manufactured
by a vendor. For a virtual bike, a set of parameters
may involve frame material, bike geometry, wheels’
size, and drivetrain characteristics. VT is also asso-
ciated with a set of constraints on the parameters and
user requirements, such as tire size for riding on snow
and weight limits, as well as objectives, i.e., key per-
formance indicators (KPIs) for the bike, such as total
weight, cost, speed, and feasibility for specific condi-
tions.
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Consumers face the challenge of selecting the
most suitable instantiation of a VT, e.g., a bike capa-
ble of riding on snow and optimized according to con-
sumer preferences that balance objectives like cost,
performance, and environmental impact. This prob-
lem involves extracting a user utility function from
(possibly competing) user’s objectives and using the
extracted utility to recommend an optimal instantia-
tion of the VT.

When repositories (or markets) of VTs are avail-
able to consumers, the problem they face is how to
choose a particular (optimal) instantiation of one VT
out of the set of VTs in the repository. E.g., an in-
stantiation of a virtual bike that can ride on snow, or
a procurement package. We are interested in optimal
VT instances, in terms of the user’s utility function,
which can be described in terms of a number of KPIs
or objectives, e.g., cost, quality and carbon emissions.

Thus, the problem involves two interrelated tasks:
how to extract a user utility as a function of KPIs
through a short interactive session with the user; and
how to choose a specific instantiation of a Virtual
Thing that optimizes the utility. OptiGuide+ is de-
signed to address this problem.

There has been prior work on decision guidance
systems for Markets of Virtual Things, including (Han
and Brodsky, 2022; Han and Brodsky, 2023). This
is based on the work on Decision Guidance Systems
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(Brodsky et al., 2016; Nachawati et al., 2017), which
are a specialized class of decision support systems
that elicit human knowledge and guide the users to
make the best possible decisions. Paired with para-
metric design for novel products (Gingold et al., 2009;
Yu et al., 2011; LaToza et al., 2013; Shin et al.,
2017; Liu et al., 2019), decision guidance systems
are broadly applied to smart manufacturing (Menascé
et al., 2015), including product analysis, manufactur-
ing process and procedure optimization (Egge et al.,
2013; Shao et al., 2017; Shao et al., 2018; Brodsky
et al., 2019; Li et al., 2020), and manufacturing en-
ergy and waste reduction (Shao et al., 2011; Griffiths
et al., 2016).

The concept of Virtual Things (VTs) has been pro-
posed and explored in (Han and Brodsky, 2024) as
part of the DG-ViTh system, which aims to facilitate
optimization and decision-making for parameterized
specifications of manufactured products and services.
However, DG-ViTh lacks interactive mechanisms for
dynamic utility extraction, relying instead on prede-
fined utility functions, which limits its adaptability to
consumer-driven markets.

Extensive work has also been done on iterative
recommender systems based on multi-objective op-
timization. CAPORS introduced a composite recom-
mendation methodology, emphasizing Pareto-optimal
trade-offs for arbitrary criteria (Jeffries and Brod-
sky, 2017). CAPORS-IUX extended this by integrat-
ing continuous user interaction to refine recommen-
dations iteratively, capturing individual utilities (Jef-
fries and Brodsky, 2018). However, real-time opti-
mization posed challenges, particularly in complex
domains, and both systems lacked robust domain in-
dependence.

OptiGuide further advanced the field by introduc-
ing preprocessing algorithms to improve efficiency
and incorporating a domain-independent architec-
ture. It facilitates user utility extraction by cap-
turing user interactions, providing real time feed-
back and optimization through a customizable inter-
face (Almanie and Brodsky, 2024). Nevertheless,
OptiGuide’s framework was not designed to han-
dle VT-specific artifacts, such as parameters or met-
rics schemas, preventing its application to dynamic
Virtual Things Markets. Furthermore, its deploy-
ment was limited to standalone systems, restricting
its broader applicability, and it did not implement the
best so far and improvement functionalities.

Bridging these gaps is the focus of this paper.
More specifically, we have developed OptiGuide+, an
interactive recommender system that guides users in
choosing and optimally instantiating Virtual Things.
OptiGuide+ combines the strengths of DG-ViTh and

OptiGuide to overcome their respective limitations.
The core contribution of this paper is the design and
development of OptiGuide+. This required a number
of specific technical contributions as follows:

• Real-time Interactive Utility Extraction: OptiGu-
ide+ leverages OptiGuide’s iterative user interac-
tion capabilities, enabling users to dynamically
define and adjust utility functions based on spe-
cific objectives and preferences within the VT
framework.

• Seamless VT Integration: OptiGuide+ incorpo-
rates VT-specific artifacts, including parameter-
ized specifications and analytic models, enabling
it to operate effectively within the Market of Vir-
tual Things.

• Web Deployability: The system enhances Op-
tiGuide’s deployment capabilities by making it
web-accessible, ensuring broader accessibility
and scalability across diverse domains and plat-
forms.

• Enhanced User Interface: The system provides a
user-friendly interface for visualizing trade-offs,
exploring Pareto-optimal solutions, and finalizing
decisions, ensuring an intuitive and satisfying user
experience.

The integration of these features makes OptiGu-
ide+ a unique utility-driven interactive decision guid-
ance system capable of addressing the dual challenge
of utility extraction and optimal instantiation of Vir-
tual Things.

The rest of this paper details the design, imple-
mentation, and demonstration of OptiGuide+, high-
lighting its potential to transform decision-making in
markets of parameterized products and services. Sec-
tion 2 reviews the idea of Virtual Things as well as
the high-level architecture and functionalities of DG-
ViTh. Section 3 provides an overview of OptiGuide+
and demonstrates its use through a Virtual Things ex-
ample. Section 4 covers a detailed functional and
architectural design and implementation of OptiGu-
ide+. We then demonstrate in Section 5 how OptiGu-
ide+ works to render optimal VT in a web-deployed
environment and conclude with future research direc-
tions in Section 6.

2 Virtual Things: ARTIFACTS AND
FUNCTIONS

In this section, we overview the concept of Virtual
Things (VT’s) artifacts and functions more formally
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Figure 1: DG-ViTh Functionality and User Roles (Han and Brodsky, 2024).

and describe the DG-ViTh system. We borrow the de-
scription from (Han and Brodsky, 2024).

DG-ViTh (see Figure 1) connects multiple user
roles to the functionalities they desire respectively,
and acts as the interface and decision guidance en-
gine for the Market of Virtual Things. Architecturally,
DG-ViTh involves the reusable, extendable and mod-
ular knowledge base of specs and analytic models in
the VT repository, the conventional e-commerce mar-
ket functions, and the specialized VT functions built
on DGAL (Brodsky and Luo, 2015) which together
power up the Market of Virtual Things.

The entrepreneur with innovative ideas can nav-
igate the transition from conceptual ideation, to vir-
tual design and production, and ultimately to con-
crete market presence, informed and empowered by
the decision guidance system of DG-ViTh. During the
same process, in the whole ecosystem, the capability
providers, designers, collaborators, and investors all
get accurate, genuine, and timely market information
on the reception of the innovative product, so they
can use the valuable feedback information to evalu-
ate and further their work and investment. By sup-
porting the creation, searching, and optimization of
Virtual Things, DG-ViTh streamlines the product de-
velopment workflow and enhances design precision
according to user preferences. Its capabilities to con-
struct optimal Virtual Things and facilitate informa-
tion flows in the cloud environment accelerate the re-
alization of innovative ideas.

2.1 Key Virtual Things Artifacts

Key artifacts for Virtual Things include VT specs, re-
quirements specs, utility, metrics schemas, and pa-
rameters schemas. These artifacts are stored in the
repository and used by the DG-ViTh system.

2.1.1 vtSpec

The core Virtual Thing artifact is a VT design spec
(vtSpec). Semantically, a vtSpec is an analytic model
AM, which is a (mathematical) function

AM : MI → MO

where

• MI is the AM’s domain of all possible param-
eters’ inputs, representing all possible instantia-
tions of fixed and controllable parameters relevant
to model computation.

• MO is the AM’s co-domain of all possible model
outputs representing computed user-facing met-
rics and constraints, i.e., all the information that
the user needs to judge a VT instance.

Syntactically, MI is represented using the notion
of the domain associated with a parameters schema
(parametersSchema), defined formally in (Han and
Brodsky, 2024). A parametersSchema is a JSON
data structure corresponding to AM’s input, where all
fixed and decision parameters are annotated to indi-
cate their type (e.g., reals, int) as well as optional
lower and upper bounds.

Informally, dom(parametersSchema) is the set of
all JSON structures resulting from replacing parame-
ters’ annotations with values within the given bounds
from a corresponding domain. Similarly, MO is rep-
resented using the notion of the domain associated
with a metricsSchema, also formally defined in (Han
and Brodsky, 2024).

The model AM is represented syntactically as a
Python function that gets, as input, a JSON structure
from MI and produces, as output, a JSON structure
from MO. An example of a syntactic representation
of a vtSpec including its parametersSchema, metric-
sSchema and analytic model AM, is shown in Figure
6.
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2.1.2 vtReqSpec

VT requirements specification (vtReqSpec) is used by
users to specify requirements to search for vtSpecs or
find optimal instances of vtSpecs. The semantics of
vtReqSpec is given by two (mathematical) functions

ob js : MO → O and constraints : MO →{T,F}
where

• MO is the domain of metricsSchema as previously
described (which is also used as a co-domain of
vtSpecs analytic model).

• O is the objs’s co-domain of all possible objec-
tives/KPIs value instantiations according to the
objectives schema (objsSchema).

While a metrics structure in MO may involve numer-
ous metrics and characteristics of a VT instance, a
structure in O holds values for just a (small num-
ber) of objectives (also called KPIs), e.g., cost, carbon
emission, and manufacturing time. The function objs
maps the more complex metrics structure in MO into
the values for the objectives in O. The Boolean func-
tion constraints is used to indicate whether a metrics’
instance m ∈ MO is feasible (constraints(m) = T ) or
not (constraints(m) = F).

Similar to MO = dom(metricsSchema), the objs
co-domain O = dom(ob jsSchema) is defined for-
mally in (Han and Brodsky, 2024). Informally, ob-
jsSchema is a JSON structure that contains the names
of objectives (e.g., cost, carbon emission, manufac-
turing time), with their values annotated to indicate
their type (e.g., real, int) and optional lower and upper
bounds. And dom(ob jsSchema) is the set of all JSON
structures resulting from replacing objectives’ anno-
tations in objsSchema with values within the given
bounds from a corresponding domain. An example
of objsSchema appears in Figure 7 under “objectives”
and “schema”.

Syntactically, vtReqSpec is described as a JSON
structure that contains or refers to metricsSchema, ob-
jsSchema, and Python functions objs and constraints
to define the corresponding mathematical functions.
It is required and assumed that the Python function
objs produces an output in O for any input in MO,
and that the Python function constraints produces a
Boolean value T or F for any input in MO. An exam-
ple of vtReqSpec artifact appears in Figure 7.

2.1.3 Utility

If a decision maker would like to find an optimal in-
stantiation of a vtSpec in terms of multiple objectives,
she needs to specify another artifact - utility which de-
scribes a linear combination of objectives in the cor-

responding vtReqSpec. The semantics of utility (as-
sociated with a vtReqSpec and its objsSchema) is the
(mathematical) function

U : O → R

where O is the domain of objsSchema and R is the
set of real numbers. We restrict ourselves to utility
functions being linear in objectives. Syntactically, a
utility artifact includes a min/max flag to indicate if a
decision maker would like to minimize or maximize
it; and the weights for each of the objectives in the
associated vtReqSpec for the computation of a linear
combination of the objectives.

2.2 DG-ViTh Functions Syntax and
Formal Semantics

DG-ViTh functions are a set of functions that spe-
cialize in creating, searching, modifying, optimizing,
comparing and analyzing the Virtual Things. We have
defined several key functions with their syntactic sig-
natures and semantics.

2.2.1 vtOptimalInstance(vtSpec, vtReqSpec,
Utility)

The semantics of the vtOptimalInstance function is to
find a VT instance that matches the vtReqSpec and
is optimal in terms of the user’s utility. We have the
mathematical functions

AM : MI → MO

constraints : MO →{T,F}
ob js : MO → O

U : O → R
corresponding to the semantics of vtSpec, reqSpec

and utility in the input. Consider

ARGMAX = argmax
mi∈MI

U(objs(AM(mi)))

s.t. constraints(AM(mi)) ∧
vtMetricBounds(AM(mi)) ∧
reqMetricBounds(AM(mi)) ∧
objsBounds(objs(AM(mi)))

where

• vtMetricBounds is the bound constraints of the
vtSpec’s metricsSchema

• reqMetricBounds is the bound constraints of the
vtReqSpec’s metricsSchema

• ob jsBounds is the bound constraints of the
vtReqSpec’s ob jsSchema
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To complete the semantics of vtOptimalInstance, the
output is as follows:

1. If ARGMAX = /0, return INFEASIBLE

2. Else, if (∀mi ∈ MI)(∃mi′ ∈ MI)
s.t. U(ob js(AM(mi′)))>U(ob js(AM(mi))),
return UNBOUNDED

3. Else return i ∈ ARGMAX

Note that ARGMAX may have more than one ele-
ment, so in the third case any element i ∈ ARGMAX,
which corresponds to an optimal solution, can be re-
turned.

2.2.2 paretoOptimalDB(vtSpec, vtReqSpec)

This function returns a set of all valid vtSpec
instances that are Pareto-optimal with respect to
vtReqSpec. More formally, consider a vtSpec
instance i ∈ vtValidInstances, where the set
vtValidInstances is defined by the function
vtValidInstance that returns all valid instances
of the vtSpec. Let o1(i), . . . ,on(i) denote the val-
ues for each objective’s name in ob jsSchema of
vtReqSpec, as computed by ob js(i). We say that i
is Pareto-optimal w.r.t. vtReqSpec if the following
condition is satisfied: there does not exist a valid
instance i′ ∈ vtValidInstances such that

• All objective values o1(i′), . . . ,on(i′) are at least
as good as o1(i), . . . ,on(i), and

• At least one objective value ok(i′) for 1 ≤ k ≤ n is
strictly better than ok(i)

Note that strictly better means “<” for minimization
problems and “>” for maximization problems. Ac-
cording to the theoretical semantics above, the set de-
fined by the paretoOptimalDB function may be (un-
countably) infinite. In practical implementation, this
function may return a discretized representation of the
Pareto front. Also note that the function of paretoOp-
timalDB easily generalizes to input of a set of vtSpecs,
from a single vtSpec.

2.3 DG-ViTh Service Architecture

DG-ViTh supports effective and efficient interactions
between the users and the Market of Virtual Things
with a customizable, modular, scalable and user-
centric service architecture shown in Figure 2. The
users may take upon either the role of VT consumers
or VT composers to interact with the system through
a graphical user interface (GUI) where available ser-
vice options are presented. Each service is backed by
the corresponding DG-ViTh functions implemented in
DGAL.

The DG-ViTh functions are managed by the de-
cision guidance management system (DGMS) which
serves as a platform and connects technical users,
such as developers, data analysts, and administra-
tors (Brodsky and Wang, 2008). The DGMS gov-
erns the access to a library of reusable, extensible, and
modular analytic models that associate with the Vir-
tual Things. Through the virtual service network and
virtual product assembly, various data artifacts are
turned into new Virtual Things that match the user’s
innovative ideas. The Virtual Things are described
and represented by their dedicated performance ana-
lytic models which can be crafted and customized by
professional mathematical programmers and model
builders, or be machine-generated by the DGMS. In
addition, the DGMS offers a comprehensive toolkit
for tasks like database management, data mining, sim-
ulation, optimization, and more.

3 OVERVIEW OF OPTIGUIDE+

OptiGuide+ is an interactive recommender system
that builds upon the foundational OptiGuide frame-
work. This earlier system is domain-independent and
employs multi-objective optimization to guide users
in extracting their utility and finding Pareto-optimal
recommendations.

OptiGuide+ expands upon this foundation by in-
tegrating the VT framework from DG-ViTh, enabling
real-time interactive utility extraction and seamless
integration of VT-specific artifacts. This enhance-
ment allows it to operate effectively within the Market
of Virtual Things, engaging users to refine their pref-
erences iteratively and ensuring personalized utility-
driven decision-making. Moreover, OptiGuide+ en-
hances accessibility and scalability by being web-
deployable, which broadens its applicability across
various domains and platforms. It also enhances the
user interface by incorporating more functionalities,
making it more intuitive for visualizing trade-offs and
exploring Pareto-optimal solutions, thereby enhanc-
ing the overall user experience.

We illustrate the methodology of the OptiGuide+
system with an example involving a procurement
package from two virtual supply aggregators. Con-
sider a procurement package that includes items like
tables, chairs, and cabinets, each with a specific de-
mand. In our repository (or market) of Virtual Things,
there are two supply aggregators: Supply Aggregator
1, which includes suppliers 1 and 2, and Supply Ag-
gregator 2, which includes suppliers 3 and 4, each of-
fering different specifications. A recommendation is
an optimal instance of one of the Virtual Things. This
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Figure 2: DG-ViTh Service Architecture (Han and Brodsky, 2024).

recommendation comprises a set of orders, each of
which includes item quantities to be purchased from
a specific supplier. These orders must meet demand
and availability constraints and optimize multiple ob-
jectives, including cost, carbon emissions (CO2), and
manufacturing time (manufTime).

The challenge for users is to select the most suit-
able instantiation of a VT that effectively balances
these objectives. This process involves extracting a
user utility function from the competing objectives
and determining the optimal instantiation of the VT.
OptiGuide+ aims to learn the user’s utility through
user-system interactions and Pareto-optimal trade-
offs between objectives to generate optimal recom-
mendations with the highest predicted utility for the
user.

To initialize the OptiGuide+ recommender sys-
tem for the given example, users must provide a set
of domain-specific artifacts, including the analytic
model AM, parameters schema, metrics schema, vt-
Spec, vtReqSpec, and specified configuration settings.

The analytic model, as depicted in Figure 3, cal-
culates each objective (cost, CO2, and manufTime)
based on the parameters and control variables of the
input data. It also defines feasibility constraints to en-
sure non-negative quantities and to prevent exceeding
suppliers’ availability limits.

The parameters schema specifies the input param-
eters for the analytic model. Some of these parame-
ters are fixed, while others are control variables, an-

Figure 3: Analytic Model for Virtual Supply Aggregators.

notated with DGAL for optimal decision-making. In
this example, the Parameters Schema includes the
purchase information variables. For each pair of sup-
pliers and items, the purchase information covers the
price per unit, carbon emissions per unit, manufac-
turing time per unit, and available items, along with
the control variable “quantities”. Figure 4 depicts the
Parameters Schema for Supply Aggregator 1.

The metrics schema captures all metrics related to

OptiGuide+: An Interactive Recommender System for Virtual Things

647



Figure 4: Parameters Schema for VT1:Supply Aggregator1.

the user, including cost, CO2 emissions, manufactur-
ing time, combined supply of items (demand), and the
satisfaction of constraints for this example, as shown
in Figure 5.

Figure 5: Metrics Schema for Virtual Supply Aggregators.

The vtSpec for each virtual supply aggregator
specifies the collection of the analytic model, param-
eters schema, and metrics schema of a VT, as shown
in Figure 6.

The vtReqSpec artifact captures key information
about the objectives and constraints on the metrics. It

Figure 6: vtSpec for VT1: Supply Aggregator1.

includes an objectives schema that identifies the ob-
jectives, their data types, whether each objective is a
minimization or maximization metric, and the lower
and upper bounds for each objective. Figure 7 illus-
trates the vtReqSpec for the virtual supply aggregators
example.

Figure 7: vtReqSpec for Virtual Supply Aggregators.

Finally, the configuration settings for OptiGu-
ide+ specify the required artifacts, including vtRe-
qSpec and vtSpecs. The vtSpecs structure contains a
list of all relevant vtSpecs for the example under study.
Additionally, the settings define the default objective
(e.g., cost) for the user to consider, along with other
technical parameters necessary for the system’s oper-
ation, as shown in Figure 8.

Figure 8: Configuration Settings for Supply Aggregators.
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3.1 System Demonstration

The OptiGuide+ interface is designed to provide a
clear and intuitive layout for analyzing trade-offs and
optimizing recommendations among multiple objec-
tives. It facilitates the visual exploration and selec-
tion of optimal solutions from a Pareto front, guiding
users in choosing and optimally instantiating Virtual
Things. The interface, as illustrated in Figure 9, con-
sists of the following key sections:

• Pareto Front Graph: The upper-left section of
the interface displays a scatter plot representing a
Pareto front. Each point on the graph represents
a solution associated with a specific Virtual Thing
(e.g., supply aggregator1 or supply aggregator2),
showing the current trade-off between utility and
another objective (e.g., cost). A toolbar with icons
is provided at the bottom of the graph for quick ac-
cess to additional display options, such as zoom-
ing, exporting data, and resetting views.

• Weights of Current Utility: This section dis-
plays the current weights assigned to each ob-
jective, indicating their relative importance in
decision-making. These weights influence the
calculation of the overall utility.

• Pareto Front Table: The upper-right section of
the interface features a sortable, interactive ta-
ble displaying current trade-off recommendations.
Each recommendation in the table corresponds to
a point on the Pareto front and includes computed
objectives and current utility. A “Details” option
offers deeper insight into each solution. Addition-
ally, actionable options allow users to mark a so-
lution as “Best” or remove it from the table.

• Best So Far Section: The bottom panel of the
interface is reserved for recording and display-
ing the best solutions identified so far, facilitating
comparative analysis and final decision-making.
Initially, it is blank but will update dynamically.

3.1.1 User-System Interactions

Initially, as shown in Figure 9, users are presented
with a graph that plots different solutions on a Pareto-
optimal curve, where each alternative optimizes one
objective at the expense of others. The current util-
ity is at first calculated with equal weights assigned
to each objective. The default objective, represented
on the y-axis of the graph, is determined by the con-
figuration settings, shown in Figure 8, which specify
“cost” for this example. The recommendation with
the highest utility value is displayed in the Pareto
Front Table.

The points on the graph are color-coded for dis-
tinction, with blue indicating selectable options and
red highlighting actively selected points for further
analysis, as illustrated in Figure 10. Upon selecting
a point on the graph, the system automatically adds
the points and displays its information in the Pareto
Front Table. A sorting feature above the table allows
users to organize solutions based on selected criteria
such as utility or cost. Clicking on “Details” opens a
hierarchical view of the solution, displaying specific
data such as the quantities of items to be purchased
from designated suppliers within a supply aggregator.
For instance, the solution shown in Figure 10 involves
suppliers 3 and 4, associated with supply aggregator2.

When the user selects the third recommendation
(Rec 3) as the best choice, the system updates by
adding it to the “Best So Far” section. Concurrently,
the system recalculates the current utility based on the
objective weights of the selected recommendation and
updates the Pareto Front Graph and Table to reflect the
updated utility.

The “Best So Far” section displays a graph of nor-
malized utility and objectives for each best solution,
which facilitates comparison, alongside a detailed in-
formation table for that solution. Additionally, for
each best solution in this section, the user has three
actionable options: “Improve” to generate a new set
of recommendations by optimizing a selected objec-
tive, “Remove” to delete the solution from the list, or
“Accept” to finalize it as the optimal recommendation.

For example, if the user wants to improve the
“Best 1” recommendation based on manufacturing
time, they select the “manufTime” objective from the
table and mark the “Improve” option. Consequently,
a new set of recommendations is plotted along the
Pareto curve where the y-axis of the Pareto Graph
becomes “manufTime”, and the x-axis represents the
last updated utility. The user can continue refining
through this iterative process, as depicted in Figure
11, until deciding to finalize their choice by selecting
the “Accept” option for the optimal recommendation.

Figure 12 displays the accepted optimal recom-
mendation and its detailed solution, which involves
orders from suppliers 1 and 2, both associated with a
specific VT (supply aggregator 1).

4 OPTIGUIDE+ ARCHITECTURE
AND IMPLEMENTATION

In the development of OptiGuide+, we utilize the
foundational architecture of the original OptiGuide,
shown in Figure 13. This architecture comprises two
primary components: the Recommendation Engine,
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Figure 9: OptiGuide+ Interface Displaying the Initial Pareto Front Visualization.

Figure 10: Adding Data Points to the Pareto Front Table and Displaying Solution Details of a Selected Point.

Figure 11: OptiGuide+ Interface Demonstrating Iterative Improvement and Selection of the Best Solutions.

which handles the preprocessing phase, and the Rec-
ommendation User Interface, which implements the
runtime phase (Almanie and Brodsky, 2024).

The Recommendation Engine requires initializa-

tion with domain-specific artifacts that include an an-
alytic model, parameters schema, metrics schema, vt-
Spec, vtReqSpec, and configuration settings. Once
initialized, it integrates with the DGMS, which uses
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Figure 12: OptiGuide+ Interface Showing the Accepted Optimal Recommendation and its Solution Details.

Figure 13: OptiGuide+ Architecture (Almanie and Brodsky, 2024).

DGAL to generate domain-specific recommendations
and compute their objectives based on this initial
structure. The goal of the preprocessing phase is to
create a database for the Pareto front of the recom-
mendation space. This database includes estimated
user utility for each Pareto-optimal alternative, which
will then be utilized during the runtime phase. The
preprocessing phase involves four steps:
1. Weights Generation: This step generates a list of

weight combinations, where each weight is asso-
ciated with an objective. These weights contribute

to generating Pareto-optimal solutions during op-
timization.

2. Utility Computation: The utility function nor-
malizes the objectives on a scale from zero to one,
where zero represents the worst value and one rep-
resents the best. It then computes the weighted
sum of these normalized objectives using the gen-
erated list of weights.

3. Utility Optimizations: This step employs the
paretoOptimalDB function to identify all vtSpec
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instances that are Pareto-optimal with respect to
vtReqSpec. It iterates over the generated list of
weights and uses the vtOptimalInstance function
to find a VT instance that matches the vtReqSpec
and optimizes the user’s utility, resulting in an
“initial DB” JSON file containing all feasible rec-
ommendations for the given problem.

4. Initial DB Unification: This step merges rec-
ommendations that share similar or identical ob-
jective values but differ in weights, utilizing Eu-
clidean distance and K-Medoids clustering. This
process reduces redundancy, resulting in a “Pareto
DB” JSON file containing only representative,
non-dominated solutions.

The runtime phase is designed to facilitate user
interaction and learning of an individual’s utility to
eventually identify their optimal recommendation.
This phase includes three components:

• Pareto Front Preparation: This component pre-
pares the Pareto front data from “Pareto DB” en-
tries based on the current weights and the objec-
tive designated for the y-axis. It computes the cur-
rent utility, represented on the x-axis, for each en-
try according to these weights.

• UI Generation: This component provides the
user with a visual representation of Pareto-
optimal solutions.

• Handling UI Interaction: It handles all user in-
teractions within the interface. For example, when
a user selects a point as “Best” in the table, it re-
trieves the weights of the corresponding point and
updates the GUI to reflect the new utility.

5 OPTIGUIDE+
CROSS-PLATFORM
DEPLOYMENT
METHODOLOGY

The deployment of OptiGuide+ was designed to
leverage JupyterLab as the primary platform, cap-
italizing on its robust support for integrating com-
putational workflows with a graphical user inter-
face (GUI). Users will be able to access the project
repository that houses the relevant artifacts and in-
voke function calls from the GUI. This process en-
sures an accessible, efficient, and reproducible de-
ployment mechanism, aligning with modern compu-
tational standards. The specific steps are as follows:

1. Platform Preparation: JupyterLab was selected
as the ideal platform for hosting OptiGuide+ due

to its browser-based interface, which ensures plat-
form independence and minimizes setup com-
plexity.

2. Deployment Initialization: The deployment pro-
cess begins with launching JupyterLab from the
project directory. This step grants users access
to a unified workspace, allowing them to inter-
act with all necessary components of OptiGuide+,
including file management, script execution, and
application interfaces.

3. Data Preprocessing: Within JupyterLab, the pre-
processing module (mainPreprocessing.py) is ex-
ecuted. This module transforms the input arti-
facts and pre-computes the data in the underlying
Pareto optimal database in preparation for subse-
quent interactions, ensuring optimal performance
of the GUI.

4. Interface Activation: After preprocessing, the
graphical user interface is initialized by execut-
ing the script (optiguideUI.py). This launches the
OptiGuide+ interface in a new browser tab, where
users can engage with its features and explore its
capabilities in real-time.

By utilizing JupyterLab, this deployment method-
ology features cross-platform reproducibility, scala-
bility, and user-centric design. The simplified setup
and intuitive interface reduce barriers to entry, foster-
ing broader adoption among diverse user groups.

6 CONCLUSIONS

OptiGuide+ has advanced the field of interactive
decision guidance systems by specifically address-
ing the needs of the Virtual Things (VT) market.
The system leverages multi-objective optimization
techniques and real-time user interaction to generate
Pareto-optimal recommendations, ensuring that each
decision maximizes the user’s utility while adhering
to practical constraints.

Many interesting research questions remain open.
They include (1) the development of more efficient
algorithms for Pareto front computation;

(2) exploring new paradigms for utility extraction;
and (3) improvements to the user interface with an
emphasis on integrating advanced visualization tools.
These enhancements will aid users in more effectively
comparing the “best so far” options, incorporating
domain-specific visualizations such as maps to pro-
vide deeper insights into the data.
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