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Abstract: Retrieval Augmented Generation (RAG) has become a growing area of interest in machine learning (ML)
and large language models (LLM) for its ability to improve reasoning by grounding responses in relevant
contexts. This study analyzes two RAG architectures, RAG’s original design and Corrective RAG. Through
a detailed examination of these architectures, their components, and performance, this work underscores the
need for robust metrics when assessing RAG architectures and highlights the importance of good quality con-
text documents in building systems that can mitigate LLM limitations, providing valuable insight for academic
institutions to design efficient and accurate question-answering systems tailored to institutional needs.

1 INTRODUCTION

The development of large language models (LLMs)
has garnered significant interest across fields for their
ability to generate content. Generative AI has im-
pacted a large number of domains and applications,
one of them being question-answering (QA). The
ability of LLMs to generate accurate responses has
sparked significant discussion, revolutionizing var-
ious fields while posing unprecedented adaptation
challenges (Yunfan Gao, 2024). Particularly, LLMs
have been an increasingly developing topic of con-
versation in academia due to their many benefits and
challenges to learning and teaching (Crompton and
Burke, 2023; Damiano et al., 2024). Some colleges
have even gone as far as implementing AI in their ad-
ministrative uses.

Although very useful, LLMs are still highly sus-
ceptible to hallucinations or generations that are not
accurate or blatantly false or ludicrous, such as gen-
erating non-existent web links and references (Wu
et al., 2024) or fabricating legal cases (Browning,
2024). Because of this, researchers in the question-
answering domain have developed systems that, when
presented with a query, can refer back to the corpus of
text they were trained on and external knowledge to
output (more) accurate answers (Gonzalez-Bonorino
et al., 2022). LLM-based question-answering sys-
tems have experienced exponential growth, starting
with the retriever-reader architecture, first proposed
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by researchers at Facebook AI (now Meta) and Stan-
ford (Chen et al., 2017) and evolved into more so-
phisticated systems. The latest paradigm in develop-
ing LLM-based QA systems is called retrieval aug-
mented generation (Lewis et al., 2020), also known
by its acronym RAG. In this family of models, and
as in previous retriever-reader architectures, the sys-
tem uses the given query to find related documents;
but instead of retrieving the best span of text from
the retrieved documents, the GenAI component of the
RAG mechanism generates the answers. The cor-
pus of documents the retriever component uses can
include resources such as internal policy handbooks,
textbooks, or instructional guides tailored to address
specific user queries. This helps mitigate the halluci-
nations an LLM may have when dealing with a user
query (Yunfan Gao, 2024). Since the introduction of
RAG in recent years, many other variations of RAG
have been developed to deal with the issues that may
arise with this paradigm in different application sce-
narios. This type of paradigm can be beneficial in a
higher education setting, with multiple use cases and
applications, including a) question-answering assis-
tants (or chatbots) for administrative tasks or to an-
swer frequently asked questions by students; b) AI-
based teaching assistants delivered by instructors for
their students -instructors can load lecture notes and
solved exercises, and students can formulate ques-
tions to the TA to help enhance their learning process;
c) AI-based teaching aids for instructors.

This study surveys RAG architectures and their
application in higher education and analyzes two vari-
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Figure 1: RAG Architecture.

ations: RAG’s original implementation and Correc-
tive RAG (Shi-Qi Yan, 2024), describing how they
can be implemented and evaluated.

The paper is organized in the following manner:
we start by introducing the retrieval augmented gen-
eration (RAG) architecture and the metrics used to
evaluate its performance, followed by a short litera-
ture review of RAG technology in higher education.
We then trace the most relevant variations of RAG
technology developed since its inception, focusing on
Corrective RAG. We follow with a detailed descrip-
tion of the experimental setup to analyze the perfor-
mance of Simple RAG and Corrective RAG. We re-
port and discuss our findings. Finally, we provide
conclusions with comments on the limitations of the
research.

2 RETRIEVAL AUGMENTED
GENERATION (RAG)

2.1 RAG Architecture

RAG was first introduced as a paradigm for nat-
ural language processing tasks (NLP) in 2020 in
a paper published by Facebook AI (now Meta) ti-
tled Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. The basic framework first in-
volves embedding the corpus of context into a vec-
tor database. Then, using the vector database as a re-
trieval system, user queries are embedded into vector
representations, which are then used to retrieve rel-
evant documents; the LLM subsequently uses those
documents to generate an answer to the query (Lewis
et al., 2020). Figure 1 depicts the architecture and
the flow of execution. In the document storage stage
(labeled as 0), textual data extracted from the edu-
cational institution are transformed into vector em-

beddings and stored in a knowledge base (vector
database) / information retrieval system for use by the
question-answering conversational system. Then in
the query stage: 1) The user submits a query; 2) The
user query is vector-encoded and delivered to the in-
formation retrieval system where, through semantic
/ similarity search, a set of candidate documents is
retrieved from the vector database; 3) Using the re-
trieved context and the user query, the LLM is then
prompted, using engineered prompts, for a genera-
tion; 4) The generative LLM uses these data to pro-
duce the answer to the formulated user query; 5) If
the conversation ensues, previous answers are added
to subsequent tailored prompts to provide continuity
to the flow of the conversation.

This approach mitigates hallucinations within
LLMs since it combines the parametric memory of
an LLM, or the internal knowledge it has acquired
through training, with the retrieved context, which re-
sults in generations that are more grounded in context
and thus more accurate and logically based (Lewis
et al., 2020). Although RAG has proven to be very
helpful for accurate generations in LLMs, there are
still a number of issues that can make RAG non-
reliable. In a simple RAG implementation, the effec-
tiveness of RAG is highly dependent on the retrieval
quality (Yu et al., 2024): retrieving documents that
are inaccurate, contradictory, or unnecessary.

2.2 RAG in Higher Education

The inception of large language models, generative
AI, and retrieval augmented generation technologies
has bolstered the use of question-answering assis-
tants in higher education. RAG, in particular, has
become a promising architecture for faculty and ad-
ministrators, given its potential for controlling hallu-
cinations through the use of a curated corpus of data,
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prompting, and logic workflow that constrains spuri-
ous generations and the natural ability of generative
LLMs for producing cogent human-like text, in this
case, summarized from retrieved documents. Sev-
eral projects and publications have emerged recently
in computer science education; see (Lyu et al., 2024;
Wong, 2024; Thway et al., 2024) for example. Owl-
Mentor (Thüs et al., 2024) is a RAG system designed
to assist college students in comprehending scientific
texts. (Modran et al., 2024) implement an intelligent
tutoring system by combining a RAG-based approach
with a custom LLM.

RAG Systems are considerably more robust when
compared to answers delivered by LLMs, but can still
exhibit hallucinatory behavior under certain circum-
stances. According to (Feldman et al., 2024), for ex-
ample, RAG systems can be misled when prompts di-
rectly contradict the LLM’s pre-trained understand-
ing. This obviously has a significant impact in
an educational setting where accuracy in answers is
paramount. A critical outstanding issue to deploy at
a large scale is credibility: in a study conducted by
(Dakshit, 2024), a major recommendation was to have
faculty members monitor usage to verify the correct-
ness of the systems’s responses. It is, therefore, im-
perative to objectively measure RAG systems’ perfor-
mance and the accuracy of the generations resulting
from user queries.

2.3 Evaluation Metrics for RAG

Metrics are crucial for evaluating how well a RAG
system is generating responses. Traditional statistical
metrics alone fail to capture RAG processes’ nuanced
and dynamic nature. Evaluating a RAG system en-
tails assessing the performance of its actions (retrieval
and generation) and the overall system to capture the
compounding effect of retrieval accuracy and gener-
ative quality (Barnett et al., 2024). Several bench-
marks have been developed to measure the perfor-
mance of RAG applications. In this work, we use RA-
GAS: Automated Evaluation of Retrieval Augmented
Generation (Es et al., 2023). RAGAS is utilized in
this study to analyze various subprocesses within the
larger RAG framework, using several metrics: con-
text recall, context precision, faithfulness, and seman-
tic similarity.

Context recall focuses on how many relevant doc-
uments were successfully retrieved. If GT is ground
truth and C is context, then context recall is calculated
using this formula:

Context Recall =
GT claims in C

number of claims in GT
(1)

With context recall, a better sense of retrieval effi-

ciency within a RAG process can be obtained by as-
sessing RAG’s ability to retrieve all necessary and re-
lated context for a given query. This measure is on a
scale from 0 to 1, and high recall indicates that a sig-
nificant proportion of relevant documents were suc-
cessfully retrieved.

Context precision is defined by RAGAS as a met-
ric that gauges the proportion of relevant chunks in
the retrieved contexts. Mathematically:

Context Precision =
∑

K
k=1(Precision@k× vk)

rK
(2)

with vk ∈ (0,1) equal to the relevance indicator at rank
k, rK equal to the total number of relevant items in the
top K results, and Precision@k formulated using the
equation below:

Precision@k =
TP@k

TP@k+FN@k
(3)

’@k’, a typical notation in information retrieval, indi-
cates that the precision is computed only for the top
k retrieved items rather than considering the entire set
of retrieved contexts. TP@k and FP@k are the num-
ber of relevant and irrelevant chunks respectively, re-
trieved up to rank k. Context Precision uses an av-
erage of Precision@k values, weighted by vk, which
ensures that only relevant chunks contribute to the av-
erage. In that manner, retrieved chunks are evaluated
based on their usefulness.

Faithfulness measures the factual consistency of
the generation in relation to the retrieved context. A
generation can be considered faithful if all the claims
within the generation can be directly inferred from the
retrieved context. A higher score, scaled from 0 to
1, indicates that everything claimed in the generation
can be inferred from the retrieved context. If G is the
generation and C is the retrieved context, then:

Faithfulness =
# claims in G supported by C

Total # of claims in G
(4)

This is a valuable metric for evaluation since it gives a
compounded perspective of the retrieval accuracy and
the generation quality in one cohesive metric.

Semantic similarity evaluates how semantically
related the generation and the context documents are
to one another. Semantic similarity is calculated by
vectorizing the generation and context and using co-
sine similarity for the metric, which takes the cosine
angle between the two vectors. This is on a scale from
0 to 1, with high scores indicating a high semantic
similarity between the generation and contexts.

For the purpose of this study, RAGAS metrics are
supplemented with an additional metric, labeled Face
Validity, which is assessed through visual inspection
of the experimental results to measure end-to-end the
quality of the generation given the user query. For
more details, see section 4.1.
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Figure 2: Corrective RAG Architecture - adapted from (Shi-Qi Yan, 2024).

3 RAG VARIATIONS

Since its inception in 2020, there has been plenty of
research and development on the RAG architecture.
RAG’s original paper used dense passage retrieval
(Karpukhin et al., 2020) to embed the documents in a
dense, high-dimensional vector space. REALM (Guu
et al., 2020) integrates LLM pre-training with the
retriever, allowing the model to retrieve documents
from the corpus of data used during pre-training or
fine-tuning. dsRAG, an open-source retrieval RAG
engine (D-Star-AI, 2025) implements Relevant Seg-
ment Extraction (RSE), a query-time post-processing
algorithm that analyzes and identifies the sections
of text that provide the most relevant information
to a given query. Microsoft researchers have pro-
posed GraphRAG (Edge et al., 2024), integrating
knowledge graphs into RAG to enhance the qual-
ity of answers produced by the GenAI component.
LoRE: Logit-Ranked Retriever Ensemble for Enhanc-
ing Open-Domain Question Answering (Sanniboina
et al., 2024) uses an ensemble of diverse retrievers
(BM25, FAISS) and offers an answer ranking algo-
rithm that combines the LLM’s logits scores, with the
retrieval ranks of the passages. Self-Reflective RAG
(Akari Asai, 2023), a recent advanced architecture,
attempts to improve the retrieval of a simple RAG
implementation and thus the generations as a whole
by introducing a system that decides when to make a
retrieval, otherwise known as adaptive retrieval. Cor-
rective RAG (Shi-Qi Yan, 2024), another recent ad-
vanced architecture, is similar to Self-Refective RAG
in terms of its dynamic self-analyzing behavior; it is
one of the two architectures analyzed in this paper,
and therefore described in detail in the following sec-
tion.

3.1 Corrective RAG

Corrective RAG (Shi-Qi Yan, 2024), or CRAG for
short, looks to mitigate hallucinations of low-quality

retrieved-context by introducing a lightweight re-
trieval evaluator, giving a confidence score to work
with for the rest of the generation process, which
allows the model to adapt its behavior for genera-
tions in relation to the confidence score of the re-
trieved contexts. Similar to Self-Reflective RAG,
this confidence score can influence different deci-
sions in the subsequent process by allowing the model
to take action against low-quality retrievals, such as
augmenting retrieval with a web search or introduc-
ing a ”decompose-then-recompose” algorithm which,
when applied to retrieved documents, allows the sys-
tem to focus on relevant information and disregard ir-
relevant information. Figure 2 provides a high-level
view of the flow of execution in Corrective RAG: 1)
The user submits the query; 2) The retriever com-
ponent selects documents from the vector database
based on the user query; 3) The retrieved documents
are graded by the system to determine their relevance
relative to the user query; 4) If the documents are rel-
evant, the GenAI (LLM) component generates the an-
swer; 5) If the documents are not relevant, the system
attempts to re-write / transform the query, then per-
forms a web search to fulfill the query and submits it
to the GenAI component to generate the answer; (6)
If there is ambiguity (the score of the retrieved doc-
uments coming out of the grading process is neither
high nor low, meaning that there is insufficient infor-
mation to fulfill the query), the system combines the
retrieved documents with additional context extracted
from the web search and then submits it to the GenAI
component to generate the answer.

There is overhead in Corrective RAG that comes
with performing web searches or combining docu-
ments with web search results, which can, in turn,
add to the latency of generations. More importantly,
Corrective RAG depends on the quality of the con-
fidence score: If the score is inaccurate, it can yield
low-quality generations. Along with retrieval quality
concerns, there is also the possibility that bias is in-
troduced when generating answers with web source
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retrieval since the retrieval is, in this case, using ex-
ternal, unverified sources as context.

4 EXPERIMENTAL SETUP

4.1 Data Set and Methods

The dataset was initially collected by scraping web
pages from the institution’s website and annotating
questions and their respective contexts. A total of 667
questions and their respective contexts were collected.
An excerpt of the dataset can be found in Table 1.

Although RAGAS allows testers to measure RAG
performance without relying on ground truth human
annotations, in this project’s context, we used an eval-
uation dataset. This was done because no evaluation
dataset has been made for the corpus of information
we considered (data from our institution).

Table 1: Dataset - Questions and Contexts.

Question Context

Does Marist offer vir-
tual tours?

Marist offers virtual guided and self-guided
campus tours.

What is WCF? Marist Singers performed at World Choral
Fest in Vienna and Salzburg.

The context of all 667 records was fed to the data
store of each of the two architectures under consider-
ation (Simple RAG and Corrective RAG)

We experimented on each of the two architectures.
For each architecture, we extracted 50 randomly cho-
sen records to perform the experiment runs. This
amounted to a total of 50 runs repeated over two ar-
chitectures for a total of 100 experiments (for details,
see section 5 and Table 2).

We used the 50 experiments in each architecture
to collect the following metrics: Context Recall, Con-
text Precision, Faithfulness, and Semantic Similarity
(see section 2.3 for more details). We then proceeded
to compute each metric’s means and standard devia-
tions over the 50 random records for each architec-
ture to benchmark both RAG architectures. Due to
the structure of the corpus of data used in this project,
the question in each sampled record has an answer
attached to it (its context). The question in each sam-
pled record was therefore fed to the RAG architecture,
simulating a user query, and the context attached to
the answer was used as ground truth to evaluate the
RAG architecture performance.

For better assessing the experimental results, we
added a metric obtained through visual inspection,
that we labeled Face validity. This was done to get the
end-to-end quality of the generation based on the an-

swer. Faithfulness is an adequate holistic metric, but
it gauges the quality of the answer only with regard to
the retrieved context. It is evidently laborious to com-
pute the metric through visual inspection and can only
be done at a small scale, but it supplements faithful-
ness and provides in this study a relevant measure of
the quality of the generations by the RAG architecture
under analysis.

The metric, which is calculated using precision,
recall, and the F1 measure over the sample of 50
records, was computed for each RAG architecture
with these considerations:

• After processing all 50 records with the RAG ar-
chitecture, each record is inspected, and the ques-
tion is compared to the generation.

• If the generation correctly answers the question,
extracting facts aligned with the ground truth in
meaning or factual content, even if phrased differ-
ently or not expressing the totality of facts con-
tained in the ground truth, the answer is consid-
ered a true positive.

• If the generated answer includes incorrect or irrel-
evant claims that contradict the ground truth (e.g.,
hallucinates), the generated answer is considered
a false positive.

• If the generation does not entirely answer the
question, missing facts contained in the ground
truth, then the generation is considered a false
negative.

• The count of true positives, false positives, and
false negatives is aggregated over all 50 samples
in variables TP, FP, and FN.

• Precision, Recall, and the F1 score are calculated
with these aggregated counts using the formulas
below. F1 is the harmonic mean of precision
and recall and, therefore, a more comprehensive,
holistic measure.

Precision =
T P

(T P+FP)
(5)

Recall =
T P

(T P+FN)
(6)

F1 score =
2 ·Precision ·Recall
(Precision+Recall)

(7)

4.2 Computational Platform

The experiments were run on-site using a workstation
with the following characteristics: 8-core, 3.2 GHz,
16 GB RAM, 1 TB HD. The software stack was made
up of the following components:

Investigating Flavors of RAG for Applications in College Chatbots

425



Table 2: Development Environment and Tools.

Component Details

Prog. Platform Python 3.12

IDE Visual Studio Code 1.96.2 - Jupyter
Notebook Extension 2024.11.0

Vector Storage ChromaDB 0.6.3, via LangChain (Chro-
maDB, 2024)

LLM App. Dev. LangChain 0.3.14 (LangChain, 2024)

LLM OpenAI’s GPT4o-mini (OpenAI, 2024),
via LangChain, cloud-based

Vector Embeddings OpenAI, via LangChain, cloud-based

RAG Metrics RAGAS 0.2.11 (RAGAS, 2024)

LangChain was selected as the platform of choice
to develop and integrate the two RAG architectures
under consideration, given its maturity and simplicity
(LangChain makes it very easy to set up and access
a vector database and retrieval system, and perform
LLM API calls with a few lines of code). Simple
RAG and the more elaborate Corrective RAG’s logic
flow were coded using a combination of Python pro-
gramming and LangChain API calls.

The notebooks with the source code for each of
the two RAG architectures under consideration are
available from the authors upon request.

5 RESULTS & DISCUSSION

Table 2 displays the results of the assessment of each
RAG architecture. As previously mentioned, each ex-
periment was conducted 50 times over the two RAG
architectures, each time recording the four RAGAS-
based metrics (context recall, context precision, faith-
fulness, and semantic similarity). The mean metric of
each architecture was computed by averaging the 50
outcomes of each metric, together with its standard
deviation. Face validity was then assessed by visually
inspecting each of the 50 queries and contrasting the
generation with the ground truth. This was followed
by computing precision, recall, and the F1 score out
of the 50 sampled records.

Execution times for each of the metrics over all
50 samples were in the same order of magnitude, with
Corrective RAG taking the longest in the case of faith-
fulness.

In the case of context recall, Simple RAG achieves
the highest mean value (0.528) but with the highest
variability (stdev=0.365) when compared to Correc-
tive RAG (mean=0.410, stdev=0.325).

In the case of context precision, Corrective
RAG (mean=0.956, stdev=0.177) outperforms Sim-
ple RAG (mean=0.913, stdev=0.203), having the
highest mean and lowest variability for the metric.

Table 3: Results for each metric, N = 50.

Metric Simple RAG Corrective RAG
Context Recall
Mean 0.528 0.410
Stdev 0.365 0.325
Time 8 min 8 min
Context Precision
Mean 0.913 0.956
Stdev 0.203 0.177
Time 5 min 2 min
Faithfulness
Mean 0.819 0.824
Stdev 0.321 0.213
Time 6 min 14 min
Semantic Similarity
Mean 0.847 0.881
Stdev 0.072 0.065
Time 25 sec 27 sec
Face Validity
Precision 0.795 0.666
Recall 0.854 0.941
F1 0.826 0.781

Simple RAG and Corrective RAG had sim-
ilar faithfulness values (mean=0.819, sd=0.321;
mean=0.824, sd=0.213, respectively), with Corrective
RAG performing slightly better than Simple RAG.

For semantic similarity, measuring how similar
the generation is to the context in terms of meaning,
Corrective RAG (mean=0.881, stdev=0.065) outper-
forms Simple RAG (mean=0.847, stdev=0.072)

In the case of Face Validity, the analysis is more
nuanced. Using F1, which combines precision and re-
call, Simple RAG (F1=0.826) outperforms Corrective
RAG (F1=0.781). Still, if we consider precision and
recall individually, Corrective RAG has a very high
recall (0.941) with the lowest precision value (0.666).

The different RAG processes utilize a context cor-
pus of web-scraped data from various internal and ex-
ternal pages of the College’s website. Although each
question in the dataset has a correct answer, this an-
swer may be obscured by irrelevant information on
the same scraped page. For example, a question about
a specific faculty member within a particular depart-
ment might include context from a general depart-
ment page listing all faculty members instead of fo-
cusing on the individual in question. This can signif-
icantly impact evaluation results when using RAGAS
metrics, due to how these metrics handle and are in-
fluenced by the composition of context documents.

In evaluating context recall, RAGAS calculates it
by dividing the ground truth claims within the con-
texts by the total number of ground truth claims. The
ground truth provided to RAGAS is often extensive
and contains diverse information, some of which may
be irrelevant to the specific question. This complex-
ity negatively impacts the performance of the context
recall metric across all architectures. Simple RAG
likely performs better than Corrective RAG as it can
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pass multiple context documents. Specifically, our
implementation retrieves three unique context docu-
ments from the vector store, increasing the likelihood
of including more ground truth claims. Additionally,
Simple RAG - unlike Corrective RAG - lacks condi-
tional logic that can potentially exclude relevant con-
text.

Corrective RAG ensures that context is always
used by supplementing or replacing retrieved docu-
ments with web searches when necessary. However,
the additional context from web searches can intro-
duce irrelevant information, confuse the LLM during
the rating process, and further diminish the context re-
call metric. Overall, Corrective RAG is more suscep-
tible to the composition of the context corpus, which
affects its ability to accurately recall relevant context,
compared to Simple RAG.

By the same token, Corrective RAG achieves
higher context precision than Simple RAG, most
likely because it can supplement retrieved-context
with web searches. This supplemental information
tends to be semantically relevant, especially when
it augments existing context documents rather than
replacing them. Consequently, Corrective RAG in-
cludes more relevant chunks, enhancing context pre-
cision, which is an indication of better refinement in
its retrieval process.

The faithfulness metric is computed by calculat-
ing the number of claims in the generation that are
supported by the context divided by the total number
of claims in the generation. Corrective RAG outper-
forms Simple RAG by a slim margin, likely due to its
ability to incorporate information from the web. Al-
though web searches can sometimes negatively im-
pact generations for complex or institution-specific
questions, the faithfulness metric indicates that web
supplementation can be beneficial within this domain.
The dataset includes various questions, from specific
inquiries about instructors or classes to more general
topics like comparing graduate studies in the UK ver-
sus the US. When Corrective RAG encounters a gen-
eral question without a sufficiently relevant context
document, a web search effectively supplements or
substitutes the missing information, leading to more
accurate generations. This capability allows Correc-
tive RAG to be competitive with Simple RAG by
grounding generations in relevant contexts. All in all,
both architectures have competitive values. A score
above 0.8 in both cases indicates that more than 80%
of the time, generations are accurate and consistent
with the retrieved context, which is generally accept-
able for many applications, especially in non-critical
domains.

Semantic similarity is calculated using cosine sim-
ilarity, hence the high values for each architecture.
Corrective RAG outperforms Simple RAG, again,
due to the ability of Corrective RAG to search the
Web and introduce semantically similar context doc-
uments, which can positively affect the metric.

Face validity was manually assessed by compar-
ing each question, its ground truth/context, and the
generated response to identify true positives, false
positives, and false negatives. Simple RAG achieved
the highest performance in this metric, likely due to
the composition of the context corpus and the absence
of conditional logic that otherwise hinders more com-
plex architectures. Simple RAG generates responses
directly from the retrieved context without prior eval-
uation. In contrast, Corrective RAG incorporates in-
formation from web searches, which can affect the
quality of generations depending on the question. As
reported in previous paragraphs, Corrective RAG has
a high recall but a comparatively low precision value.
Considering that face validity measures the end-to-
end quality and completeness of the generation with
respect to the query, this means that, on average,
Corrective RAG generations provide better alignment
with the ground truth in meaning or factual content
at the expense of more hallucination. The latter may
be due to its ability to search the web to supplement
the context and enhance generations, a double-edged
sword.

6 CONCLUSION

There is considerable potential in implementing RAG
architectures in a higher education setting, but the
quality and credibility of responses generated by
RAG systems remain substantive issues. Our experi-
mental results show that automated metrics are useful
tools for performance evaluation but extensive test-
ing through human intervention is a required step in
successful RAG implementation to measure the qual-
ity and completeness of the generated answers pro-
duced by RAG systems. Furthermore, data quality
and the data composition of the corpus of text used
for the retriever system are paramount for quality gen-
erations. This paper focused on building and test-
ing two variations of RAG architectures using stan-
dard open-source tools and a widely recognized com-
mercial LLM. Future work should benchmark other
RAG architectures and the use of other large language
models, open-source and commercial. The emphasis
should be placed on reducing hallucination through
improved retrieval strategies, improved quality of the
corpus data, and as much as possible, better model
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alignment. We recognize that the methodology pre-
sented in this paper is general and can be applied to
different sectors. However, it offers a valuable guide-
line for researchers and practitioners to implement
and evaluate RAG-based question-answering systems
in an educational setting.
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V., Goyal, N., Küttler, H., Lewis, M., tau
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