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Abstract: Research on network-based anomaly detection has been conducted as a countermeasure against cyberattacks
from IoT devices. Specifically, anomaly detection based on flow data, such as IPFIX, has garnered increasing
attention to address the rising communication volume. In these studies, obtaining flow data from the com-
munication data sent and received by IoT devices is necessary; however, obtaining these data can be difficult
when the IoT system is already built in a cloud environment. In this study, we investigated an anomalous com-
munication detection method using VPC Flow Logs, which can be obtained via AWS. VPC Flow Logs record
only the number of packets and bytes in a single direction, resulting in less information than that obtained via
flow data. For example, session information is divided into multiple records according to the time window.
To increase the precision of anomalous communication detection using VPC Flow Logs data, we developed a
methodology for the effective conversion of multiple VPC Flow Logs into bidirectional data. The efficacy of
this approach was assessed by evaluating its performance on public datasets.

1 INTRODUCTION

In recent years, the proliferation of cyberattacks tar-
geting Internet of Things (IoT) devices has become
a growing concern. A notable example of this trend
is the emergence of attacks that leverage IoT devices
as conduits, potentially compromising the integrity of
entire systems. In response to these threats, a range
of research and development initiatives has been un-
dertaken to enhance the security of IoT systems. One
area of focus is anomaly detection, which involves the
identification of unauthorized communications and
bots, among other threats, within networks of IoT de-
vices. With advancements in communication speed
and capacity, research utilizing flow data, such as IP-
FIX, which is more lightweight than previously used
packet data, has surged in recent years.

Concurrently, the emergence of applications built
on cloud platforms such as Amazon Web Services
(AWS) facilitates the utilization of not only PCAP
and IPFIX but also cloud logs (e.g., VPC Flow Logs)
as data related to communication. It is imperative to
acknowledge that capturing PCAP and IPFIX neces-

sitates the installation of dedicated software on the
VM residing in the cloud. This software can poten-
tially impact application performance. Consequently,
leveraging cloud logs provides a substantial advan-
tage. Nevertheless, it is crucial to recognize that the
purpose of obtaining cloud logs differs from that of
PCAP and IPFIX, making the application of anoma-
lous communication detection unfeasible.

This study focuses on AWS VPC Flow Logs, a
specific type of cloud log, and aims to address the var-
ious challenges associated with anomaly detection in
cloud logs. The subsequent section provides a com-
prehensive overview of these challenges and the pro-
posed methodology for addressing them. This study
also includes quantitative verification of the efficacy
of the proposed method through experiments with
multiple machine learning and deep learning models.

2 RELATED WORKS

Conventional anomalous communication detection
has historically relied on packet data, exemplified
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by the PCAP format because of its ability to metic-
ulously record network communications. This ap-
proach facilitates comprehensive analysis; however,
the large volume of data generated necessitates effi-
cient processing methods.

Consequently, in recent years, flow data, rep-
resented by IP Flow Information Export (IPFIX)
(Trammell and Boschi, 2008; Claise et al., 2013),
have been used. Flow data consist of information that
aggregates packet data into sessions and have the fol-
lowing characteristics:

• The data size is small because individual packets
are aggregated into sessions and recorded.

• It preserves statistical information about sessions,
including source and destination IP addresses,
port numbers, protocols, session start and end
times, and communication volume.

• Information can be aggregated into uni-flows or
bi-flows during a given session.

In their seminal work, Tang et al. (Tang et al.,
2016; Tang et al., 2018) proposed deep learning-
based anomalous communication detection models
for flow data and achieved high detection accuracy. In
addition, Lo et al. (Lo et al., 2021) proposed EGraph-
SAGE, an extension of GraphSAGE, a type of graph
neural network, and demonstrated excellent perfor-
mance in anomaly detection using flow data. As net-
work traffic is projected to rise in the future due to
the proliferation of 5G and the surge in IoT devices,
there is a growing need for research on anomalous
communication detection methods using flow data.
The architecture of systems incorporating IoT devices
is predominantly cloud-centered, as exemplified by
Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP).

In cloud-based architectures, procuring communi-
cation data such as PCAP and IPFIX from operational
services necessitates the installation of dedicated li-
braries on each server. This approach raises concerns
regarding its impact on operational costs and perfor-
mance. As an alternative, cloud logs provided by
cloud services, such as VPC Flow Logs in AWS, can
be utilized. The present study focuses on AWS VPC
Flow Logs; however, these cloud logs are not intended
for storing communication data such as IPFIX data,
which hinders their application in anomalous commu-
nication detection, leading to the following issues:

• Records by time window: Records are output
within a time window, so a single session may be
split into multiple records.

• Unidirectional: Transmitted data and received
data are output as separate records

• Retained information: Because only the time win-
dow is available, the temporal order between
records is lost when multiple records occur within
the same time window. Compared with IPFIX, the
number of recorded features is limited.

In this study, we propose a methodology for de-
tecting anomalous communications using only cloud
logs, without making any specific changes to the
cloud-based system architecture, by addressing the
aforementioned issues.

3 PROPOSED METHOD

3.1 Conversion from VPC Flow Logs to
Sessions

In this study, records of VPC Flow Logs are defined
as a session if they have the same values, including
source IP addresses, destination IP addresses, source
port numbers, destination port numbers, and proto-
cols, and if the time interval between consecutive
records is within the predefined time window. Specif-
ically, two cloud logs are considered to be in the same
session if the time interval between the start times of
consecutive cloud logs is within 600 seconds. The
reason for choosing 600 seconds is that the maximum
duration of a single window in AWS VPC Flow Logs
is 600 seconds.

Furthermore, the aggregation interval of VPC
Flow Logs records is defined as the time window
mentioned above. Records identified as part of the
same session are then aggregated by session accord-
ing to the following procedure:

1. Sort records in chronological order based on
matching signatures (combinations of source and
destination IP addresses, port numbers, and pro-
tocols).

2. Determine session boundaries based on the time
interval conditions mentioned above.

3. Aggregate statistics (packet count, byte count,
etc.) for each session.

3.2 Conversion to Bi-Flows

VPC Flow Logs are not captured for each individ-
ual communication session; therefore, it is not possi-
ble to determine the outbound and inbound directions
for a particular session. Consequently, a processing
method has been implemented that integrates the out-
bound and inbound directions of communication con-
currently with sessionization.
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Table 1: Details of the datasets.

Dataset name Split date & time Format Benign rate # of features # of training data # of test data
MedBIoT 2019-03-07 17:14 VPC Flow Logs 92.6% 4 126,866 15,791,081

VPC Bi-Flow 92.6% 7 17,352 2,789,571
Edge-IIoT 2021-11-24 00:00 VPC Flow Logs 97.3% 4 254,396 10,349,067

VPC Bi-Flow 97.3% 7 85,806 7,451,794

For a given session, the following conditions must
be met for it to be designated as the inbound session:

• The protocol must match.

• The source IP address and port number of one ses-
sion must match the destination IP address and
port number of the other session

• The destination IP address and port number of a
session must match the source IP address and port
number of another session

This allows for the treatment of sessions in which
the source and destination IP addresses and port num-
bers respond as a single bidirectional communication.

To integrate unidirectional sessions into bidirec-
tional sessions, the following procedure is imple-
mented:

1. For each communication record, search for a “re-
sponse communication” that meets the conditions
listed above, and forms a pair.

2. Integrate the paired communication records into a
single record.

3. Recalculate the bidirectional communication vol-
ume (transmission volume and reception volume),
packet count (transmission packet count and re-
jection packet count), communication time, and
other relevant metrics for the integrated record.

4. For records in which no pair is found, the feature
values for the response session are set to 0 and
then combined.

3.3 Anomaly Detection Models

To confirm the accuracy of the anomaly detection
method using cloud logs, we conducted an experi-
ment using a dataset in which open data were con-
verted to the VPC Flow Logs format. We used a li-
brary specifically developed for the this conversion to
the VPC Flow Logs format.

We performed sessionization and bidirectionaliza-
tion as preprocessing on the dataset and then eval-
uated the accuracy of a model commonly used in
anomalous communication detection.

4 EXPERIMENT

In this section, we evaluate the proposed method us-
ing communication data for the anomalous communi-
cation detection task. First, we introduce the dataset,
and then explain the models. Next, we consider the
experimental results.

4.1 Datasets

We used MedBIoT (Guerra-Manzanares et al., 2020)
and Edge-IIoT (Ferrag et al., 2022) as the datasets
for verification. These datasets contain both benign
and anomalous communications. For each dataset, we
created VPC Flow Logs format data using a tool that
converts PCAP to VPC Flow Logs format. Next, the
VPC Flow Logs format is converted into session units
using the proposed method and then converted into
bidirectional data (hereafter referred to as VPC Bi-
Flow). The details of the dataset are shown in Table
1. The dataset is sorted in chronological order, and
the split time is set so that the training data consist
solely of benign data, which is divided into training
and test datasets.

The features used as inputs to the model were con-
structed as follows. First, the features used across all
data formats include the number of buckets, traffic,
the amount of communication per packet, and com-
munication time. Note that the communication in
VPC Flow Logs includes both outbound and bound
routes. Next, the bidirectional features available in
VPC Bi-Flow consist of the number of packets, the
amount of communication, and the amount of com-
munication per packet in the inbound communication.

4.2 Experimental Specifications

In this section, we discuss the models and evaluation
metrics used to evaluate the dataset described in Sec-
tion 4.1.

4.2.1 Models

We used AutoEncoder (Aggarwal, 2013) and
DeepSVDD (Ruff et al., 2018), Isolation Forest,
KNN, and LOF. The models were developed using
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Table 2: Experimental results for MedB-IoT.

Algorithm ROC-AUC PR-AUC F1 score
VPC Flow Logs VPC Bi-Flow VPC Flow Logs VPC Bi-Flow VPC Flow Logs VPC Bi-Flow

AutoEncoder 0.121 0.947 0.040 0.781 0.138 0.927
DeepSVDD 0.361 0.943 0.057 0.736 0.148 0.928
IForest 0.460 0.285 0.065 0.202 0.185 0.481
KNN 0.885 0.183 0.578 0.185 0.759 0.489
LOF 0.820 0.807 0.389 0.605 0.666 0.810

Table 3: Experimental results for Edge-IIoT.

Algorithm ROC-AUC PR-AUC F1 score
VPC Flow Logs VPC Bi-Flow VPC Flow Logs VPC Bi-Flow VPC Flow Logs VPC Bi-Flow

AutoEncoder 0.441 0.362 0.109 0.105 0.169 0.165
DeepSVDD 0.677 0.495 0.259 0.441 0.352 0.604
IForest 0.759 0.206 0.170 0.021 0.241 0.038
KNN 0.499 0.841 0.160 0.133 0.239 0.158
LOF 0.392 0.752 0.178 0.044 0.279 0.108

PyOD (Zhao et al., 2019) to implement each model,
and the default values for the hyperparameters were
used.

4.2.2 Metrics

The evaluation metrics used are the area under the
ROC curve (ROC-AUC), the area under the precision-
recall curve (PR-AUC), and the maximum F1 score.
For all these metrics, higher values indicate better per-
formance.

4.3 Results and Discussion

4.3.1 MedB-IoT

The experimental results are presented in Table 2.
With the exception of KNN, there was a general im-
provement in each accuracy metric. However, for
KNN, each accuracy metric decreased.

The histogram of the anomaly score for the test
data in MedBIoT’s VPC Bi-Flow is shown in Fig-
ure 1∼Figure 5 .

The experimental results demonstrate a notable
enhancement in the accuracy of the DeepSVDD
model. As illustrated in Figure 2, the histograms
of benign data (blue) and anomalous data (orange)
are separated by a threshold of Anomaly Score =
0.05. A subsequent examination of the data with
Anomaly Score ≥ 0.05, which had a high concen-
tration of anomalous data, revealed approximately
770,000 records with a response communication vol-
ume and packet count of 0. This finding suggests that
the presence of response communication can be used
as an indicator of potential anomalies. Furthermore, a
trend toward an Anomaly Score ≥ 0.05 was identified
in approximately 80,000 benign data records with no
response communication. In the contrast, there were

many records with Anomaly Score < 0.05 for anoma-
lous data with response communication. Also, all be-
nign data with Anomaly Score < 0.05 had response
communication. This indicates that the ability to as-
sess anomalyities for bidirectional communication is
insufficient.

These trends were also observed in AutoEncoder
(Figure 1) and LOF (Figure 5), suggesting that the
evaluation metrics for VPC Bi-Flow resulted in rel-
atively high results. In contrast, with IForest (Fig-
ure 3) and KNN (Figure 4), the histograms of benign
data and anomalous data did not separate well, re-
gardless of whether there was response communica-
tion. Although the training data for VPC Bi-Flow in-
cluded approximately 3,000 out of the approximately
17,000 data points without response communication,
the model, which achieved the high accuracy, learned
to classify data without response communication as
anomalies relatively well.

4.3.2 Edge-IIoT

The experimental results are presented in Table 3.
There was little improvement in the accuracy of each
indicator.

We will focus on the DeepSVDD model, which
has relatively high accuracy, and discuss it. Figure 6
shows the histogram of the Anomaly Score for VPC
Bi-Flow. When we examined the anomalous data
with Anomaly Score ≥ 0.005, we found that it only
included the records with response communication.
In addition, anomalous data with Anomaly Score ≤
0.005 were included data without response commu-
nication. With respect to the benign data in the test
data, approximately 6 out of every 10 cases had no re-
sponse communication, while in the training data, ap-
proximately 2,000 out of approximately 85,000 cases
included response communication. This suggests that
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Figure 1: MedB-IoT: Histogram of Anomaly Scores for
VPC Bi-Flow using AutoEncoder.

Figure 2: MedB-IoT: Histogram of Anomaly Scores for
VPC Bi-Flow using DeepSVDD.

Figure 3: MedB-IoT: Histogram of Anomaly Scores for
VPC Bi-Flow using IForest.

Figure 4: MedB-IoT: Histogram of Anomaly Scores for
VPC Bi-Flow using KNN.

Figure 5: MedB-IoT: Histogram of Anomaly Scores for
VPC Bi-Flow using LOF.

Figure 6: Edge-IIoT: Histogram of Anomaly Scores for
VPC Bi-Flow using DeepSVDD.

data drift may have occurred in the benign commu-
nication between the training and test datasets due to
the presence or absence of response communication.
Consequently, the anomaly score of the anomalous
data did not become relatively large.

5 CONCLUSION

In this study, we examined the issues associated with
detecting anomalous communication from IoT de-
vices using cloud logs, particularly VPC Flow Logs,
and pro- posed a data conversion method to address
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them. In the proposed method, fragmented session in-
formation in cloud logs is aggregated, and the trans-
mitted and retrieved data are integrated to convert it
into a data for- mat that can be applied to an anoma-
lous communication detection model.

In the accuracy evaluation using public data, the
method improved the accuracy of detecting anomalies
without response communication; however, there was
little improvement in datasets that contained many be-
nign communications without response communica-
tion.

Future issues include the insufficient detection ac-
curacy for anomalies related to outbound communi-
cation, and the challenge of detecting these anoma-
lies while ensuring that benign communication with-
out response communication is classified as benign.
One approach would be to use the proposed method
to segment communication into sessions, divide the
data into send/receive and send- only data, and per-
form learning and inference for each category.
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