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Abstract: Industrial textual datasets can be very domain-specific, containing abbreviations, terms, and identifiers that
are only understandable with in-domain knowledge. In this work, we introduce guidelines for developing a
domain-specific topic modeling approach that includes an extensive domain-specific preprocessing pipeline
along with the domain adaption of a semantic document embedding model. While preprocessing is generally
assumed to be a trivial step, for real-world datasets, it is often a cumbersome and complex task requiring lots of
human effort. In the presented approach, preprocessing is an essential step in representing domain-specific in-
formation more explicitly. To further enhance the domain adaption process, we introduce a partially automated
labeling scheme to create a set of in-domain labeled data. We demonstrate a 22% performance increase in the
semantic embedding model compared to zero-shot performance on an industrial, domain-specific dataset. As
a result, the topic model improves its ability to generate relevant topics and extract representative keywords
and documents.

1 INTRODUCTION

In the era of big data, companies gather massive
amounts of data, of which an estimated 80% is un-
structured (Taleb et al., 2018). Leveraging this data to
gain insights presents a key challenge in modern data
management. One of the most relevant use cases is
gaining a macroscopic overview of such datasets by
extracting topics, along with descriptions and exem-
plary entries – collectively referred to as topic repre-
sentations – and analyzing the relationships between
these topics. For example, analyzing a ticket sys-
tem dataset containing information about issues and
their respective solutions may yield insights into their
occurrence, handling, and importance. Additionally,
new issues and, ideally, issue types can be related to
existing data, their importance can be estimated, and
solutions can be proposed. A topic model is an unsu-
pervised machine-learning technique designed specif-
ically to achieve this objective. In particular, the topic
modeling approach presented in this paper is applied
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to large unstructured domain-specific textual datasets.
Documents within these datasets are then clustered
into topics by their inherent semantics, and topic rep-
resentations are extracted. Relying on document se-
mantics enables the creation of topics that share a
common semantic similarity in their respective as-
signed documents. To extract this information from
textual data, language understanding is crucial.

In recent years, enormous advancements in lan-
guage models (Devlin et al., 2019; Raffel et al.,
2020), particularly those utilizing word embeddings
(Mikolov et al., 2013), have directly enhanced perfor-
mance across various NLP tasks. One of these tasks
is Semantic Textual Similarity (STS), which evaluates
the similarity of two textual documents and assigns a
score indicating the similarity of the meaning of their
contents. Large language models like BERT (Devlin
et al., 2019) address this task by concatenating the two
documents and returning a semantic similarity score.
However, determining the semantic scores of all doc-
uments relative to each other in a potentially very
large dataset requires applying the model to each doc-
ument pair, resulting in quadratic runtime complexity
(Reimers and Gurevych, 2019).

Semantic embedding models address this issue by
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generating a semantic embedding, a vector represen-
tation of the document’s content, once, resulting in a
single vector for each document. The similarity of
the semantic embeddings can then be calculated by
similarity measures based on the core idea that se-
mantically similar embeddings are located closer in
space than semantically dissimilar embeddings. This
procedure allows to cluster embeddings and to cre-
ate groups of respective documents – called topics –
sharing a common meaning. Thus, clustering embed-
dings represents the foundation for topic models such
as BERTopic (Grootendorst, 2022) or Top2Vec (An-
gelov, 2020). As a result, these approaches provide
rich insights into the topics of large textual datasets,
generate topic representations, and relate the topics
to each other. However, existing topic modeling ap-
proaches do not consider the specific domain of the
underlying dataset, as they rely on general semantic
embedding models that are trained on large, diverse
datasets not specific to any domain. Using domain-
agnostic models limits the expressiveness of the re-
sulting embeddings and leads to decreased perfor-
mance on domain-specific data (Sun et al., 2016).

Obviously, it would be highly beneficial if the un-
derlying models were able to adapt to the specific data
domain of a concrete application scenario by fine-
tuning on domain-specific (or: in-domain) datasets
(Howard and Ruder, 2018). This would help im-
prove the embedding quality of domain-specific doc-
uments and, thereby, the quality of topic modeling in
that specific domain. Unfortunately, domain-specific
datasets (e.g., from a ticketing system of a production
plant) may contain terms and abbreviations that are
not commonly used outside the domain and are thus
hard to conceptualize within the fine-tuning step. In
addition, such datasets usually exhibit inconsistencies
within the data representation, such as syntactic ty-
pos or semantic divergences, e.g., when a dataset is
created from multiple sources or individuals with dif-
ferent perspectives on the same topic.

Since domains vary widely and exhibit differ-
ent characteristics and intricacies, a single domain-
adaption approach would be impractical and not read-
ily applicable to all domains. Instead, we present
guidelines for developing and customizing a practi-
cally applicable, domain-specific topic model. These
guidelines should be a starting point for adapting the
approach to other domains. Our presented approach
comprises two stages: an extensive preprocessing
pipeline for in-domain data and fine-tuning an exist-
ing domain-agnostic model on a semi-automatically
labeled subset of this data.

We apply and evaluate this approach on a single
domain-specific dataset and show that it leads to a

substantial increase in the performance of the under-
lying semantic embedding model, which in turn re-
sults in improvements in the quality of topics and their
representations.

In more detail, the guidelines presented in this pa-
per entail:

• devising an extensive preprocessing pipeline to
express in-domain information more explicitly;

• establishing a partially automated labeling
scheme to create a labeled in-domain STS
dataset;

• providing the domain adaption of the seman-
tic embedding model for the topic modeling ap-
proach on this labeled in-domain dataset;

• demonstrating the integration of a translation
model into the generation of topic descriptions.

The remainder of this paper is structured as fol-
lows: Section 2 provides foundational information,
Section 3 formally describes the problem of topic
modeling, Section 4 presents the approach, Section 5
provides a case study of the presented approach, and
Section 6 concludes this paper.

2 PRELIMINARIES

Language Models (LMs) are able to create an output
(textual or numeric) based on a textual input in nat-
ural language by using language understanding abili-
ties to encode information relevant to the input while
also taking into account the task for which the model
was trained. Most recent progress in LM capabili-
ties is based on the transformer model architecture
(Vaswani et al., 2017). A transformer consists of two
components: an encoder that encodes the input se-
quence into a numeric representation and a decoder
that uses this numeric representation to autoregres-
sively generate an output sequence. There are various
adaptations of the original transformer architecture.
BERT (Devlin et al., 2019), for example, only uses
the encoder part to generate a numeric representation
(an embedding) of the input. This representation can
then be used for various tasks, such as classification.
GPTs, on the other hand, only use the transformer de-
coder (Radford and Narasimhan, 2018; Radford et al.,
2019), which – because of its autoregressive nature
– is able to generate arbitrary text sequences and is
therefore used for tasks such as translation or chat.

Because the BERT model can generate a numeric
representation of its input, it can also be trained to en-
code the input’s semantic meaning, resulting in what
is called a semantic embedding. Thus, documents
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with similar meanings result in semantic embeddings
that are closer in the embedding space than semantic
embeddings of documents with no overlap in mean-
ing. This allows for comparing semantic embeddings
and, thereby, comparing the meanings of the original
inputs. It also lays the foundation for algorithms such
as clustering methods to analyze the semantics of in-
dividual documents in large corpora.

While commonly available embedding models are
trained on large sets of textual data (Gao et al., 2020;
Raffel et al., 2020) and show good performance on
data distributions that match their training data (Con-
neau et al., 2020; Devlin et al., 2019; Liu et al., 2019),
they still show a performance drop when applied to
out-of-domain data (Farahani et al., 2021; Thakur
et al., 2021). Therefore, better performance can be
expected by adapting the embedding model to the tar-
get data domain by fine-tuning it on a set of labeled
in-domain data. This argument is the foundation for
the second stage of our approach, which involves fine-
tuning the embedding model on in-domain data.

In this paper, we leverage the Semantic Textual
Similarity (STS) task to fine-tune the model. An STS
model processes document pairs and assigns them a
score in the range of 0 to 1, denoting the seman-
tic similarity between the input documents. By fine-
tuning the semantic embedding model on STS data,
it is adapted to the specific characteristics of that
dataset, such as its domain.

3 FORMAL PROBLEM
DESCRIPTION

This section presents a formal description of the
domain-specific topic modeling problem. For the re-
mainder of the paper, we assume a dataset D as a set
of documents d ∈ D. Each document d = w1w2...
is a space-delimited sequence of words wi ∈ W with
i ∈ N, where the word w is a sequence of characters
over an alphabet that excludes spaces, and W is the
set of all words over all documents. Based on the
inherent meaning of words and the created context
between them, each resulting document has in itself
some meaning. The topic model’s goal is to leverage
the semantic meaning of the documents and assign
them to topics such that the documents within one
topic share a similarity in meaning. A topic is then
characterized by the shared semantic similarity of its
documents and its dissimilarity to other topics. For-
mally, the semantic inter-document similarity is mea-
sured by σ : D ×D → R.

The topic model then maps documents to topics,
φD : D → TD by clustering the set of documents D

based on the semantic similarity measure σ. There-
fore, each cluster represents a topic. To describe the
topic and obtain a sense of the shared semantics of
its documents, topics are mapped to representations
by RD : TD →{wi|wi ∈W}×{d j|d j ∈ D}×WN with
RD(t) = (κt ,ρt ,δt), where t ∈ TD , κt is the set of topic
keywords that are descriptive of the topic semantics,
ρt is a subset of topic documents that are representa-
tive of the topic semantics, and δt is a description of
the topic.

The semantic inter-document similarity measure
σ is central to the topic model φ. It can be ex-
pressed by leveraging a semantic embedding model
Membed : D → Rdim, where dim is the dimension-
ality of the embedding space. Then, σ(d1,d2) =
σ̂(Membed(d1),Membed(d2)), where σ̂ : Rdim×Rdim →
R is the embedding similarity and d1,d2 ∈ D . The
topic model φD can then be expressed by φD(d) =
φ̂D(Membed(d)) where φ̂D : Rdim → TD .

Since the topic model depends on the semantic
embedding model, the quality of the created seman-
tic embeddings is essential for the quality of the topic
modeling approach. While there exist pre-trained se-
mantic embedding models, the general assumption is
that both target data and training data are drawn from
the same distribution (Farahani et al., 2021). This
might not be the case when the target data is domain-
specific (Wilson and Cook, 2020), which would result
in the decreased capability of the embedding model to
create semantic embeddings and, therefore, a worse
topic model.

4 APPROACH: TWO STAGE
SEMANTIC TOPIC MODELING

We address the issue of domain-specific topic model-
ing by presenting a two-stage approach, as shown in
Figure 1.

The first stage preprocesses the domain-specific
data to more explicitly represent in-domain informa-
tion. The exact implementation of this stage should
be domain-dependent; therefore, Section 4.1 merely
presents guidelines on how such an implementation
can be realized. However, the general steps we pro-
pose are expanding domain-specific identifiers, split-
ting identifiers composed of individual words, and
replacing abstract identifiers that have no inherent
meaning, such as UUIDs. Applying these preprocess-
ing guidelines should further result in more uniform
documents that ease the creation of topic representa-
tions.

The second stage adapts the semantic embedding
model Membed to the data domain by fine-tuning it on
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a small set of labeled in-domain data in order to im-
prove the quality of its created semantic embeddings.
Since these embeddings are the basis for the topic
modeling approach, it is essential that they contain
the correct semantics of their respective documents.
The dataset creation along with the model fine-tuning
are further detailed in Section 4.2.

Based on the domain-adapted semantic embed-
ding model Membed , the topic model φ extracts top-
ics along with their respective representations. This is
described in Section 4.3.

Approach
Stage 1:

Preprocessing Pipeline

Stage 2:
Domain-Specific Fine-Tuning

Figure 1: Overview of the presented approach.

4.1 Preprocessing

The following steps describe our preprocessing for a
domain-specific dataset, which is used to express in-
domain information more explicitly and to clean up
the data. The steps are applied in the specified or-
der for each document. These steps are intended to
serve as guidelines on how to create a domain-specific
preprocessing pipeline. Their exact implementation
should depend on the specific application domain.

1. Normalize Quotation Marks There ex-
ists a variety of quotation marks; assuming that
they express the same meaning, they should be
replaced by one representative equivalent. For ex-
ample, Engineers shouldn´t check ‘processes
state‘ would be converted into Engineers
shouldn’t check ’processes state’.

2. Normalize Unicode. Documents can be en-
coded in various Unicode canonical forms that rep-
resent certain characters differently. While their dis-
played value is identical, their internal character rep-
resentation might not be. To obtain a uniform char-
acter representation, everything can be converted into
a single representation, such as Normalization Form
Canonical Composition (NFC).

3. Normalize Whitespaces. To obtain a normal-
ized representation of whitespaces, replace all line-
breaking spaces with a single newline, all contiguous
zero-width spaces (Unicode code points: U+200B,
U+2060, U+FEFF) with an empty string, and all non-
breaking spaces with a single space. After this, strip
all leading and trailing whitespaces.

4. Remove URLs. When URLs are assumed not
to contain meaningful information, they should be re-
moved.

5. Truncate Repeated Characters. Truncate re-
peated special characters when their repetition adds
little semantic value, as their repeated occurrences
might obscure document representations. Truncation
should be limited to the necessary subset of special
characters. For example, truncate --- to -.

6. Direct Replacements. This is the first of
two replacement steps, which aim to remove domain-
specific information or express this information in
more generally understandable terms. Here, character
sequences that match a list of specified patterns are re-
placed by their respective replacements. This step dif-
fers from the subsequent replacement steps in that its
patterns do not respect word boundaries, which allows
for greater flexibility in pattern specification but may
require cumbersome specifications or could lead to
unwanted matches if patterns are defined too broadly.
Therefore, we suggest limiting the replacements in
this step. We also recommend padding replacements
with whitespaces since patterns can match within
words. For example, assume the character % is to
be replaced by the whitespace-padded word percent.
Then, the document Load at 10%max would be con-
verted into Load at 10 percent max.

7. Split Compound Words. This step splits
compound words in preparation for the subsequent
replacement step, whose patterns are constrained by
word borders. This step highly depends on the ap-
plication domain, its compound words, and any iden-
tifiers that might resemble compound words. For ex-
ample, splitting the identifier sensor1,voltage,avg
into its constituents – sensor1 , voltage , avg –
could make sense for further processing.

8. Replacements. Similar to the Direct Re-
placements step, patterns of this step are replaced by
whitespace-padded replacements, but with the addi-
tional restriction that the patterns of this step match
within word boundaries. As a result, patterns can
only match a single word wi or a sequence of words
wi wi+1 wi+2 ... . This limitation greatly simpli-
fies the specification of patterns and avoids accidental
matches. We suggest this step for the majority of re-
placements.

9. Lowercase. To get a uniform character repre-
sentation, convert everything into lowercase.

10. Truncate Whitespaces. The previous re-
placement steps might have reintroduced inconsistent
whitespaces. Therefore, leading and trailing whites-
paces should be removed, and repeated occurrences
should be reduced to a single instance.

These preprocessing steps should result in a more
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homogenous dataset that contains fewer domain-
specific abbreviations and identifiers. The first
five preprocessing steps are essentially independent;
therefore, their order can be interchanged without
affecting the results. This is not the case in the
subsequent steps, which primarily replace and split
words. Depending on the application scenario, re-
peating some of these steps might be beneficial. For
example, an additional compound-word-splitting step
after 8. Replacements, followed by a repetition of the
Replacement step (for an example, see Section 5.2.1).
This could be the case when one wants to limit the
rules for splitting compound words initially in step 7
(e.g., only splitting compounds with commas, such as
sensor1,voltage,avg) to have the option to replace
other compound words (e.g., some in camelCase or
snake case) in their entirety in step 8. Then, follow-
ing this by splitting all remaining compound words
and replacing their constituents would make sense.

4.2 Semantic Embedding Model

A semantic embedding model Membed captures se-
mantic information of input documents in latent
vector representations called semantic embeddings.
These embeddings lie in the same vector space, al-
lowing for their numeric comparison and, therefore,
the comparison of the semantics of the original input
documents. Based on this, embeddings can be clus-
tered, which is an essential step of the topic model φ.

While commonly available embedding models
trained on large sets of textual data (Gao et al., 2020;
Raffel et al., 2020) show good performance on data
distributions that match their training data (Conneau
et al., 2020; Devlin et al., 2019; Liu et al., 2019), they
still show a performance drop when applied to out-
of-domain data (Farahani et al., 2021; Thakur et al.,
2021). Therefore, better performance can be expected
by adapting the embedding model to the target data
domain by fine-tuning it on a small set of labeled in-
domain data. Section 4.2.1 presents the creation and
labeling of an in-domain dataset, and Section 4.2.2
describes the fine-tuning of an embedding model on
this dataset.

4.2.1 Training Data

The semantic embedding model Membed should be
fine-tuned for the STS task with labeled in-domain
training data. One entry in this dataset is a pair of
documents and a score in the range from 0 to 1, de-
noting their semantic similarity. Since assigning rep-
resentative scores in the 0 to 1 range can be difficult
for humans, Agirre et al. (2012) introduced a labeling
scheme of integer scores in the inclusive range from 0

to 5, allowing non-experts in STS to label document
pairs more easily.

To create the set of labeled data, document pairs
must be created first. The sampling strategy to form
these pairs is crucial for the model’s performance
(Thakur et al., 2021) since the similarity of these pairs
will influence the resulting label distribution and,
thereby, the performance of the embedding model
on this distribution. Following the conclusion from
Thakur et al. (2021), BM25 (Robertson et al., 1994)
should be used to select these pairs. BM25 is a rank-
ing function that uses a bag-of-words model and lex-
ical overlap to determine the relevance of documents
to a query. Our proposed pair selection strategy is de-
scribed in the following section.

All duplicate entries are removed from the dataset
D, and the remaining documents are indexed with
BM25. Then, N pairwise dissimilar documents are se-
lected. These form the first element of the document
pairs. For each of these documents, the M ≤ |D| most
similar documents are selected using BM25. One of
these M documents is randomly selected as the second
element of the document pair. This random selection
diminishes the effect of highly similar documents in
the dataset. M can be seen as a dataset-dependent hy-
perparameter that should correlate with the size of the
dataset and the document similarity within it. This
sampling strategy results in N document pairs, which
are manually labeled.

While M regulates the potential score distribution
of labeled pairs, choosing a perfect value is difficult
in practice. It is, therefore, better to choose a lower
value for M, resulting in more similar document pairs
and thereby skewing the score distribution towards its
higher end. The score distribution can then be bal-
anced by adding negative pairs. These are document
pairs with a semantic similarity score of 0, i.e., their
semantic meaning is entirely different. Negative pairs
are created by selecting K ≤ |D|

2 − N random pairs
from the dataset. Given a sufficiently large dataset,
creating random pairs should result in dissimilar pairs
with a very high probability. The K randomly se-
lected pairs should then automatically be labeled with
a score of 0.

The N manually labeled pairs and the K au-
tomatically created negative pairs form the labeled
dataset D labeled , where (di,d j,n) ∈ D labeled with n ∈
{0, ...,5} and di,d j ∈ D. The set of labeled data is
split into a training set Dtrain and a test set Dtest . For
the test set, T ∈N≤ N+K

6 entries should be randomly
selected per score resulting in a test set size of 6 ∗T .
This enables a fair model evaluation on the full score
range. The remaining entries form the training set.
After the assignment, the integer scores can be nor-
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malized to the range of 0 to 1.

4.2.2 Training

To create the domain-adapted semantic embedding
model Membed , we use a pre-trained semantic embed-
ding model, fine-tune it on the training dataset Dtrain,
and evaluate it on the test set Dtest . This should im-
prove the model’s ability to capture the semantics of
in-domain documents and preserve them in the cre-
ated embeddings, which, in turn, improves the quality
of the topic model.

4.3 Topic Model

Based on the domain-adapted semantic embedding
model Membed , the topic model φ extracts topics T
along with their representations from the prepro-
cessed dataset D . While the semantic embedding
model Membed captures the semantics of an individual
document, the topic model φ captures topics, which
can be seen as the overarching semantic structures of
the whole dataset. The following section outlines the
steps used to extract the topics and their representa-
tions.

Based on the preprocessed dataset D , the fine-
tuned semantic embedding model Membed creates a
set of semantic embeddings ED . These are then clus-
tered, and each cluster forms a topic t ∈ T . The topic
t is characterized by its documents d ∈ φ

−1
D (t), where

φ
−1
D refers to the inverse of the topic model. To obtain

a sense of the document’s shared semantics, a topic
representation is created for each topic t. This repre-
sentation consists of relevant keywords κt used to de-
scribe this topic, a subset of its documents ρt used as
representative documents, and a short topic descrip-
tion δt .

Additionally, a topic embedding is created in the
document embedding space by combining the seman-
tic embeddings of a topic’s documents. This allows
for semantic similarity comparisons between topics
and for assigning new documents to topics after the
topic model is fitted.

5 CASE STUDY

This section applies the presented domain-adaption
topic modeling guidelines to a single domain-specific
dataset. The dataset itself is presented in Section 5.1,
Section 5.2 describes implementation-specific details
of the approach, while Section 5.3 evaluates this im-
plementation on the domain-specific dataset.

5.1 Data

The dataset is from an industrial plant in Dresden,
Germany. It has 140403 documents that describe res-
olutions of incidents in production that occurred at
the plant. The documents’ contents are highly techni-
cal as they describe and reference various production
states, processes, tools, sensors, machines, and many
other domain-specific terms. They also include many
domain-specific abbreviations and identifiers that are
not only specific to the plant’s industrial sector but
also the exact production plant. The documents con-
tain a mix of English and German language and have
a mean length of 49.81 characters with a standard de-
viation of 40.83 characters.

5.2 Implementation

The following describes implementation-specific de-
tails: first, it covers preprocessing in Section 5.2.1 and
the creation of the labeled dataset in Section 5.2.2.
Followed by the training of the semantic embedding
models in Section 5.2.3 and the topic model in Sec-
tion 5.2.4.

5.2.1 Preprocessing

This segment describes only those preprocessing
steps that contain implementation-specific details.
For the complete list of preprocessing steps, see Sec-
tion 4.1. For this specific dataset, the proposed pre-
processing steps were expanded to include an ad-
ditional compound-word-splitting step and an addi-
tional replacement step. The implementation is as fol-
lows:

Truncate Repeated Characters. Repeated oc-
currences of the characters: -, =, ?, and ! are trun-
cated by textacy’s1 normalize.repeating chars
function.

Direct Replacements. Since this step’s patterns
are not limited to word boundaries, it is used to re-
place character sequences within words. The patterns
of this step are specified with the use of regular ex-
pressions. In total, this step contains 14 patterns for
replacements, most of which replace special charac-
ters like %, &, and ◦C, and the remaining ones re-
place abstract identifiers that are replaced by more
general placeholders. All replacements are padded
with whitespaces.

Split Commas. The dataset contained a lot of
identifiers of the type word1,word2,word3. In prepa-
ration for the subsequent replacement step, these were
split up and padded by whitespaces.

1https://textacy.readthedocs.io
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Replacements. This step’s replacement patterns
match case-insensitive and respect word boundaries,
simplifying pattern specification and avoiding ac-
cidental replacements. The patterns of this step
are specified with regular expressions, prefixed by
(?i)(?<=\b|ˆ) and suffixed by (?=\b|\W|$). The
modifier (?i) allows the pattern to match case-
insensitive, the lookbehind (?<=\b|ˆ) ensures that
before the pattern, there is a word border (\b) or it’s
the start of the document (ˆ), without including them
in the match. The lookahead (?=\b|\W|$) ensures
that after the pattern, there is a word border, a non-
word character (\W), or it’s the end of the document
($), without including them in the match. In total,
this step contains 204 replacements, of which almost
all are domain-specific abbreviations. The replace-
ments were chosen by preprocessing the dataset with-
out replacements, removing every word occurring in
the German or English dictionary, and ordering the re-
maining words by their number of occurrences in the
dataset. The resulting list roughly matches Zipf’s dis-
tribution. Therefore, replacing only a few of the most
occurring ones results in a sizable reduction of un-
known words. The most occurring unknown abbrevi-
ations were translated by in-domain experts from the
dataset’s production plant.

Split Compound Words. Here, the remaining
composite identifiers are split into their parts by an
adapted version of the source code splitting function
split identifiers into parts2. It is adapted by
altering the pattern used to identify word boundaries
by excluding any numbers and the characters $ and
., and including the characters /, &, ;, !, ?, #, (, ),
and :. These alterations are specific to the dataset on
which this implementation is based. These changes
ensure that identifiers that do not contain usable parts
for replacements, such as abstract identifiers, are ex-
cluded and that those that do are included.

2nd Replacements. Since the previous
compound-splitting step might have reintroduced
previously replaced words, the Replacements step is
rerun.

Applying these steps to the dataset results in a
mean document length of 88.26 characters with a
standard deviation of 73.33 characters. This substan-
tial increase in document length can be attributed to
the more explicit representation of in-domain infor-
mation. In total, the three replacement steps result in
308449 replacements in the dataset.

2https://github.com/microsoft/dpu-utils/blob/master/
python/dpu utils/codeutils/identifiersplitting.py

5.2.2 Labeling

An entry in the labeled dataset consists of two docu-
ments and a score describing their semantic similarity.
The score is in the inclusive integer range of 0 to 5,
with 0 indicating no shared semantic similarity and 5
indicating complete semantic similarity. The labeled
dataset is created as follows.

All exact duplicates are removed from the prepro-
cessed dataset to equalize the selection probability for
each unique document, reducing the dataset size from
140403 to 83906 documents. The remaining docu-
ments are indexed using BM25, and 1420 documents
are randomly selected. They are the first document of
the document pairs. For each of these documents, the
M = 11 most similar documents are retrieved using
BM25, with the first being the original search docu-
ment and therefore discarded. One is randomly cho-
sen from the remaining 10 documents, representing
the second document of the document pairs. These
1420 document pairs were manually labeled: 420 by
in-domain experts and the remaining 1000 by the au-
thors. The set of 1420 labeled pairs is augmented with
K = 1200 negative pairs, resulting in a labeled dataset
with 2620 entries.

5.2.3 Training

We use Sentence-BERT (sBERT) (Reimers and
Gurevych, 2019) to create document embeddings
since there exists a variety of models3 that are easy to
use. Specifically, we fine-tune each model presented
in Table 1 for 20 epochs with a batch size of 16. The
learning rate is warmed up linearly for 100 steps to
a value of 2× 10−5. Cosine similarity is used as the
optimization criterion; this matches the required mea-
sure at inference. The gradients of the model parame-
ters are clipped to a maximal L2 norm of 1.0. AdamW
(Loshchilov and Hutter, 2019) is used as the optimizer
with a weight decay of 0.01 and beta parameters of
0.9 and 0.9999.

For fine-tuning, we selected 20 epochs after train-
ing multiple models with varying numbers of epochs
and observing no major performance changes in the
final epochs. All other parameter values are de-
faults of the sentence-transformer library4 (Reimers
and Gurevych, 2019). To optimize these parame-
ters, we recommend using a separate in-domain test
dataset. Since the availability of in-domain data could
be critical, we note that the default parameters per-
form well.

3https://huggingface.co/sentence-transformers
4https://github.com/UKPLab/sentence-transformers
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5.2.4 Topic Model

The following describes implementation details spe-
cific to the topic model. The library BERTopic (Groo-
tendorst, 2022) is used for the topic modeling ap-
proach. It consists of five steps, with an additional op-
tional step to fine-tune the topic representations. Each
step is based on a module type, where the exact mod-
ule used can be swapped out. This allows for easy
adaptation of the approach. The exact modules used,
along with their parameters, are described in the fol-
lowing section.

Embeddings. First, the previously fine-
tuned semantic embedding model Distiluse-
base-multilingual-cased-v1 is used to create
512-dimensional semantic embeddings.

Dimensionality Reduction. For the second
step, the embedding dimensionality is reduced with
Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018; McInnes et al., 2018),
with a number of components parameter of 5, a num-
ber of neighbors parameter of 15, and the cosine simi-
larity as the metric. This reduces the 512-dimensional
embeddings to 5 dimensions while trying to preserve
the global embedding structure.

Clustering. Next, the semantic embeddings are
clustered with HDBSCAN (McInnes et al., 2017)
with a minimum cluster size parameter of 100. This
captures an arbitrary number of clusters with variable
densities while maintaining the minimum cluster size.

Tokenization. For the fourth step, the documents
are tokenized with scikit-learn’s (Pedregosa et al.,
2011) CountVectorizer, with an N-gram range of
1 to 3. Based on these N-grams, a term-document
matrix is created.

Weighting Scheme. Following, Bertopic’s class-
based TF-IDF module weighs the terms of each clus-
ter according to their relevance to that cluster. The top
30 terms per cluster are then selected as the topic key-
words. Since there are many duplicate documents in
the dataset, the Maximal Marginal Relevance (MMR)
criterion (Carbonell and Goldstein, 1998) with a di-
versity parameter of λ = 0.4 and the cosine similarity
as the measure is used to select the five most repre-
sentative but pairwise dissimilar topic documents to
the topic’s keywords. MMR is a selection criterion
in information retrieval that maximizes the marginal
relevance metric, which linearly combines the simi-
larity of a document to a search query and the dissim-
ilarity of that document to the already selected doc-
uments. The linear combination is controlled by the
diversity parameter λ and the similarity calculations
by the specified measure.

Representation Tuning. Finally, the topic de-
scription is generated. The dataset contains Ger-

<|system|>You are a helpful, respectful and honest assistant for labeling topics..</s>
    <|user|>

    I have a topic that contains the following documents:
    [DOCUMENTS]

    The topic is described by the following keywords: '[KEYWORDS]'.

    Based on the information about the topic above, please create a short label of this topic.
Make sure you only return the label and nothing more.</s>

    <|assistant|>

Figure 2: The prompt that is given to the Zephyr model to
generate a topic description. The tokens [KEYWORDS] and
[DOCUMENTS] are replaced by translated relevant keywords
and representative documents of the topic.

man and English language, so the previously retrieved
topic keywords and representative documents are uni-
fied into the English language by translating them
with the German-English translation model Opus-mt-
de-en (Tiedemann and Thottingal, 2020). The lan-
guage model Zephyr 7B Alpha (Tunstall et al., 2023),
which is based on Mistral-7B-v0.1 (Jiang et al., 2023)
and trained to be a helpful assistant, is then prompted
with the text shown in Figure 2, where [KEYWORDS]
and [DOCUMENTS] are replaced by the translated key-
words and representative documents. The output of
the model is a short topic description in English.

These steps result in the extraction of topics from
the domain-specific dataset, along with relevant rep-
resentations (keywords, documents, descriptions).

5.3 Evaluation

The evaluation assesses the implementation of the
presented, domain-specific topic modeling guide-
lines. Section 5.3.1 evaluates the semantic embedding
model while Section 5.3.2 evaluates the results of the
domain-adapted topic model.

5.3.1 Semantic Embedding Model

We evaluate four semantic embedding models. They
were selected to include the most common architec-
tures and the best-performing models while maintain-
ing comparable levels of complexity based on pa-
rameter counts. They were fine-tuned on various
datasets, which include multilingual, STS-specific,
Natural Language Inference (NLI)-specific, and other
non-task-specific textual data. An overview of the
models is given in Table 1. The semantic embed-
ding model All-DistilRoBERTa-v1 was fine-tuned on
over one billion sentence pairs, it is a knowledge-
distilled (Hinton et al., 2015) version of the RoBERTa
(Liu et al., 2019) model, which itself is based on
BERT (Devlin et al., 2019). Sentence-T5-base (Ni
et al., 2022) is a model, based on T5-base (Raf-
fel et al., 2020). Distiluse-base-multilingual-cased-
v1 (Reimers and Gurevych, 2020) is a multilingual

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

38



Table 1: List of models evaluated in this paper. The model size is given in millions of parameters. Base model refers to the
model that was used as the basis to create the sentence encoder.

Name Size Base Model Fine-Tuning Data

All-DistilRoBERTa-v1 82.1 DistilRoBERTa-base 1B English sentence pairs (En-
glish only)

Sentence-T5-base 110 T5-base 2B QA pairs + 275k NLI exam-
ples (English only)

Distiluse-base-multilingual-
cased-v1

135 DistilBERT-base-multilingual OPUS parallel language pairs (14
languages)

All-MiniLM-L12-v2 33.4 MiniLM-L12-H384-uncased 1B English sentence pairs (En-
glish only)

model trained on a total of 14 languages and is based
on DistilBERT (Sanh et al., 2020). Finally, the model
All-MiniLM-L12-v2 is based on MiniLM-L12-H384-
uncased (Wang et al., 2020). It belongs to the most
popular sentence transformer models according to
huggingface, having over 10 million monthly down-
loads on the huggingface platform at the time of writ-
ing in 2024.

The models’ performance on the STS task is
evaluated by comparing their output scores with the
human-annotated scores. This can be measured by
Spearman’s rank correlation coefficient, which is a
measure of the correlation between the ranks of the
values of two variables (Reimers et al., 2016).

First, the effect of fine-tuning on the performance
of the semantic embedding models on the in-domain
dataset, in both its unprocessed and preprocessed
forms, is evaluated. Then, the effect of the prepro-
cessing pipeline on model performance is assessed.
Finally, the impact of negative samples is analyzed,
justifying their addition to the labeled dataset.

Semantic Embedding Model Performance with
Fine-Tuning. This section assesses the benefits of
preprocessing, evaluates the models in the zero-shot
setting, and determines the influence of fine-tuning on
the models’ performance. Figure 3 shows the model
performance on the test set over 20 epochs of training
over 10 runs with different random seeds. The models
were trained and evaluated separately on the original
dataset (in orange) and the preprocessed dataset (in
blue).

Almost all models show better performance on the
preprocessed dataset than on the original one in the
zero-shot setting (Epoch 0; no fine-tuning). This indi-
cates that preprocessing is beneficial even though the
models are not yet adapted to the data domain. Es-

pecially, All-DistilRoBERTa-v1 benefitted from pre-
processing, achieving the highest zero-shot perfor-
mance and creating the highest performance gap be-
tween preprocessed and original datasets. Only All-
MiniLM-L12-v2 was indifferent to preprocessing and
showed identical performance on the original and pre-
processed datasets in the zero-shot setting.

Fine-tuning increased the performance of all mod-
els on both datasets, with most performance gains oc-
curring in the first few epochs. Subsequent epochs
still increased performance, albeit not much. Addi-
tionally, no performance degradation was observed,
indicating that the models did not overfit the small
sets of labeled data. The highest overall perfor-
mance was achieved by Distiluse-base-multilingual-
cased-v1 on the preprocessed dataset with a Spear-
man’s rank correlation coefficient of 0.8726, mark-
ing a 22% improvement in performance compared to
its zero-shot performance. While almost all models
performed better on the preprocessed dataset than the
original one, this was not the case for All-MiniLM-
L12-v2. It continuously showed similar performance
on both datasets and reached its peak performance on
the original dataset, with a Spearman’s rank correla-
tion coefficient of 0.8460. While only observed with
this model, its invariance regarding preprocessing still
provides an interesting insight. Had its general per-
formance been better, preprocessing could have been
avoided, thus simplifying the whole domain adaption
approach.

All models demonstrated performance improve-
ments, suggesting that with additional fine-tuning,
they could surpass their current peak performance.
However, these performance improvements are ex-
pected to be insignificant since improvements in the
last few epochs were minimal. Overall, fine-tuning
the pre-trained models on the in-domain datasets
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showed substantial performance improvements for all
models. Most models performed better on the prepro-
cessed dataset, on which the best performance was
achieved.
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Figure 3: Model performance in Spearman’s correlation co-
efficient over 20 training epochs with 10 random seeds per
run.

Preprocessing Ablation. This analysis provides in-
sights into the effects of the individual preprocessing
steps on model performance. The model Distiluse-
base-multilingual-cased-v1 was evaluated after ap-
plying consecutive preprocessing steps, and training
for zero, one, and two epochs on the respective par-
tially preprocessed dataset. This was repeated ten
times with different random seeds. Figure 4 shows
the evaluation performance.

In general, training substantially increased per-
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Figure 4: Spearman’s correlation coefficient after consec-
utive preprocessing steps for Distiluse-base-multilingual-
cased-v1. The model is evaluated after each preprocessing
step. Each evaluation is run with 10 random seeds.
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Distiluse-base-multilingual-cased-v1 and All-MiniLM-
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formance. Training longer showed performance in-
creases for all preprocessing steps, resulting in im-
proved performance for the entire pipeline. In the
zero-shot setting, the first preprocessing steps did not
affect performance. The Direct Replacements step
showed the first change in performance, lowering it
under the initial baseline. The subsequent Replace-
ments step then shows a large performance improve-
ment, increasing performance above the initial base-
line. The following preprocessing steps then degrade
performance slightly while still maintaining higher
than baseline performance. With training, the previ-
ously negative effect of the Direct Replacements step
could not be observed. However, the Replacements
step was still responsible for the majority of perfor-
mance improvements. Additionally, some subsequent
preprocessing steps, like Truncate Whitespaces, in-
creased performance slightly.

While some steps degraded performance, espe-
cially in the zero-shot setting, it is important to con-
sider the entire preprocessing pipeline since some
steps act in preparation for subsequent steps. In ad-
dition to improving the performance of the semantic
embedding model, preprocessing aims to generate a
cleaned-up document that can then be used to create
topic representations. Thus, preprocessing steps such
as Normalize Whitespaces may not significantly im-
pact performance but remain essential for cleaning up
the document.

Negative Samples. This evaluation determines how
many negative samples are beneficial, justifying the
decision to add K = 1200 negative samples to the la-
beled dataset in Section 5.2.2.

Figure 5 shows the performance of two semantic
embedding models with six different amounts of neg-
ative samples. The labeled dataset was created as de-
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scribed in Section 5.2.2 but with respectively different
amounts of negative samples for K. The models were
evaluated over ten runs with different random seeds.

Increasing the number of negative samples in-
creased the performance for both models up to about
600 negative samples. After this, performance in-
creases only slightly, with 1200 and 1500 negative
samples showing roughly the same performance. As
a result, K = 1200 was chosen as the number of neg-
ative samples to be added to the labeled dataset.

5.3.2 Topic Model

This section addresses the performance of the whole
combined approach. Objectively evaluating the topic
model is difficult since there does not exist a labeled
in-domain dataset for the extraction of topics and
the creation of their representations. Creating such
a dataset is also extremely difficult since this would
require a complete overview of the topics contained
in the dataset and their respective potential represen-
tations. Therefore, the results of the topic model
were evaluated qualitatively by two in-domain experts
from the industrial plant from which the dataset orig-
inated. These experts are specialists in the domain
of the dataset and participated in the dataset’s cre-
ation. They evaluated the sensibility of the extracted
topics along with their representations by first assess-
ing the common theme of all documents assigned to
a topic. Then, if a common theme was present and fit
the topic well, they checked whether unrelated doc-
uments – i.e., outliers – were included. Finally, they
compared the topic’s representations with the theme
of the generated topic.

Following this evaluation outline, a good topic
should comprise a well-defined theme that is present
in all documents assigned to that topic. Multiple
topics within a dataset should show as little overlap
in their respective themes as possible. Additionally,
topic representations should reflect that theme in a
concise and clear manner. By the subjective nature
of the underlying evaluation criteria, the whole evalu-
ation in itself is also subjective.

Since the topic model is highly customizable,
changing its parameters can substantially impact the
output. The experts found that one such parameter
is the minimum cluster size of the clustering algo-
rithm. Using a high value resulted in a low number
of topics that were often too coarse to represent in-
dividual semantic themes within the dataset. Using
a lower value resulted in a much higher number of
topics, which were more representative regarding in-
dividual themes and more realistic topics. While, as a
result, this parameter’s value was chosen to be 100, it
is highly dependent on the dataset and the similarity

of documents within it. We recommend starting with
a lower minimum cluster size and increasing it until a
desired topic granularity is reached.

The experts found that topic representations were
mostly representative. The extraction of relevant
topic keywords worked well. However, some of the
topic documents that were chosen to be representative
were rather at the margin of the topic and, therefore,
should not have been regarded as representative. Then
again, the language model-based generation success-
fully produced meaningful topic descriptions.

6 CONCLUSION

This work presents guidelines for developing and
customizing a practically applicable domain-specific
topic model. The approach consists of two stages:
first, an extensive preprocessing pipeline for in-
domain data, followed by fine-tuning an existing
domain-agnostic model on a semi-automatically la-
beled subset of this data. Applying and evaluating
the presented approach on a domain-specific dataset
showed that combining these two steps led to a sub-
stantial increase in model performance on in-domain
data. Here, the best performing semantic embed-
ding model was Distiluse-base-multilingual-cased-
v1, showing a performance increase of 22% compared
to its zero-shot performance. Based on this domain-
adapted semantic embedding model, topic modeling
is applied.

Since domains can vary widely, the presented ap-
proach should serve as a starting point and a guide-
line. It should not be relied upon as a fixed solution
applicable to any domain.

Throughout the development of the presented ap-
proach, it became apparent that if the underlying
dataset is close to commonly used language, the
advantages of preprocessing may be minimal and,
therefore, not justifiable. However, if the underly-
ing dataset is domain-specific, especially in technical
fields, benefits from preprocessing can reasonably be
expected.

Future work will concentrate on providing an ob-
jective criterion for the qualitative evaluation of the
topic model. This would help with the automatic op-
timization of topic-modeling approaches and relate
them objectively, providing baseline standards.
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