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Abstract: In today’s interconnected digital world, ensuring data privacy is critical, particularly for neural networks op-
erating remotely in the age of the Internet of Things (IoT). This paper tackles the challenge of data privacy
preservation in IoT environments by investigating Utility-Preserving Data Transformation (UPDT) methods,
which aim to transform data in ways that reduce or eliminate sensitive information while retaining its utility
for analytical tasks. UPDT methods aim to balance privacy preservation and utility in data analytics. This
study examines the strengths and limitations of these methods, focusing on ObfNet, a neural network-based
obfuscation algorithm, as a representative case study to contextualize our analysis. By analyzing ObfNet, we
highlight its vulnerabilities and based on these findings we introduce LightNet and DenseNet as novel neural
networks to identify ObfNet’s limitations, particularly for larger and more complex data. We uncover chal-
lenges such as information leakage and explore the implications for maintaining privacy during remote neural
network inference. Our findings underscore the challenges and possibilities to preserve privacy during remote
neural network inference for UPDT algorithms, especially in resource-limited edge devices.

1 INTRODUCTION

In recent years, the rapid advancement of deep learn-
ing has significantly enhanced the complexity and ca-
pabilities of inference models, which now demand
substantial computational resources. Deploying these
models on Internet of Things (IoT) devices presents
a formidable challenge due to their limited computa-
tional capacity and power constraints. IoT devices,
such as smartphones, rely on battery power and need
to conserve energy to function efficiently over ex-
tended periods, often requiring them to remain dor-
mant and occasionally transmit data for processing.
Given these constraints, offloading complex compu-
tations to remote servers or cloud-based backends,
which can handle the heavy processing requirements
of deep learning models, has become essential (Ni-
eto et al., 2024). However, this approach introduces
new concerns, particularly in terms of data privacy.
Edge computing, which involves shifting computa-
tion and storage from centralized cloud servers to net-
work edge nodes, offers notable advantages, includ-
ing reduced end-to-end latency and minimized band-
width usage. This paradigm is particularly benefi-

cial when applying machine learning techniques to
the vast amounts of data generated by IoT devices.
However, even with these benefits, ensuring the pri-
vacy of data during remote processing remains a crit-
ical issue. IoT devices, due to their ubiquitous na-
ture and the sensitive nature of the data they handle,
are particularly vulnerable to privacy breaches during
data transmission and processing. As a result, pro-
tecting the privacy of the data in these devices while
maintaining the efficiency of machine learning pro-
cesses is a key challenge (Zheng et al., 2019). De-
veloping lightweight and efficient privacy-preserving
methods that can operate effectively within these con-
straints is crucial. Such methods must not only safe-
guard sensitive information throughout the machine
learning pipeline, from data collection to model in-
ference, but also minimize communication and com-
putational overhead to facilitate remote inference ef-
fectively. This is essential because high communica-
tion overhead not only causes delays and increased
latency but also drives up data transfer costs, es-
pecially in IoT systems reliant on cellular networks
where charges are based on data usage. Similarly,
excessive computational overhead can drain the lim-
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ited battery life of IoT devices. Efficient manage-
ment of these overheads ensures real-time process-
ing, scalability, and cost-effectiveness in IoT deploy-
ments (Zheng et al., 2019). One effective solution
in this context is Utility-Preserving Data Transforma-
tion (UPDT) methods (Zheng et al., 2019)(Xu et al.,
2020)(Feng and Narayanan, 2021)(Malekzadeh et al.,
2020). UPDT techniques have emerged as an es-
sential approach in privacy-preserving machine learn-
ing, particularly in the context of Internet of Things
(IoT) and edge computing. These techniques aim
to mask sensitive information within data while re-
taining its utility for tasks such as remote machine
learning inference. UPDT methods are designed to
be lightweight, suitable for resource-constrained IoT
devices with limited computational and energy re-
sources. UPDT methods must balance the dual ob-
jectives of preserving privacy and retaining data util-
ity for inference. However, their effectiveness is of-
ten compromised by vulnerabilities, including resid-
ual data patterns that can expose sensitive information
and scalability issues with complex datasets (Dhi-
nakaran et al., 2024). This work seeks to address these
challenges by evaluating the privacy-preserving capa-
bilities and computational efficiency of UPDT meth-
ods, focusing specifically on their limitations and vul-
nerabilities. Using ObfNet (Zheng et al., 2019)(Xu
et al., 2020) as a case study, we conduct a comprehen-
sive analysis to uncover its shortcomings and explore
the broader implications for UPDT methods. Our key
contributions, a detailed evaluation of ObfNet as a
case study, highlighting vulnerabilities in its ability
to obfuscate sensitive data while maintaining com-
putational efficiency and utility. These findings are
then used as a basis for exploring and assessing other
UPDT solutions. The introduction of LightNet and
DenseNet, two novel architectures designed to stress-
test UPDT methods on complex datasets. Generalized
insights and recommendations for enhancing the ro-
bustness, scalability, and privacy guarantees of UPDT
methods in resource-constrained environments.

2 BACKGROUND AND
LITERATURE

Utility-Preserving Data Transformation methods are
designed to transform data in a way that obscures,
obfuscates, or eliminates sensitive information while
preserving the attributes necessary for machine learn-
ing inference. These methods are especially rele-
vant in privacy-preserving inference for IoT and edge
computing, where devices need lightweight solu-
tions that ensure privacy without compromising util-

Figure 1: ObfNet training and inference phases with fixed
InfNet and partitioned ObfNet.

ity. An example of a UPDT method is anonymiza-
tion, where sensitive identifiers such as names, ad-
dresses, or phone numbers are removed or replaced
with pseudonyms. However, while anonymization
can prevent direct identification, it often fails to pro-
tect against re-identification attacks, especially when
combined with auxiliary datasets (Ano, 2017). Dif-
ferential privacy (DP) on the other hand, provides a
framework for quantifying the privacy guarantees of
algorithms, ensuring that the removal or addition of a
single data point does not significantly affect the out-
come. This technique is particularly useful in scenar-
ios where multiple queries are made to a database, as
it provides robust privacy protection by adding noise
to the query results. Although differential privacy
provides strong privacy guarantees, it reduces data
utility due to noise addition, especially in small or
complex datasets. It also introduces implementation
complexity (Abadi et al., 2016)(ha et al., 2019). In
contrast, ObfNet(Zheng et al., 2019)(Xu et al., 2020)
is a neural network-based UPDT algorithm designed
for IoT applications. ObfNet transforms data at the
edge device using the first, smaller half of a parti-
tioned neural network with many-to-one mapping ac-
tivation functions, elimiating sensitive attributes be-
fore transmitting them to the server for final infer-
ence, as described in Figure 1. According to the au-
thors, many-to-one activation functions make data re-
construction virtually impossible, but recent research
(Ding et al., 2022) suggests potential vulnerabilities in
its obfuscation, as residual patterns may expose sensi-
tive information. Even if only intermediate layers of a
neural network are shared, these layers may still con-
tain sensitive information. This is because the training
methods used in the ObfNet algorithm (Zheng et al.,
2019) do not explicitly differentiate between utility
and sensitive data.

Another example of a UPDT method is the Re-
placement AutoEncoder (RAE) (Malekzadeh et al.,
2020), where an autoencoder is trained with raw time-
series data as input and the same data as output, but
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with sensitive information selectively replaced in spe-
cific time windows by neutral data. RAE have been
combined with gradient reversal layer (GRL) (Ganin
and Lempitsky, 2015) to protect demographic infor-
mation (Feng and Narayanan, 2021). While ObfNet
and RAE share similarities in their approaches to
privacy-preserving transformation, they differ in the
residual sensitive information they may leave behind.
The authors of (Malekzadeh et al., 2020) designed
training methods for RAE to selectively replace sen-
sitive portions of the data while also validatating the
removal of sensitive information through privacy loss
metrics. These metrics -measured as the adversary’s
accuracy in inferring sensitive information- approach
random guessing, indicating effective obfuscation. In
contrast, ObfNet employs a many-to-one activation
mapping without conducting comprehensive security
evaluations to determine the extent of data removal.
Consequently, it remains unclear whether ObfNet ef-
fectively removes sensitive information or if the trans-
formed data may still be exploited for purposes be-
yond its intended utility. Privacy-preserving inference
techniques focus on protecting sensitive data during
the inference phase. A prominent approach is the use
of a UPDT method like OfbNet(Zheng et al., 2019).
In these networks, data is transformed or masked
on the edge device before being sent to the server,
where a subsequent, larger, model performs the fi-
nal inference task. This approach aims to prevent
the server from accurately reconstructing the origi-
nal data, thus preserving privacy. Other approaches
include CryptoNets, which adapt neural networks to
process homomorphically encrypted data, enabling
secure computation without decrypting sensitive in-
formation (Chen and Ran, 2019), and Generative Ad-
versarial Models (GANs), which add controlled noise
to data, creating obfuscation that can confuse adver-
saries during inference (Romanelli et al., 2019).

3 METHODOLOGY

This section details the security evaluation approach
for examining ObfNet, with a focus on identifying po-
tential vulnerabilities and risks of information leak-
age. These findings may also have implications for
similar UPDT methods, shedding light on shared pri-
vacy challenges across this category. To examine
ObfNet, we followed the guidelines outlined in the
original ObfNet paper (Zheng et al., 2019) and used
the source code found in (Xu et al., 2020) during
the implementation of ObfNet. We used the CNN-
based inference model, and both CNN and MLP-
based ObfNets were explored, with bottleneck sizes

Figure 2: Attack scenario with server and adversary.

ranging from 8 neurons to 512 neurons. In our ex-
periments with colored images, we tested bottleneck
sizes from 8 to 1024 to examine the consequences of
a larger bottleneck size as the authors claim it pro-
vides better obfuscation (Xu et al., 2020). When
working with colored images, the size of the input
layer of all architectures of ObfNets was modified
from 28x28 neurons to 28x28x3 neurons to accom-
modate the additional color channels. The architec-
tures of the ObfNets and the inference network can
be found in (Xu et al., 2020). The attack scenario is
as follows. We employ ObfNet to obfuscate MNIST
images (Deng, 2012) as well as Colored-MNIST (a
modified version of MNIST introduced later). Then
the server attempts to reconstruct them or extract use-
ful information, such as color, utilizing all available
resources, including the public ObfNet network and
the training dataset used to generate it. Another at-
tacker in this scenario is an adversary intercepting the
connection between the edge device and the server,
assuming the obfuscated images are sent without en-
cryption. The difference between the server and the
adversary is that the latter lacks access to the origi-
nal training data. The adversary also possesses back-
ground knowledge regarding the nature of the data be-
ing transmitted, such as recognizing that MNIST im-
ages depict numbers or that Colored-MNIST includes
color information. The adversary also has the capabil-
ity to gather or generate their own datasets. An over-
iew of both attackers and their respective resources
are depicted in Figure 2. To quantify privacy, many
methods tailored for obfuscation use similarity mea-
surements between the original and obfuscated im-
ages, creating a similarity score (Raynal et al., 2020).
However, in ObfNet’s case, the obfuscated images
look vastly different from the original ones, making
a visual similarity measure a poor method for pri-
vacy quantification. Despite trying to estimate a full
reconstruction of the original input from obfuscated
images, many of our tests focus on extracting color
information from obfuscated images since we know
color is a feature irrelevant for digit classification and
it should not remain in the obfuscated images. At
the same time, the adversary is aware of the pres-
ence of color information in the obfuscated images.
The attackers’ ability to accurately predict the col-
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Figure 3: Samples from the Colored-MNIST dataset.

Figure 4: Samples from the Noisy dataset.

ors of the obfuscated images serves as a metric for
quantifying privacy. This feature-accuracy (Fa) repre-
sents the attackers’ ability to extract private features
from the obfuscated images and is calculated using
Fa =

C
T where C is the number of correctly predicted

colors, and T is the total number of obfuscated im-
ages. Given the seven equally distributed colors in our
datasets (Explained later), random guessing would re-
sult in an expected Fa of 14.2% for both the server
and the adversary. This baseline accuracy provides
a reference point. In practice, an ObfNet will rea-
sonably be deemed compromised if this Fa exceeds
twice the expected value, rounded up to 30%. When
it comes to datasets, in addition to using the original
MNIST dataset (Deng, 2012), we generated our own
datasets based on it. To avoid class imbalance, all col-
ors are randomly selected an equal number of times.
Colored-MNIST dataset is used for obfuscation and
security assessment, meanwhile the adversary gener-
ates Noisy and Path datasets. Colored-MNIST is an
extension of the original MNIST dataset. Initially,
we select a random color from the predetermined set
comprising {red, green, blue, aqua, magenta, yellow,
and white}, which is subsequently applied to indi-
vidual digit images from the MNIST dataset. Exam-
ple images from the dataset can be seen in Figure 3.
The motivation behind this dataset is to evaluate the
color-prediction accuracy from obfuscated images, as
the standard MNIST dataset lacks the color feature.
Noisy dataset is generated by assigning each pixel a
random intensity influenced by its distance from the
center, creating a higher intensity towards the middle.
The entire image is then assigned a random color from
the Colored-MNIST palette. The dataset consists of
30 thousand training images. Example images can
be seen in Figure 4. Path dataset aims to simulate a
handwriting-like appearance by generating a random
walk pattern. The process involves initiating the walk
at the center and taking a step in a random direction
for a predetermined number of steps. The entire im-
age is subsequently assigned a random color from the
set used in the Colored-MNIST dataset. Example im-
ages from the dataset can be seen in Figure 5. The

Figure 5: Samples from the Path dataset.

motivation for this dataset closely parallels that of the
Noisy Dataset, where an adversary serves as the at-
tacker. In this scenario, however, we assume that the
adversary possesses slightly more background knowl-
edge regarding the Colored-MNIST data. Specifi-
cally, we presume that the adversary is aware of the
color information and the general shapes of the digits,
resembling a random walk. Reconstruction network
(RecNet) is an auto-encoder with an identical archi-
tecture to the MLP-based ObfNet found in (Xu et al.,
2020), with a fixed bottleneck of 1024 neurons. The
server uses RecNet to estimate the original input im-
ages based on obfuscated images. The server gener-
ates a unique RecNet for each ObfNet in an attempt
to reverse its specific transformations. An overview
of this attack is illustrated in Figure 6. Each ObfNet,
whether MLP or CNN, is paired with its own unique
RecNet counterpart. While all RecNets are identical
in terms of architecture, the distinction lies in the data
on which they are trained. The server obfuscates the
entire training dataset using one ObfNet. RecNet is
then trained using pairs of the original and obfuscated
images to recreate the original images. This process
is repeated for each ObfNet. Following the examples
provided in (Xu et al., 2020), standard MNIST im-
ages are obfuscated using both MLP and CNN vari-
ants of ObfNet, with bottleneck sizes varying from
8 to 512 neurons. For each ObfNet, the server con-
structed a corresponding RecNet to estimate the orig-
inal images. This identical attack is also tested us-
ing Colored-MNIST images to evaluate the impact of
color on the reconstructed images. ColorNet adopts
the architecture of the MLP-based inference network
described in (Xu et al., 2020) with two slight modi-
fications. The input layer of this network is adjusted
from 28x28x1 to 28x28x3 to accommodate the color
channels present in the Colored-MNIST dataset. The
output layer is also adjusted from 10 to 7, reflecting
the classification task among the seven available col-
ors. The primary objective of this network is to target
a specific feature that ObfNet aims to protect. This is
achieved by classifying the obfuscated images based
on their original digit colors. As color is not a nec-
essary feature for digit classification, it is expected
that ObfNet should have kept this feature private by
removing it from the obfuscated images. The feature-
accuracy of ColorNet serves as a determinant in as-
sessing the security of an ObfNet. An overview of
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Figure 6: ColorNet and RecNet overview with example im-
ages.

this attack is illustrated in Figure 6. ColorNets are
generated on the server and trained using obfuscated
training images from Colored-MNIST. Each ObfNet
is paired with its corresponding ColorNet. Both MLP
and CNN variants of ObfNet are investigated, with
bottleneck sizes varying from 8 to 1024 neurons.

NoisyNet and PathNet are both ColorNets, but
they are trained on obfuscated Noisy and Path
datasets, respectively. The adversary utilizes these
networks to learn the colors of the obfuscated
Colored-MNIST images under the assumption that
they do not have access to original training data, but
only to a proxy. These networks are tested on CNN
and MLP-based ObfNets with bottleneck sizes vary-
ing from 8 to 1024.

All of our attacks thus far rely on the fact that,
as outlined in (Xu et al., 2020), the ObfNet network
is public, thereby accessible to everyone. If ObfNet
were trained and set up by a trusted third party, such
that neither attacker had access to it, this approach
would mitigate many risks associated with the net-
work’s security. In this attack scenario, both the
server and the adversary only have access to the ob-
fuscated images. However, the ability of the inference
network at the server to classify the obfuscated im-
ages into digits suggests that the features of the dig-
its are embedded within the obfuscated images. To
further analyze the information embedded in the ob-
fuscated images, both CNN and MLP-based ObfNets
are employed to obfuscate the testing images in the
Colored-MNIST dataset. This is done to see if the
sensitive color information is still present in the im-
ages. The obfuscated images are processed through a
t-SNE dimensionality reduction technique to reduce
their initial 2352 dimensions into a more manage-
able 2-dimensional representation. After many tests,
the perplexity value of the t-SNE hyperparameter was
set to 15 for all subsequent t-SNE experiments. This
choice balances preserving the global structure, such
as the numbers’ clusters, and capturing local struc-
tures, such as the colors’ sub-clusters.

According to the work presented in (Zheng et al.,
2019), ObfNet is a small-scale neural network de-
signed to be deployed on resource-constrained edge
devices. To validate this assertion, we utilized a pre-
trained ResNet50 (He et al., 2015) as the inference

network at the server and employed ObfNet to obfus-
cate ImageNette (Howard, 2019) images. ImageNette
images are larger and more complex than MNIST,
particularly in classification tasks. This poses a chal-
lenge to the extent to which ObfNet can maintain its
lightweight and small-scale nature. When consider-
ing the proposed ObfNet architectures in the paper
(Xu et al., 2020), simply reshaping the input to have
the shape (224,224,3) results in a model with exces-
sive parameters. This, in turn, increases the size, the
one-time communication overhead, and the RAM us-
age on the edge device. This significantly complicates
the model training process and undermines the fun-
damental purpose of ObfNet as a small-scale neural
network. For this reason, we introduce two new ob-
fuscation networks, namely LightNet and DenseNet.

LightNet is a fully convolutional neural network
(CNN) constructed for obfuscation of images in im-
age classification tasks, specific for the ImageNette
dataset (Howard, 2019). The CNN architecture con-
sists of several critical layers designed to extract fea-
tures from the input images and generate new obfus-
cated images that can be sent to the server. Light-
Net has no dense layers, making it very lightweight in
terms of parameters, size, and communication over-
head. LightNet uses ResNet50 (He et al., 2015) as an
inference network and is trained following the same
methodologies presented in (Xu et al., 2020) using
ImageNette training images. LightNet processes pre-
processed input images of size (224, 224, 3) using
only convolutional layers. Max pooling reduces spa-
tial dimensions, followed by dropout to prevent over-
fitting. Convolutional layers extract spatial features,
with batch normalization stabilizing training. Gaus-
sian noise is added as a regularizer. Finally, a trans-
posed convolution upsamples the feature map back to
(224, 224, 3).

DenseNet is a CNN with two dense layers as a bot-
tleneck. This architecture is inspired by the two-dense
layer design outlined in the original paper (Xu et al.,
2020). DenseNet incorporates two down-sampling
blocks comprising a convolutional layer followed by
a maxpool layer. This design aims to reduce the di-
mensions of the image. The bottleneck size is fixed
at 128 neurons to keep the number of parameters and
size of this network to a minimum. DenseNet also
uses ResNet as an inference network and is trained
following the same guidelines in (Xu et al., 2020) us-
ing ImageNette training images. DenseNet processes
pre-processed input images of size (224, 224, 3) us-
ing two convolutional layers, each followed by max
pooling to progressively reduce spatial dimensions. A
dropout layer helps prevent overfitting. A bottleneck
dense layer (128 neurons) is used before a final dense
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(a) Original input images

(b) Bottleneck 8 (c) RecNet reconstruction

(d) Bottleneck 16 (e) RecNet reconstruction

(f) Bottleneck 32 (g) RecNet reconstruction

(h) Bottleneck 64 (i) RecNet reconstruction

(j) Bottleneck 128 (k) RecNet reconstruction

(l) Bottleneck 256 (m) RecNet reconstruction

(n) Bottleneck 512 (o) RecNet reconstruction

Figure 7: MNIST reconstructions (MLP).

layer with 224× 224× 3 neurons to reconstruct the
output image. The final reshape operation restores the
original image dimensions.

4 RESULTS

With a fixed bottleneck size of 1024 neurons, Rec-
Net was deployed to estimate the original input to
the ObfNet models obtained from the source code
provided in (Xu et al., 2020). Our findings in Fig-
ure 7 align with those reported in the original pa-
per, wherein the digit ’one’ appears slightly darker
than others when the bottleneck size is small. In the
same Figure 7, the output of RecNet, or the recon-
structed images, are displayed. The output of Rec-
Net when estimating the original input of obfuscated
Colored-MNIST images is illustrated in Figure 8 for
MLP-based ObfNets. The server attempts to ex-
tract color information from the obfuscated Colored-
MNIST images using ColorNet. The outcomes of
these efforts are depicted in Figure 9. The feature-
accuracy is showcased across the various bottleneck
sizes in the plot. The adversary employs NoisyNet
and PathNet to extract colors from the obfuscated im-
ages. The outcomes of these attempts are presented
in Figure 10. These tests reveal that even the adver-
sary can recognize the colors without access to the
original training data with feature-accuracy exceed-
ing 50%. The results thus far demonstrate that color
and digit information are embedded within the obfus-
cated images. The obfuscated images underwent a t-

(a) Original input images

(b) Bottleneck 8 (c) RecNet reconstruction

(d) Bottleneck 16 (e) RecNet reconstruction

(f) Bottleneck 32 (g) RecNet reconstruction

(h) Bottleneck 64 (i) RecNet reconstruction

(j) Bottleneck 128 (k) RecNet reconstruction

(l) Bottleneck 256 (m) RecNet reconstruction

(n) Bottleneck 512 (o) RecNet reconstruction

(p) Bottleneck 1024 (q) RecNet reconstruction

Figure 8: Colored-MNIST reconstructions (MLP).

Figure 9: Fa of ColorNet with varying bottlenecks.

SNE dimensionality reduction procedure to analyze
this phenomenon further. The results are visualized
on a 2D graph in Figure 11 and they show ten pri-
mary clusters corresponding to the ten different digits.
However, each cluster contains sub-clusters associ-
ated with colors, indicating that color information re-
mains embedded in the obfuscated images. While this
study focuses on ObfNet, the vulnerabilities we iden-
tified, such as information leakage during reconstruc-
tion attacks, are likely relevant to other UPDT meth-
ods. Similarities between ObfNet and techniques like
Replacement AutoEncoders, and Anonymization sug-
gest that residual sensitive information may persist
when transformations are insufficiently selective to
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(a) NoisyNet. (b) PathNet

Figure 10: Fa with varying bottlenecks.

(a) MLP, Bottleneck:1024 (b) CNN, Bottleneck:8
Figure 11: t-SNE of Colored-MNIST with two ObfNets.

protect specific sensitive information. This under-
scores a broader challenge within UPDT frameworks:
achieving a balance between utility preservation and
robust privacy. When dealing with larger and more
complex data, scaling up ObfNet results in many
trainable parameters and FLOPs. In Table 1, a com-
parison between ObfNets and our proposed models
is presented. LightNet achieved 93% accuracy while
DenseNet achieved only 59%. Obfuscated images for
LightNet can be seen in Figure 12. DenseNet images
are visually obfuscated.

Table 1: ObfNet vs. our models on 224x224x3 images.

Model Parameters FLOPs Size
ResNet50 26.2M 7.73e9 105 MB
ObfNet-MLP 154.3M 3.08e8 617 MB
ObfNet-CNN 279.1M 6.46e8 1.11 GB
LightNet 20.7K 5.10e8 76 KB
DenseNet 25.0M 2.29e8 100 MB

5 CONCLUSION & FUTURE
WORK

All the outcomes from the experiment mentioned
above, particularly the t-SNE analysis, suggest that
the ObfNet algorithm is more inclined to leak as much
information as possible rather than removing infor-
mation to protect privacy. Throughout all the con-
ducted tests, the ObfNet algorithm consistently failed
for various reasons each time. While the small bot-
tleneck forces some information to be removed, the
lack of mechanisms to control what is eliminated un-

Figure 12: LightNet output on ImageNette (obfuscated).

derscores a broader challenge not just for ObfNet but
for similar UPDT methods. This highlights the need
for more advanced approaches that explicitly priori-
tize the removal of sensitive information while main-
taining utility. The results of RecNet on obfuscated
test images from the Colored-MNIST dataset can be
seen in Figure 8 for the MLP variant. The CNN vari-
ant has very similar results. RecNet not only approx-
imated the original input shape and digit but also ac-
curately inferred the digit color from the obfuscated
image, given that the bottleneck of the ObfNet is large
enough. The obfuscated MNIST examples presented
in (Xu et al., 2020) were fully reconstructed in Fig-
ure 7, effectively undermining the examples obtained
in the source code. This further substantiates the vul-
nerabilities of ObfNet. This observation reinforces
the broader challenge faced by UPDT methods, as
similar reconstruction risks may arise when sensitive
attributes are insufficiently obfuscated. All ColorNet
models display the substantial color information em-
bedded within the obfuscated images, achieving peak
feature-accuracies of 99.46% and 99.40% on MLP-
based ObfNets with bottleneck sizes 512 and 1024,
respectively (Figure 9, Figure 10). The results of the
t-SNE graphs further strengthen the findings of Col-
orNet in Figure 11, with ten primary clusters in the
MLP-based obfuscated images, each of these clus-
ters corresponds to one of the ten digits. However,
each main cluster displays distinct sub-clusters corre-
sponding to colors. This suggests that color informa-
tion remains embedded within the obfuscated images
and is susceptible to exploitation. This highlights a
broader challenge for UPDT methods: the residual
data left behind after the transformation often retains
sensitive attributes, such as color information, which
can compromise privacy. Ensuring that transformed
data is free from exploitable patterns while preserving
its utility remains a critical hurdle for these methods.
LightNet failed to obfuscate images effectively, as
demonstrated by Figure 12. This failure emphasizes
the need for better training methods where feature re-
moval is controlled. DenseNet, incorporating dense
layers and a small bottleneck, managed to obfuscate
images but at the cost of significantly reduced clas-
sification accuracy due to the complexity of the Ima-
geNette dataset. The balance between bottleneck size,
feature removal, and task complexity remains chal-
lenging to achieve with current training methods. The
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images were preprocessed using ResNet’s preprocess-
ing function (TensorFlow, ). Therefore, any differ-
ences observed in Figure 12 can be attributed to the
preprocessing function. The original paper of ObfNet
(Xu et al., 2020) states that ObfNet is lightweight
and can run on devices without acceleration for in-
ference. This claim holds primarily for MNIST and
other small-scale, simple datasets. However, this fea-
sibility diminishes as dataset size and complexity in-
crease, leading to a substantial rise in network pa-
rameters, size, and FLOPs. This observation is not
unique to ObfNet but reflects a common challenge for
many UPDT methods when scaling to more complex
data: the trade-off between computational efficiency
and robust privacy preservation as the size of the data
that needs to be transformed grows. The original pa-
per (Xu et al., 2020) also claims that ”when more
neurons are used in the first hidden layer of OM , the
overall darkness levels of the obfuscation results of all
digits are equalized, suggesting a better obfuscation
quality”-however, our test results in Figure 7 show
the opposite. As the bottleneck size increases, ObfNet
inadvertently retain more information, making sensi-
tive data more susceptible to leakage. This reliance
on visual indicators of obfuscation, rather than robust
privacy metrics, is a broader issue across UPDT tech-
niques. Each dataset comes with its unique privacy
requirements and characteristics, making it difficult
to establish a universal privacy metric that applies to
all cases. Furthermore, the lack of well-defined de-
sign principles in UPDT methods is a common chal-
lenge as each dataset is different (Malekzadeh et al.,
2020). For example, the results from LightNet (Fig-
ure 12) demonstrate that without explicit mechanisms
to enforce effective obfuscation, networks trained to
prioritize utility-such as inference accuracy-may in-
advertently leave sensitive data insufficiently trans-
formed. This issue is further exacerbated by train-
ing methodologies that do not impose strong con-
straints for selective feature removal, which can result
in residual sensitive information remaining within the
transformed datasets. Addressing these shortcomings
is essential for improving the scalability, robustness,
and privacy guarantees of UPDT architectures.
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