
Secure and Practical Cold (and Hot) Staking

Mario Larangeira1,2 a

1Institute of Science Tokyo, School of Computing, Ookayama 2-12-1, Meguro-ku, Tokyo, Japan
2Input Output Global (IOG), Singapore

Keywords: Delegated Proof of Stake, Stake Delegation, Hardware Wallet, Hot Wallet, Cold Wallet.

Abstract: The stake delegation technique is what turns the general Proof of Stake (PoS) into a practical protocol for a
large number of participants, ensuring the security of the distributed system, in what is known as Delegated
PoS (DPoS). Karakostas et al. (SCN ’20) formalized the delegation method paving the way for a whole
industry of stake pools by proposing a formal definition for wallet as a universal composable (UC) functionality
and introducing a corresponding protocol. On the other hand, a widely used technique named hot/cold wallet
was formally studied by Das et al. (CCS ’19 and ’21), and Groth and Shoup (Eurocrypt ’22) for different key
derivation methods in the Proof of Work (PoW) setting, but not PoS. Briefly, while hot wallets are exposed
to the risks of the network, the cold wallet is kept offline, thus more secure. However this may impair some
capabilities given that the cold wallet is kept indefinitely offline. It is straightforward to observe that this
“double wallet” design is not naturally portable to the setting where delegation is paramount, i.e., DPoS. This
work identifies challenges for PoS Hot/Cold Wallet and proposes a secure and practical protocol.

1 INTRODUCTION

The notion of “addresses” transacting with each other
was popularized by Bitcoin. Each address is the hash
value of the ECDSA verification key. In comparison
with Proof of Work (PoW), typically, Proof of Stake
(PoS) systems are more intensive in the use of crypto-
graphic machinery. For example, whereas PoW relies
mostly on signature scheme and hash function, gener-
ally PoS systems rely also in certificates (for delega-
tion) and Verifiable Random Functions for committee
and leader elections. (Karakostas et al., 2020) was the
first to propose a universally composable wallet, fol-
lowing the Universally Composability (UC) Frame-
work, for PoS. This development is foundational for
Delegated PoS and it has led to the appearance of a
stake pool economy with thousands of nodes under-
pinning the Cardano Blockchain. An example of the
wallet design framework with its security supported
by thousands of stake pools (Cardano, 2024).

On the other hand, Ethereum has chosen a rather
different approach for its migration from PoW to PoS,
i.e., Ethereum 2.0. It relies on users allocating their
stakes, and blocking them during a period of time,
a significant change from (Karakostas et al., 2020),
where the user can freely transact their tokens and the

a https://orcid.org/0000-0001-7168-898X

systems acknowledges the amount of stake distribu-
tion during leader election. The DPoS setting is sig-
nificantly different from the PoW one as (Karakostas
et al., 2020) remarks. It seems the wallet security
from one setting could not be trivially adapted to the
other. An example is the hot/cold technique formal-
ized in (Das et al., 2019, Das et al., 2021) which, in a
nutshell, allows the combination of two wallets: one
with network access, hence the hot wallet, and the
cold wallet, isolated and therefore secure. The crucial
point is that the hot wallet can generate new cold wal-
let addresses in an “on demand” fashion, keeping the
cold wallet offline via key derivation. How the delega-
tion of the cold wallet, defined for PoW, where most
of the funds are stored, works is unclear in DPoS.

This restriction refrains the cold wallet from
spending, or be drained from in the case of an attack,
the stored funds, because the wallet never comes on-
line. However, given the ingenious design of the key
derivation (Das et al., 2019, Das et al., 2021), the per-
manently offline state does not refrain the cold wallet
of receiving new funds. Furthermore, the cold wal-
let is often a hardware wallet given its typical extra
security features. However it is not a mandatory re-
quirement. That is the cold wallet can be a regular
(offline) software client.

Such Hot/Cold approach for PoS based wallets,

Larangeira, M.
Secure and Practical Cold (and Hot) Staking.
DOI: 10.5220/0013458200003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 339-346
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

339

like those in (Karakostas et al., 2020), still remains
unexplored. This literature gap is surprising given
the startling design differences between the wallets
in (Karakostas et al., 2020) and Bitcoin. In the light of
the former, the addresses also encode a richer set of at-
tributes, given is heavy use cryptographic machinery,
and this capability does exist for regular ECDSA PoW
addresses. Therefore it is far from clear whether the
security analysis of (Das et al., 2019, Das et al., 2021),
which is based solely for PoW paradigm, preserves
the security properties for DPoS setting, as shown
in (Karakostas et al., 2020). The very question

“How to perform the hot and
cold wallet technique in DPoS?”

remains not fully answered. This works fills this gap.

DPoS Cold/Hot Staking Challenges. In the single
wallet setting, a hot wallet setting, it is straightfor-
ward to receive the rewards and perform delegation
and redelegation as it is a matter of issuing a new
certificate with a new signature. In the case of dou-
ble wallet setting, forwarding the rewards would be
straightforward since it is trivial to assign the rewards
target, in the certificate, to the address of the cold wal-
let, i.e., a cold address. On the other hand, it is un-
clear how the funds of the cold wallet can be staked
since the signature in the certificate corresponds to
the hot wallet. The early cited limitations suggest a
major rework on the delegation framework proposed
in (Karakostas et al., 2020) to accommodate hot/cold
wallet setting is necessary. It is also paramount that a
novel design does not void the security guarantees of-
fered by that work. Thus, our early outlined research
question can be translated to the following questions

• Cold Stake Delegation. How the stake of the cold
wallet is delegated, if the hot wallet signs the cer-
tificate?

• Rewards Payment. How rewards are payed to the
cold wallet?

• Cold Stake Redelegation. How redelegation is
done? Does it require the cold wallet to be online?

• Composable Security. Does a new hot/cold wal-
let construction design realizes the functionality
in (Karakostas et al., 2020)?

Related Works. As briefly described, (Karakostas
et al., 2020) proposed a thorough formalization of
the addresses syntax and delegation method for PoS
ledgers. In particular, its addresses system supports
attributes embedded into the address strings. More-
over, it introduces two types of keys for (1) signing
transactions and (2) performing stake delegation. In

the PoW setting, the hot/cold wallet was first studied
by Das et al. (Das et al., 2019) in the setting of de-
terministic wallets (Maxwell et al., 2014), and their
work focused on the key derivation of the ECDSA
signature scheme which is widely employed for trans-
actions in blockchain systems and, in particular, their
stateful deterministic wallet design. In a follow up
work, Das et al. (Das et al., 2021) presented a formal
security analysis of the BIP32 wallet standard as it is.

This work build upon the security model intro-
duced in (Das et al., 2019). Despite of not mandatory,
the cold wallet is often a hardware wallet, i.e., piece
of hardware with extra countermeasures against side-
channels. Such class of wallets also received a formal
treatment in (Arapinis et al., 2019) by Arapinis et al.
in the UC Framework. Finally a spendable cold wal-
let was, in fact, proposed with hardware aid (Dowsley
et al., 2022), i.e., optical channel, and is based in (Das
et al., 2019). Unfortunately it is not designed for the
DPoS setting. Nonetheless, the hardware aid could be
adapted for the use in DPoS.

Our Contribution. In a nutshell, this work inves-
tigates the feasibility of relying on a similar design
to the Hot/Cold Wallet in the DPoS setting. As a
main requirement in this investigation, it is neces-
sary to identify possible shortcomings in porting the
Hot/Cold design from PoW to DPoS in current de-
signs. Given this first step, we proceed in constructing
a possible wallet/delegation framework to overcame
such shortcomings. Our contribution is three fold

• to identify limitations of the current Hot/Cold Wal-
let design (Das et al., 2019) from the PoW setting
to the DPoS (Karakostas et al., 2020), i.e., perform
stake delegation with a hot/cold wallet in PoS;

• to introduce a novel wallet design, i.e., the proto-
col πHC and the functionality FHC, in order to sup-
port stake delegation, at the same time is offers en-
hanced security guarantees based on cold storage;

• to present a formal and thorough security analy-
sis in the UC Framework, and prove that our PoS
Hot/Cold Wallet Protocol πHC UC realizes the UC
Functionality FHC.

2 PRELIMINARIES

In the next definitions, we consider negl to be a neg-
ligible function with respect to the security parameter
κ. Moreover, in general we also assume that the ad-
versary is Probabilistic Polynomial Time (PPT) also
with respect to κ, and an EUF-CMA secure digital sig-
nature scheme Σ = ⟨Gen,Verify, Sign⟩.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

340

2.1 The Stake Delegation in PoS

One of the key points in the of the core wallet design
πWallet of (Karakostas et al., 2020), is that the address
system relies on two pairs of keys: one for spend-
ing transactions while the other is for the delegation.
That is, (skpay,pkpay) for payment, i.e., signing regu-
lar transactions, and (skstk,pkstk) for delegation, i.e.,
signing of the delegation certificate.

Attributes and Addresses. Along with both pairs
of keys, for staking and paying, (Karakostas et al.,
2020) relies on collision resistance hash function, and
introduces procedures to generate addresses α and as-
signment attributes to them: GenAddr and HKeyGen.
For completeness, now we review these properties.

Definition 1 (Collision resistance). A function H is
collision resistant if, given h←{0,1}ℓ, it is computa-
tionally infeasible for a PPT algorithm to find a value
x such that h = H (x) for some size ℓ.

We now review the properties specific for the
framework in (Karakostas et al., 2020) with respect to
the address generation. Intuitively, they are designed
to capture (and avoid) adversarial attempts to derivate
malicious address strings from honest ones.

Definition 2 (Address collision resistance). Analo-
gously to hash functions, GenAddr is collision resis-
tant when it is infeasible to produce two different at-
tribute lists li = (δi

1, . . . ,δ
i
g) for i ∈ {1,2}, i.e., they

differ in at least one attribute like ∃ j ∈ [1,g]: δ1
j ̸= δ2

j ,
such that GenAddr(l1) = GenAddr(l2), after running
GenAddr(·) a polynomial number of times.

Definition 3 (Hierarchical Key Generation). For a
key generation function HKeyGen(·) and signature
scheme Σ = ⟨Gen,Verify,Sign⟩, HKeyGen(·) is hier-
archical for Σ if, for all w, the key distribution pro-
duced by HKeyGen(w) is computationally indistin-
guishable from the key distribution produced by Gen.

The address generation depends on the key and
meta information attributes (Karakostas et al., 2020).
For completeness, we recall the following definition.

Definition 4 (Non-malleable attribute address genera-
tion). Let L be a distribution of attribute lists and l←
DOM(L) an attribute list, such that DOM(L) = ∆1×
. . .×∆g. Let the first attributes of l δ1, . . . ,δi relate
to a property over which we define non-malleability.
Given an address α, it is infeasible for an adversary A
to produce valid forgeries, i.e., acceptable addresses
with the same payment key as α, without access to α’s
private attributes, even with access to the address’s
metadata, i.e., its semi-public attributes. Concretely,

with Addrs the list of addresses queried by A to the
oracle GenAddrd(·), it holds that

Pr

 l = (δ1, . . . ,δg), α← GenAddr(l),
AGenAddr(·),GenMeta(·)(δi, . . . ,δg)→

(α′,δ′i, . . . ,δ
′
g)

:

(GenAddr(δ′i, . . . ,δ
′
g) = α′)∧ (α′ ̸= α)∧

(α′ /∈ Addrs)

]
≤ negl

for probabilities over the random coins of GenAddr
and the PPT adversary A , and choices of l.

The access to the oracles GenAddrd and
GenMetad captures the scenario where the adversary
has access to a source of well formatted addresses and
metadata which may contain useful information.

PoS Wallet Interface and Stake Pool. As men-
tioned earlier, the PoS design requires more cryptog-
raphy machinery than the PoW approach, therefore
the wallet πWallet, as devised in (Karakostas et al.,
2020), introduces separate actions for payment, del-
egation (by putting forward PAY and STAKE inter-
faces), and also stake pool registration. For the lat-
ter, their design introduces space for metadata meta
and makes use of a regular payment transaction whose
syntax we introduce next for completeness.
Payment. It is the transfer of Θ assets from a
sender’s to receiver’s addresses αs and αr via transac-
tion tx = (Θ,αs,αr,meta), with metadata meta, i.e.,
fee amount. Next it accesses the PAY interface of
πWallet, retrieves the signed (by the payment secret key
skpay) tx, and publishes it on the ledger.
Stake Pool Registration. Every pool is identified
by a registered staking key. That is, the pool op-
erator relies on πWallet to produce a new staking
key pair (skstk

pool , pk
stk
pool), which the operator receives

pkstk
pool . It, then, creates a registration certificate Creg =

(pkstk
pool ,meta), where meta is the pool’s metadata,

e.g., the name of the pool’s operator. The certificate is
signed by πWallet with skstk

pool , and the signature is re-
turned. The certificate Creg and the received signature
are published on the ledger (in a payment transaction),
thus registering pkstk

pool on behalf of the pool.
Delegation/Redelegation. The stake delegation en-
ables a wallet to assign a stake pool to perform stak-
ing on its behalf. It is based on delegation certificates
like Cdel = (pkstk

user,⟨pkstk
pool ,meta⟩). Namely, pkstk

user is
the staking key to which the certificate applies, i.e.,
the key which controls the stake of an address, pkstk

pool
is the delegate’s key, i.e., the registered key of a stake
pool, and meta is the certificate’s metadata. The wal-
let gives Cdel to πWallet to be signed with skstk

user, then it
publishes Cdel and the signature via a payment trans-
action (as in the stake pool registration).

Secure and Practical Cold (and Hot) Staking

341

2.2 The Stateful Hot/Cold Wallet

For completeness, we review (Das et al., 2019). The
following definition is important because we rely on
it in order to keep the key in the cold storage synchro-
nized with the hot wallet via key derivation.

Definition 5 (Stateful Hot/Cold Wallet Scheme (Das
et al., 2019)). For a security parameter κ, a Stateful
Hot/Cold Wallet is defined by the algorithms ΣHC =
(MGen,SKDer,PKDer,WSign,WVer) such that
• MGen(1κ,ρ) → (st0,msk,mpk):The probabilistic

master key generation algorithm MGen takes as in-
put the security parameter 1κ and randomness ρ,
then outputs an initial state st0 that is given to both
hot and cold wallets, a master public key mpk that is
given to the hot wallet, and a master secret key msk
that is given to the cold wallet;

• SKDer(msk,st, id)→ (skid,st
′): The determinis-

tic secret key derivation algorithm SKDer is run by
the cold wallet to derive a session secret key. It
takes as input the master secret key msk, the state
st, identifier id, and outputs a session secret key
skid and the new state st′;

• PKDer(mpk,st, id)→ (pkid,st
′): The determinis-

tic public key derivation algorithm PKDer is run by
the hot wallet to derive a session public key. It takes
the master public key mpk, the state st and an iden-
tifier id, and outputs a session public key pkid and
the new state st′;

• WSign(m,sk)→ σ: The probabilistic signing algo-
rithm WSign is executed by the cold wallet. It takes
as input a message m and a session secret key sk and
outputs a signature σ;

• WVer(m,σ,pk)→ {0,1} : The deterministic verifi-
cation algorithm WVer is executed by any party that
wants to verify the validity of a signature. It takes
as input a session public key pk, a message m and a
signature σ, and outputs 0 or 1.

We stretch the EUF-CMA security definition for
signature to Definition 5 by saying that ΣHC is
EUF-CMA if it shows similar properties.

Correctness of a Stateful Hot/Cold Wallet Scheme.
The correctness requirement guarantees that if the
cold/hot wallets derive session key pairs on the same
set of identifiers id1, . . . , idn and in the same order (de-
parting from the initial state st0), then any signature
created by the cold wallet using one of the session
secret keys skidi should be accepted when the verifi-
cation algorithm is executed with the corresponding
session public key pkidi

. In other words, all the de-
rived session secret and public keys should match.

Security of the Stateful Hot/Cold Wallet Scheme.
As described by Das et al. (Das et al., 2019), the
Stateful Hot/Cold Wallet Scheme should satisfy two
security properties: Unlinkability and Unforgeabil-
ity. Intuitively, the former protects the privacy of the
transaction receiver and captures the guarantee that it
should be infeasible to link transactions sending funds
to different session public keys that were derived from
the same master public key.

It is required that an adversary that is given the
master public key cannot distinguish between ses-
sion public keys derived from that master public key,
and session public keys that are generated from a
fresh (i.e., independently and randomly chosen) mas-
ter public key. As highlighted in (Das et al., 2019),
such security property cannot be achieved for keys
which the adversary knows the state used to derive
them (the adversary can learn such state if there is a
breach in the hot wallet, for example).

The Unforgeability property captures the feature
that once funds are transferred to the cold wallet, they
remain secure if: (1) the hot wallet is breached; and
(2) the adversary observes transactions signed by the
cold wallet. Even such adversary cannot generate new
valid transactions spending cold wallet funds.

3 PoS HOT/COLD LIMITATIONS

The current design, outlined in Section 2, presented
features that can be used to perform delegation in the
hot/cold wallet setting. On the other hand, some fea-
tures are missing and others are not adequate. We
thoroughly discuss each one of them next.
• Cold Stake Delegation. As pointed in Sec-

tion 2.1, the delegation is crucially dependent
of the publication of the delegation certificate
Cdel = (pkstk

user,⟨pkstk
pool ,meta⟩) and σdel generated

by skstk
user. The construction to be presented has to

set the cold wallet key pairs, i.e., for staking and
payment, and manage them accordingly;

• Rewards Payment. The delegation certificate, i.e.,
Cdel = (pkstk

user,⟨pkstk
pool ,meta⟩), and meta can con-

tain the (see next Cold staking redelegation) cold
wallet address to where the rewards can be moved.
The pool operator uses it to deposit the rewards;

• Cold Stake Redelegation. Every new delegation,
i.e., for redelegation, a new address can be issued
under the control of the cold wallet, i.e., controlled
by skstk

user;
• Composable Security. The protocol πWallet

from (Karakostas et al., 2020) seems to be incom-
patible to the Stateful Hot/Wold Wallet, i.e., Defi-
nition 5, in the current form, which suggests a re-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

342

design of πWallet in order to realize the security def-
inition of (Karakostas et al., 2020);

• Hot Wallet Funds. Given that the delegation is per-
formed by certificate publication in the ledger via a
regular (payment) transaction, the hot wallet, i.e.,
skpay, must to have some funds in order to pay (and
also stake) regular fees for publication.

In summary, given the earlier discussion, it is not
clear that it is possible to port the current stateful
hot/cold wallet design into DPoS.

4 WALLET PROTOCOL πHC

The main motivation of our next definition is to fill the
gaps discussed in Section 3 by introducing our proto-
col πHC. We start from the basic intuition.

4.1 Intuition: Four Pairs of Keys

We rely on four pairs of keys: (skstk
hot ,pk

stk
hot),

(skpay
hot ,pk

pay
hot), and (skstk

cold ,pk
stk
cold) are key pairs

from a secure regular (ECDSA) signature, whereas
(msk

pay
cold ,mpk

pay
cold) is a Stateful Hot/Cold Wallet key

pair in the sense of Definition 5. Thus the latter is
generated as outlined in Section 2.2:
• ECDSA key pair mskpay

cold = x and mpk
pay
cold = x ·G,

for uniformly random x;
• Derivation information generation: w←H (id,ch),

for a “chaincode” ch and index id;
• Keys derivation: pkpay

c,id ← mpk
pay
cold + w · G and

skpay
c,id ← msk

pay
cold +w, for a group generator G;

• Existence of a deterministic function I : N →
{0,1}∗, such that the cold wallet can check the
equality I (i) = idi = id∗ for sequential values i.

4.2 Key/Address Basic Procedures

As expected, our protocol is based on the one
from (Karakostas et al., 2020). The main difference
is that here we have to capture two wallets, namely,
the hot and the cold one. Hence, we extend the proto-
col from (Karakostas et al., 2020), with the option of
distinguishing the option between the wallets.

The main idea is that a user U has access to πHC
for the basic procedures for a wallet: initialize, pay
(signing transaction), verify transaction, staking, gen-
erating address, recovery, etc.

As a preparation to introduce our full construc-
tion for πHC, we present the concrete parameters
for the protocol, which were originally proposed
in (Karakostas et al., 2020).

• GenAddr (Algorithm 1): It is the malleable ad-
dress generation function 1 which generates the ad-
dress strings. Concretely it is given by Algorithm 1,
and it supports three types of addresses 2: “base”,
“pointer” and “exile”;

Algorithm 1: (GenAddr). The malleable address generation
function, parameterized by H (·) and the Stateful Hot/Cold
Wallet, i.e., Definition 5. The input is a tuple lα of the aux-
iliary information aux and attributes for address α.

function GenAddr(lα)
(aux,st,skpay,pkpay,wallet) = parse(lα)
switch(“aux′′) do

case(“base′′) : β = H (st)
case(“pointer′′) : β = getPointer(st)
case(“exile′′) : β = st

α = H (pkpay
wallet ||pk

stk
wallet ||H (pkpay

wallet))||
β||H (pkpay

wallet)
return α

It is not hard to verify the following lemma.
Lemma 1. GenAddr is collision resistant if H is
collision resistant.

• HKeyGen (Algorithm 2): It is the procedure which
is used in combination of the GenAddr. For every
new address generation, the generation relies on a
derivation of a signature public/secret key pair. In
our construction, we use this procedure in addition
to the Stateful Hot/Cold Wallet, i.e., Definition 5.

Algorithm 2: (HKeyGen). Hierarchical Key Generation, re-
lies on a Pseudorandom Function (PRF), and Pseudoran-
dom Number Generation (PRG). It is designed for label ∈
{“pay”,“stk”} and wallet ∈ {“hot”,“cold”}.

function
HKeyGen(κ,r,⟨label,wallet, index⟩,(mpk,st))

if label=“pay”∧wallet =“cold” do
return
PKDer(mpk,st, index) = (pkpay

c,index,st
′)

else
v← PRF(r||label||wallet||index)
ρ← PRNG(v)
returnGen(1κ,ρ) = (sklabel

wallet ,pk
label
wallet)

1In (Karakostas et al., 2020), this function is referred as
Ex Post Malleability type of address, and it is one of vari-
ous degrees of malleability supported by their framework.
Later the functionality receives an equivalente malleability
predicative.

2The extra types of addresses are to support differ-
ent entities like regular user, i.e., “base”, stake pools, i.e.,
“pointer”, not participants of PoS consensus, i.e., “exile”.

Secure and Practical Cold (and Hot) Staking

343

• RTagGen: It is the Recovery Tag Generation algo-
rithm used in the recovery procedure of the wallet.
The tags are generated by hashing the input with the
collision resistant hash function H .

4.3 Cold Storage and the πHC Wallet

The cold storage and the wallet πHC work in pair.
While the former keeps the cold key mskcold , and
therefore skpay

cold , the latter keeps remaining keys, and
can perform the hierarchical key generation for ad-
dress issuing. The initial cold key state, along with
the mpkcold and session key id, is passed to πHC.

Concretely, U executes MGen(1κ,ρ) →
(st0,msk

pay
cold ,mpk

pay
cold) for a randomness ρ, pick

a random id, and send (INIT,sid,st0,mpk
pay
cold , id) to

πHC as it can be seen in the Initialization Interface of
πHC next. The address generation starts by picking
“child attributes” by the jargon of (Karakostas et al.,
2020).

Protocol πHC
Initialization:
Upon receiving (INIT,sid,st0,mpk

pay
cold , id) from

U, set r $←− {0,1}κ and return (INITOK,sid).
Address Generation:
-Upon receiving the message
(GENERATEADDRESS,sid,aux,wallet) from
U, compute the index and “child” attributes as
follows: i) pick i← I ; ii) if wallet=“cold”, set
store = (mpk

pay
cold ,st0) and index = id,

else set store = ⊥ and index = i iii) set
(pkchd,pay

wallet ,skchd,pay
wallet) = HKeyGen(κ,r,⟨

“pay”, wallet, index⟩,store); iv) set wrt =

RTagGen(pkchd,pay
wallet).

-If aux = “base”, set (pkchd,stk,skchd,stk) =
HKeyGen(κ,r,⟨“stk”,wallet, i⟩,⊥); else,
if aux = (“pointer”,pkstk),find
(pkchd,stk,skchd,stk) ∈ K : pkstk = pkchd,stk; else if
aux = “exile”, set (pkchd,stk,skchd,stk) = (⊥,⊥).
-Then insert lα = ⟨pkchd,stk,wrt,aux,
pkchd,pay

wallet ,skchd,pay
wallet ,skchd,stk

wallet ,wallet⟩, gener-
ate new address α as α = GenAddr(⟨aux,
pkstk

c ,skpay
c ,wrt⟩), and insert the tuple

⟨α,(pkpay
c ,skpay

c)⟩ to Pwallet
key .

-Return (ADDRESS,sid,α) to U. If
aux = “base” also insert (pkchd,stk

wallet ,sk
chd,stk
wallet)

to Swallet
key and send the message

(STAKINGKEY,sid,pkchd,stk
wallet) to U.

Wallet Recovery: // For both cold and hot
Upon receiving the message

(RECOVERWALLET,sid,wallet, imax) from U,
∀i ∈ [0, imax] set (pkpay

i ,skpay
i) = HKeyGen(κ,r,

⟨“pay”,wallet, i⟩,store), store =
{(mpkpay

cold ,st0),⊥}, return the message
(TAG,sid,RTagGen(pkpay

i)) to U.
Address Recovery: // For both cold and hot
Upon receiving the message
(RECOVERADDR,sid,wallet,α, imax)
from U, parse the address’s attributes
(pkstk,wrt,aux) = parsePubAttrs(α). If ex-
ists i ∈ I : i < imax, where (pkpay

i ,skpay
i) =

HKeyGen(κ,r,⟨“pay”,wallet, i⟩,store),
for store = {(mpkpay

cold ,st0),⊥} and
RTagGen(pkpay

i) = wrt, and then return
(RECOVEREDADDR,sid,α).
Issue Hot Transaction: // Only hot payment
Upon receiving the message
(PAY,sid, tx = (Θ,αs,αr,m)) from U, find
⟨αs,(pk

pay,skpay)⟩ ∈ Phot
key and return the mes-

sage (TRANSACTION,sid, tx,Sign(skpay, tx)).
Issue Cold Transaction: There is no interface
because skpay

cold is disconnected in cold storage.
Verify Transaction: // For both cold and hot
Upon receiving (VERIFYPAY,sid, tx,σ)
from U, with tx = (Θ,αs,αr,meta)
for some metadata meta, find an entry
⟨αs,(pk

pay,skpay)⟩ in Pwallet
key , for either wallet ∈

{“hot”,“cold”}, and return o U the message
(VERIFIEDPAY,sid, tx,σ,WVer(tx,σ,pkpay)).
Issue Staking: // Staking secret key is accessible
Upon receiving (STAKE,sid,stx,wallet) from
U such that stx = (pkstk,meta), for some
metadata meta and find (pkstk,skstk) ∈ Swallet

key
for either wallet ∈ {hot,cold}, then return
(STAKED,sid,stx,Sign(skstk,stx)).
Verify Staking: // For both cold and hot
Upon receiving (VERIFYSTAKE,sid,stx,σ)
from party U, where stx = (pk,meta) for some
metadata meta, then find (pkstk,skstk) ∈
Swallet

key , for wallet ∈ {hot,cold}, return
(VERIFIEDSTAKE,sid,stx,σ,WVer(stx,σ,skstk)).

Remark. The trick is that the cold storage only stores
the cold secret key for payment. When skpay

cold is
stored, it is in fact storing the new state st′ to be used
in the new key derivation. In order to perform the on-
line redelegation, we only need the cold secret key for
staking. That is, we do not need the key for signing a
payment transaction (from the cold wallet). Thus the
double key structure, for payment and staking, comes
handy. In order words we can freely do (re)delegation
even with the cold wallet offline permanently.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

344

5 SECURITY ANALYSIS

In (Karakostas et al., 2020), the main security defini-
tion is the wallet functionality F M

Wallet, which receives,
as a parameter, the malleability predicative3 M, in or-
der to propose a flexible definition for different de-
grees of address malleability. That is, how much the
adversary can reuse the same address with different
staking keys; the so called malleability issue identi-
fied in (Karakostas et al., 2020).

Unfortunately, F M
Wallet does not support hot/cold

design, therefore from now we proposed a redesign
of F M

Wallet into F M
HC in order to analyze the previously

presented wallet protocol πHC.

5.1 The Functionality FHC

Before presenting our functionality FHC, for com-
pleteness, we recall the malleability predicate M
which is a parameter for FHC.

Algorithm 3: The malleability predicate M keeps list of gen-
erated addresses and transactions, L and T, and verifies for
rightfully generated addresses.

function ML,T,U(aux,α)
switch(“aux”)

case(“issue”) : return 1
case(“verify” OR “recover”) : d =

parsePubAttrs(α)
for δ ∈ d do

if ∀α′ ∈ LU ∈ ,d′ = parsePubAttrs(α′):
δ ̸∈ d′ then return 0

if ∀(Θ,αs,αr,m) ∈ T,ds =
parsePubAttrs(αs): δ ̸∈ ds then return 0

return 1
return 0

The early predicate M is used as a parameter in
the next functionality. Its role is to specify the level of
address malleability we consider in the functionality.

Now, we present the adapted functionality F M
HC.

Functionality F M
HC

Initialization: On receiving the message
(INIT,sid,st0,mpk

pay
cold , id) from P ∈ P, forward

it to S and wait for (INITOK,sid). Then ini-
tialize the empty lists LP of addresses and at-
tribute lists and KP of staking keys, return
(INITOK,sid).

3(Karakostas et al., 2020) proposed various predicative
parameters for different malleability degrees. We will con-
sider here in this work the “sink” malleable predicate, al-
though we drop the term “sink malleable” for readability.

Address Generation: On receiving the message
(GENERATEADDRESS,sid,aux,wallet) from
P∈ P, forward it to S . On (ADDRESS,sid,α, lα)
from S , parse lα as (δ1, . . . ,δg) and ∀P′ ∈ P
check if ∀(α′,(δ′1, . . . ,δ′g)) ∈ LP′ it holds that
α ̸= α′, δ′2 ̸= δ2, and ∀ j ∈ [i, . . . ,g] : δ′j ̸= δ j, i.e.,
the address, recovery tag, and private attributes
are unique. If so, then
• if aux = (“base”), check that
∀(α′,(δ′1, . . . ,δ′g)) ∈ LP : δ′1 ̸= δ1,

• else if aux = (“pointer”,pkstk), check that
δ1 = pkstk,

• else if aux = (“exile”), check that δ1 =⊥.
If the checks hold or P is corrupted, then insert
(α, lα) to LP and return (ADDRESS,sid,α) to P.
If aux = (“base”) also insert δ1 to KP and return
the message (STAKINGKEY,sid,δ1) to P.
Wallet Recovery: Upon receiving the message
(RECOVERWALLET,sid,wallet, i) from P ∈ P,
for the first i elements in LP return (TAG,sid,δ2).
Address Recovery: Upon receiving the mes-
sage (RECOVERADDR,sid,wallet,α, i) from
P, if (α, l) is one of the first i elements
of LP or M(LP,“recover”,α) = 1, return
(RECOVEREDADDR,sid,α).
Issue Hot Transaction: Upon receiving
(PAY,sid, tx = (Θ,αs,αr,m)) from P ∈ P, if
∃lα : (αs, lα) ∈ LP forward it to S . Upon
receiving (TRANSACTION,sid, tx,σ) from S ,
check if ∀(tx′,σ′,b′) ∈ T : σ′ ̸= σ, (tx,σ,0) ̸∈
T , and M(LP,“issue”,αr) = 1. If all checks
hold, then insert (tx,σ,1) to T , return
(TRANSACTION,sid, tx,σ).
Verify Transaction: Upon receiving
(VERIFYPAY,sid, tx,σ) from P ∈ P,
with tx = (Θ,αs,αr,m) for a metadata
string m, forward it to S and wait for
(VERIFIEDPAY,sid, tx,σ,φ). Then
• if M(LP,“verify”,αs) = 0, set f = 0
• else if (tx,σ,1) ∈ T , set f = 1
• else, if P is not corrupted and (tx,σ,1) ̸∈ T ,

set f = 0 and insert (tx,σ,0) to T
• else, if (Θ,αs,αr,m,σ,b) ∈ T , set f = b
• else, set f = φ.
Finally, send (VERIFIEDPAY,sid, tx,σ, f) to P.
Issue Staking: Upon receiving the message
(STAKE,sid,stx,wallet) from P, such that stx =
(pkstk,m) for a metadata string m, forward the
message to S . On (STAKED,sid,stx,σ) from
S , if ∀(stx′,σ′,b′) ∈ S : σ′ ̸= σ, (stx,σ,0) ̸∈ S,
and pkstk ∈ KP, add (stx,σ,1) to S and return the
message (STAKED,sid,stx,σ) to P.
Verify Staking: Upon receiving

Secure and Practical Cold (and Hot) Staking

345

(VERIFYSTAKE,sid,stx,σ) from P ∈ P,
forward it to S and wait for the mes-
sage (VERIFIEDSTAKE,sid,stx,σ,φ), with
stx = (pkstk,m). Then find Ps such that
pkstk ∈ KPs . Then
• if (stx,σ,1) ∈ S, set f = 1
• else if Ps is not corrupted and (stx,σ,1) ̸∈ S,

set f = 0 and insert (stx,σ,0) to S
• else if exists an entry (stx,σ, f ′)∈ S, set f = f ′

• else set f = φ and insert (stx,σ,φ) to S.
Finally, return (VERIFIEDSTAKE,sid,stx,σ, f)
to P.

We are finally ready to present our main theorem.

5.2 Main Theorem

Theorem 1. Let the protocol πHC be parameterized
by a Stateful Hot/Cold Wallet ΣHC (Definition 5)
and the HKeyGen, GenAddr (Algorithms 2 and 1),
and RTagGen Functions. Then πHC securely real-
izes the ideal functionality F M

HC if and only if ΣHC
is EUF-CMA, GenAddr is collision resistant and at-
tribute non-malleable (Definitions 2 and 4), RTagGen
is collision resistant (Definition 1), and HKeyGen is
hierarchical for ΣHC (Definition 3).

We refer the reader the full version of the paper
for the complete proof.

5.3 Addressing Cold/Hot Limitations

Our proof directly shows that it is possible to ful-
fill all the items from Section 3. In particular, three
items, namely 1) Composable security, 2) Cold
stake redelegation and 3) Cold stake delegation
which seemed more challenging. To that purpose, our
proposed protocol πHC crucially exploits the design of
the delegation framework: keys for staking and pay-
ment. The address issuing and delegation certificate
signing require only the cold wallet staking secret key,
which can be managed by the hot wallet.

6 FINAL REMARKS

We introduced the first Hold/Cold DPoS wallet pro-
tocol πHC and the respective security definition, i.e.,
Functionality FHC. We further showed that πHC is se-
cure under this security definition in the UC Frame-
work. Our protocol addresses the limitations we
have found, however it relies on less restrictive mal-
leability level (as in (Karakostas et al., 2020)). For
more restrictive levels, note that our protocol supports
hardware based solutions in the spirit of (Dowsley

et al., 2022). Our protocol was shown to allow Cold
stake delegation and Rewards payment, in addition
to Composable security and the trivially achievable
Hot wallet funds criteria from Section 3.

Even more crucially, our protocol is shown to per-
form Cold stake redelegation even with a (perma-
nently) off-line wallet, i.e., the cold wallet. It is worth
to highlight that our technique exploits the double key
design of (Karakostas et al., 2020): a key pair for stak-
ing alone and the other for payment transactions for
each wallet, with a total of four key pairs.

We leave for future work extending this study
to the framework which models hardware wallets,
i.e., (Arapinis et al., 2019), to more restrictive levels
of address malleability, i.e., (Karakostas et al., 2020),
and designs with hardware aid to access the cold wal-
let (Dowsley et al., 2022).

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI under
Grant JP21K11882.

REFERENCES

Arapinis, M., Gkaniatsou, A., Karakostas, D., and Kiayias,
A. (2019). A formal treatment of hardware wallets. In
Goldberg, I. and Moore, T., editors, FC 2019, volume
11598 of LNCS, pages 426–445. Springer, Cham.

Cardano (2024). Cardano explorer. https://https://
cexplorer.io/.

Das, P., Erwig, A., Faust, S., Loss, J., and Riahi, S. (2021).
The exact security of BIP32 wallets. In Vigna, G. and
Shi, E., editors, ACM CCS 2021, pages 1020–1042.
ACM Press.

Das, P., Faust, S., and Loss, J. (2019). A formal treatment
of deterministic wallets. In Cavallaro, L., Kinder, J.,
Wang, X., and Katz, J., editors, ACM CCS 2019, pages
651–668. ACM Press.

Dowsley, R. B., Farias, M. C., Larangeira, M., Nasci-
mento, A. C., and Virdee, J. (2022). A spendable
cold wallet from qr video. In International Conference
on Security and Cryptography 2022, pages 283–290.
Scitepress.

Karakostas, D., Kiayias, A., and Larangeira, M. (2020). Ac-
count management in proof of stake ledgers. In Galdi,
C. and Kolesnikov, V., editors, SCN 20, volume 12238
of LNCS, pages 3–23. Springer, Cham.

Maxwell, G. et al. (2014). Deterministic wallets.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

346

