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Abstract: The rapid expansion of biomolecular datasets presents significant challenges for computational biology. 
Quantum computing emerges as a promising solution to address these complexities. This study introduces a 
novel quantum framework for analyzing TART-T and TART-C gene data by integrating genomic and 
structural information. Leveraging a Quantum Neural Network (QNN), we classify hotspot mutations, 
utilizing quantum superposition to uncover intricate relationships within the data. Additionally, a Variational 
Quantum Eigensolver (VQE) is employed to estimate molecular ground-state energies through a hybrid 
classical-quantum approach, overcoming the limitations of traditional computational methods. Implemented 
using IBM Qiskit, our framework demonstrates high accuracy in both mutation classification and energy 
estimation on current Noisy Intermediate-Scale Quantum (NISQ) devices. These results underscore the 
potential of quantum computing to advance the understanding of gene function and protein structure. 
Furthermore, this research serves as a foundational blueprint for extending quantum computational methods 
to other genes and biological systems, highlighting their synergy with classical approaches and paving the 
way for breakthroughs in drug discovery and personalized medicine.  

1 INTRODUCTION 

The rapid evolution of computational biology has 
propelled efforts to unravel the complexities of 
biomolecular systems in silico, unlocking insights 
into molecular interactions, genomic patterns, and 
protein structures (Wu et al., 2024). High-
performance computing (HPC) architectures have 
significantly advanced this field, enabling large-scale 
analyses such as sequence alignment, protein 
structure prediction, and molecular dynamics 
simulations (Roosan, Law, Karim, & Roosan, 2019). 
However, the exponential growth in biological 
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datasets—spanning structural, genomic, and 
transcriptomic domains—presents new challenges for 
classical computational frameworks. These 
challenges arise from the sheer data volume, the high 
dimensionality of molecular and genetic features, and 
the intricate nonlinear relationships among biological 
components (Roosan, Clutter, Kendall, & Weir, 
2022). 

Quantum computing offers a transformative 
approach to computational biology, addressing 
classical limitations by leveraging superposition and 
entanglement for efficient biomolecular data 
processing (Quantum Computing in Bioinformatics 
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Review, 2024; Roosan, Chok, Li, Khou, 2024; IBM’s 
Error Correction Breakthrough, 2024; Cleveland 
Clinic & IBM Research, 2024; Interface-Driven 
Peptide Folding, 2024). In the NISQ era, quantum 
algorithms like the Variational Quantum Eigensolver 
(VQE) simulate molecular systems more accurately 
than classical methods, overcoming simplifying 
assumptions in approaches like Hartree–Fock and 
density functional theory (Wu et al., 2024; Funcke, 
2022; Cleveland Clinic & IBM Research, 2024; 
Roosan, 2024a; Roosan, 2024b). Beyond molecular 
simulations, quantum computing shows promise for 
analyzing large, high-dimensional biological 
datasets, integrating multi-omics information from 
genetics, transcriptomics, proteomics, and structural 
biology. Quantum machine learning techniques, 
including variational circuits and quantum-enhanced 
feature spaces, provide tools to model the complex 
interdependencies in these datasets more effectively 
than classical machine learning approaches (Roosan 
& Chok et al., 2024; Roosan, 2024c). Although the 
field of quantum machine learning is still nascent and 
hampered by hardware noise and limited qubit 
availability, proof-of-concept implementations using 
small datasets have generated enthusiasm for the 
future development of scalable quantum machine 
learning architectures (Interface-Driven Peptide 
Folding, 2024). Telomere maintenance genes, 
notably TART-T and TART-C, are vital for genomic 
stability, influencing cancer and aging (Wu et al., 
2024; Roosan, 2024d; Roosan, Li et al., 2023). While 
traditional sequence-based analyses identify mutation 
hotspots, integrating genomic and structural data 
offers deeper insights (Roosan, 2022; Cleveland 
Clinic & IBM Research, 2024). We propose a concise 
quantum-based framework using IBM Qiskit, 
featuring a Quantum Neural Network (QNN) for 
classifying mutation hotspots and a Variational 
Quantum Eigensolver (VQE) for estimating 
molecular energies (Cleveland Clinic & IBM 
Research, 2024). The QNN employs amplitude 
encoding to map normalized structural coordinates 
and one-hot encoded genomic sequences into 
quantum states, efficiently uncovering high-
dimensional patterns missed by classical methods 
(Quantum Computing in Bioinformatics Review, 
2024; Beer, 2020). Meanwhile, VQE provides 
ground-state energy estimates, enhancing 
understanding of these genes’ physical properties. 
This hybrid approach, optimized for current NISQ 
devices, delivers high accuracy, surpassing the 
limitations of resource-intensive classical methods 
(Tilly, 2022). 

2 METHODS 

2.1 Quantum Server Infrastructure 
and Development Environment 

The quantum computational workflow was 
implemented using IBM Qiskit, an open-source 
toolkit for designing, simulating, and executing 
quantum circuits (Quantum Computing in 
Bioinformatics Review, 2024). A hybrid setup 
combined local classical resources for simulations 
and debugging with IBM’s quantum servers for real 
hardware execution (IBM’s Error Correction 
Breakthrough, 2024). Qiskit was chosen for its 
transpilation capabilities, quantum algorithm library, 
and Python integration (Roosan & Chok et al., 2024). 
Circuits were initially validated using Qiskit’s 
classical simulators to avoid hardware noise 
(Cleveland Clinic & IBM Research, 2024), then 
transpiled and optimized for IBM’s quantum 
processors to reduce error rates in NISQ devices 
(IBM’s Error Correction Breakthrough, 2024). 
Multiple optimization passes minimized circuit depth 
and gate counts, enhancing reliability and 
demonstrating the viability of quantum algorithms for 
biological applications. 

2.2 Data Source and Processing 

The Biological data were sourced from the Catalogue 
of Somatic Mutations in Cancer (COSMIC) for 
TART-T and TART-C gene sequences (Roosan, 
2024d) and from the 6D6V_atoms.csv file for 
structural data. Preprocessing ensured compatibility 
with the quantum computing pipeline through 
standardization, anomaly removal using custom 
validation scripts, and field alignment (Roosan, 
2024c). Anomalous entries were corrected or 
excluded, yielding a dataset integrating genomic and 
structural features for quantum workflows (Quantum 
Computing in Bioinformatics Review, 2024). 

2.2.1 Data Validation and Reformatting 

Prior to any encoding or normalization, the raw data 
underwent a meticulous validation procedure to 
confirm its integrity and ensure there were no 
irregularities that might compromise subsequent 
quantum state preparation (Roosan & Chok et al., 
2024). This step included cross-checking the IDs and 
indices of genomic and structural records, verifying 
the presence of expected fields such as nucleotide 
sequences and coordinate triplets, and ensuring the 
absence of erroneous formatting. Any incomplete or 
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malformed entries were either corrected (when 
possible) or filtered out to avoid bias or error in the 
modeling process. 

Following validation, the data were reformatted 
into a unified file structure, enabling seamless data 
loading and manipulation within the quantum 
workflow (Roosan, Kim et al., 2022). All columns for 
the genomic data, such as gene identifiers and 
nucleotide sequences, were standardized. Similarly, 
the structural data were organized to include xx, yy, 
and zz coordinates for each relevant atom, along with 
any ancillary metadata to be leveraged in the quantum 
calculations. This reformatting step ensured direct 
compatibility with the amplitude encoding schemes 
used to embed the data into quantum states (Roosan, 
2024a). 

2.2.2 Atomic Coordinate Normalization 

An integral step in converting structural information 
into quantum states involved normalizing the three-
dimensional atomic coordinates to ensure that each 
atom’s coordinate vector was scaled to a unit norm. 
This normalization process preserved the relative 
spatial relationships between atoms while preparing 
the data for accurate representation within the 
quantum framework. (Quantum Computing in 
Bioinformatics Review, 2024). Specifically, each 
coordinate vector r=(x,y,z) was scaled by its 
Euclidean norm ∥r∥ such that ∥r∥=1. This 
normalization is critical for amplitude encoding 
methods, where the quantum state’s amplitude 
magnitudes reflect feature values in a normalized 
manner (Roosan, 2024c). 

The normalization process began by reading the 
x, y, and z coordinates from 6D6V_atoms.csv. Each 
atom’s coordinates were then converted into a vector, 
and the Euclidean norm was computed. After 
dividing each component of the vector by this norm, 
the resulting vector was guaranteed to have a 
magnitude of 1, thereby satisfying the normalization 
requirement for quantum state preparation (Roosan, 
Kim et al., 2022). This step preserved the relative 
orientation and spatial relationships among atoms, 
ensuring that crucial structural information remained 
intact upon embedding into the quantum circuit. 

2.2.3 Genomic Sequence Encoding 

For the genomic segment, our strategy centered on 
one-hot encoding the nucleotide sequences associated 
with the TART-T and TART-C genes (Roosan, 
2024d). We represented adenine (A), thymine (T), 
guanine (G), and cytosine (C) as (1,0,0,0), (0,1,0,0), 
(0,0,1,0), and (0,0,0,1), respectively. Each position 

within the gene sequence was mapped to one of these 
four 4-dimensional vectors (Wu et al., 2024). 

This transformation facilitated a discrete and 
lossless representation of the genetic material. To 
map the one-hot encoded vectors into quantum states, 
we employed an amplitude encoding scheme 
(Interface-Driven Peptide Folding, 2024). This 
method required normalizing the final vector—
formed by concatenating or combining one-hot 
entries—into a unit vector suitable for quantum 
computation. Depending on the sequence length and 
the complexity of the encoding scheme, 
dimensionality reduction or segmentation strategies 
were occasionally applied. These strategies were 
carefully designed to preserve essential information 
while adhering to the hardware constraints of current 
quantum devices (Roosan & Chok et al., 2024). 

2.3 Quantum Neural Network 
Architecture 

2.3.1 Input Data Transformation 

After normalizing and encoding the atomic 
coordinates and genomic sequences, the next step was 
to construct a composite feature vector that 
seamlessly integrated both structural and genetic 
attributes (Roosan, 2024a). This was achieved by 
concatenating the amplitude-encoded vectors derived 
from atomic coordinates with those generated from 
genomic sequences, thereby creating a unified 
representation for each data sample (Quantum 
Computing in Bioinformatics Review, 2024). The 
transformation of this composite vector into a 
quantum state was accomplished through precisely 
calibrated unitary operations. These operations 
utilized multi-qubit gates to encode the classical 
feature values into the amplitude amplitudes of the 
qubits, ensuring an accurate and efficient 
representation within the quantum framework. 

2.3.2 Variational Quantum Circuits 

At The Quantum Neural Network (QNN) used 
Variational Quantum Circuits (VQCs) with three 
stages: state preparation, alternating layers of 
rotational (RY, RZ) and entangling (CNOT) gates, 
and measurement (Cleveland Clinic & IBM 
Research, 2024). This hardware-efficient design, 
optimized for NISQ devices, leverages superposition 
and entanglement to process genomic and structural 
data more efficiently than classical networks 
(Interface-Driven Peptide Folding, 2024). In IBM 
Qiskit, high-level modules enabled circuit design and 
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integration with classical optimizers like COBYLA, 
ideal for noisy quantum hardware (IBM’s Error 
Correction Breakthrough, 2024). This hybrid 
approach optimized parameters dynamically, 
ensuring robust performance despite hardware 
limitations. 

2.3.3 Training Strategy 

The QNN training was conducted on labeled datasets 
derived from the TART-T and TART-C genomic 
information, where labels were determined based on 
the presence or absence of hotspot mutations 
(Roosan, 2024d). Each training sample thus carried a 
binary indicator or class label, and the QNN’s 
objective was to maximize its predictive accuracy of 
these labels (Wu et al., 2024). Cross-entropy loss 
served as the primary objective function, and training 
iterations were launched sequentially, with each 
iteration involving state preparation, circuit 
execution, measurement, and parameter updates 
(Roosan & Chok et al., 2024). 

As training progressed, the QNN typically 
reached a plateau in accuracy, signaling that the 
parameter space had been sufficiently explored given 
the constraints of the quantum hardware and dataset 
complexity (Roosan, 2024a). This hybrid classical-
quantum optimization approach leveraged the 
strengths of both computational paradigms: quantum 
circuits were adept at capturing complex, high-
dimensional relationships within the data, while 
classical optimizers provided reliable and iterative 
updates to the circuit parameters (Cleveland Clinic & 
IBM Research, 2024). This synergy between classical 
and quantum components was crucial for achieving 
robust and reliable model performance within the 
noisy and resource-limited environment of current 
quantum hardware. 

2.4 Variational Quantum Eigensolver 
Implementation 

2.4.1 Hamiltonian Construction 

In addition to predictive modelling, this study focused 
on estimating ground-state energies for molecular 
systems associated with the TART-T and TART-C 
genes (Roosan, 2024b). A subset of structural 
components hypothesized to play a critical role in the 
functioning of these genes was selected for analysis. 
Molecular Hamiltonians for these components were 
constructed using Pauli operator representations, a 
standard approach in quantum chemistry to express 
molecular systems in a form suitable for quantum 

computations (Quantum Computing in 
Bioinformatics Review, 2024). 

To align the Hamiltonians with the qubit 
limitations of IBM’s quantum processors, an 
additional preprocessing step was implemented 
(IBM’s Error Correction Breakthrough, 2024). This 
process included techniques such as freezing core 
orbitals or constraining the active space of electrons, 
depending on the size and complexity of the 
molecular system. These adjustments ensured that the 
computations were feasible within the hardware 
constraints while preserving the essential quantum 
mechanical properties required for accurate energy 
estimation. 

2.4.2 Energy Minimization via VQE 

The VQE method was employed to approximate the 
ground-state energies of the constructed 
Hamiltonians (Interface-Driven Peptide Folding, 
2024). Like the QNN approach, VQE utilizes a 
parameterized quantum circuit to prepare a trial 
quantum state, with its energy evaluated concerning 
the given Hamiltonian (Cleveland Clinic & IBM 
Research, 2024). A classical optimizer iteratively 
adjusts the circuit parameters to minimize the 
measured energy, creating a hybrid optimization 
loop. One of VQE's notable advantages is its inherent 
resilience to certain types of noise, as energy 
measurements tend to remain stable even in the 
presence of gate infidelities (IBM’s Error Correction 
Breakthrough, 2024). 

The optimization loop continued until the 
convergence criteria were satisfied, which were 
typically defined as either an energy change below a 
predefined threshold or reaching a maximum number 
of iterations (Roosan & Chok et al., 2024). The final 
set of optimized parameters provided an approximate 
ground-state wavefunction, enabling the 
determination of the corresponding ground-state 
energy. To assess the method's accuracy and 
reliability, the computed energies were compared 
against known experimental values or high-accuracy 
reference data. This comparison yielded measures of 
deviation or error, offering insights into the fidelity of 
the VQE approach for the molecular systems under 
study (Roosan, 2024b). 

2.5 Evaluation Metrics 

Throughout the QNN and VQE experiments, multiple 
metrics were employed to evaluate performance, 
robustness, and fidelity. For the QNN, accuracy 
measured correct predictions, and F1-score balanced 
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precision and recall (Roosan, 2024a). Quantum state 
fidelity assessed state preparation reliability (IBM’s 
Error Correction Breakthrough, 2024). For VQE, 
mean absolute error (MAE) in Hartrees quantified 
precision against benchmarks (Cleveland Clinic & 
IBM Research, 2024), while convergence rate 
indicated optimization efficiency. These metrics 
collectively evaluated algorithm performance, 
highlighting strengths and limitations for future 
applications (Quantum Computing in Bioinformatics 
Review, 2024). 

3 RESULTS 

3.1 Performance of the QNN 

The QNN developed and trained on the TART-T and 
TART-C gene datasets demonstrated strong 
performance in predicting hotspot mutations. Over 
fifty training iterations, the QNN consistently 
improved its accuracy, progressing from an initial 
baseline to a plateau of approximately 92%. The F1-
score, a balanced metric combining precision and 
recall, reached 0.89, indicating that the model 
effectively identified positive instances (hotspot 
mutations) while minimizing false positives and false 
negatives, as shown in Table 1 (Roosan, 2024a). 

Table 1: Performance metrics of QNN model. 

Metric Value 
Accuracy 92.3% 
F1-score 0.89 

Quantum Fidelity 0.94 

The F1-score of 0.89 was achieved with a 
precision of 0.91 and a recall of 0.87, reflecting the 
model's ability to accurately detect hotspot mutations 
while maintaining a balanced performance across 
positive and negative classifications. These values 
demonstrate the QNN’s effectiveness in minimizing 
both false positives and false negatives, supporting its 
utility in identifying biologically significant 
mutations in the TART-T and TART-C genes. 
Performance metrics, averaged from ten QNN runs 
with different seeds on IBM’s simulators and 
validated on hardware (IBM’s Error Correction 
Breakthrough, 2024), showed a quantum state fidelity 
of 0.94 (Roosan & Chok et al., 2024). Training 
accuracy rose steadily, with rapid initial gains and 
gradual later improvements, converging at 92% after 
fifty iterations (Interface-Driven Peptide Folding, 
2024). The training dynamics, illustrated in Figure 1, 
show a steady increase in accuracy over fifty 

iterations, with convergence occurring near 92%. 
During the initial training cycles, rapid accuracy 
gains were observed as the optimization algorithm 
identified high-correlation regions between features 
and labels. In contrast, mid-to-late training phases 
displayed more gradual improvements, reflecting 
fine-tuning of the model's parameters in high-
dimensional feature space (Interface-Driven Peptide 
Folding, 2024). This progression highlights the 
remarkable capability of QNNs to analyze complex 
biological datasets effectively, even under the 
constraints imposed by current quantum hardware. 

 
Figure 1: The accuracy of the QNN model demonstrated a 
steady improvement over 50 iterations, converging to a 
plateau near 92%. The iterative nature of training 
underscored the robustness of the optimization process and 
the model’s capacity to generalize across the dataset. 

3.2 Comparison of VQE Energy 
Estimation 

The VQE component of this study was employed to 
estimate the ground-state energies of molecular 
systems associated with TART-T and TART-C 
genes. Experimentally measured reference energies 
were used as benchmarks to evaluate the accuracy of 
the VQE results (Roosan, 2024b). For TART-T, the 
experimental energy was approximately –75.32 
Hartrees, while the VQE computation yielded –75.28 
Hartrees, corresponding to a MAE of 0.04 Hartrees. 
Similarly, for TART-C, the experimental energy was 
–60.21 Hartrees, with the VQE reporting –60.18 
Hartrees, resulting in a slightly lower MAE of 0.03 
Hartrees, as shown in Table 1 (Cleveland Clinic & 
IBM Research, 2024). 

Figure 2 shows VQE converging quickly in about 
30 iterations. Early on, energy fluctuated 
significantly, but these variations lessened as the 
algorithm progressed. It neared the energy minimum, 
accurately estimating ground-state energies, proving 
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VQE’s effectiveness for quantum chemistry despite 
hardware limits. Together, these findings underscore 
the growing potential of quantum algorithms in 
advancing computational biology and chemistry. 

Table 2: Comparison of VQE energy estimations. 

Molecule Experimental 
Energy (Hartree) 

VQE Energy 
(Hartree) 

MAE 

TERT -75.32 -75.28 0.04
TERC -60.21 -60.18 0.03

 
Figure 2: The optimization trajectory of the VQE algorithm 
exhibited rapid convergence within 30 steps. This 
efficiency highlighted the effectiveness of the 
parameterized quantum state updates in approximating 
ground-state energies with high fidelity. 

3.3 QNN Training Accuracy over 
Iterations 

A detailed analysis of the QNN’s training accuracy 
over fifty iterations illustrates the iterative nature of 
parameter optimization within the hybrid classical-
quantum loop (Roosan, 2024a). The model’s 
accuracy began at approximately 60–65% during the 
initial epochs and exhibited steady improvement, 
surpassing 80% by the twentieth iteration. This 
upward trend indicates that the QNN progressively 
captured the core distinctions in the data (Wu et al., 
2024). As shown in Figure 1, the accuracy continued 
to improve, eventually stabilizing at a 92% plateau 
around iteration fifty. Key performance metrics, such 
as the F1-score, followed a similar trajectory, 
reflecting balanced progress in both precision and 
recall. This alignment between accuracy and F1-score 
exhibits the QNN’s ability to achieve robust and 
consistent performance in identifying hotspot 
mutations (Roosan, Clutter, Kendall, & Weir, 2022).  
 
 

3.4 VQE Energy Convergence 

The VQE VQE experiments for TART-T and TART-
C converged rapidly, stabilizing within 20-30 
iterations to 0.01-0.02 Hartrees (Roosan, 2024b). 
Early energy fluctuations settled as later steps neared 
the ground-state value (Cleveland Clinic & IBM 
Research, 2024). Figure 2 shows this, suggesting 
variational methods’ potential in quantum chemistry 
(Interface-Driven Peptide Folding, 2024). 

3.5 Quantum State Fidelity 
Comparison 

To assess the reliability of quantum state 
preparations, fidelity measurements were recorded 
throughout both the QNN and VQE procedures 
(IBM’s Error Correction Breakthrough, 2024). As 
shown in Figure 3, the fidelity metrics for the QNN 
indicate a strong alignment between the prepared 
quantum states and their theoretical counterparts, 
with an average fidelity of approximately 0.94 
(Roosan, 2024c). A similar assessment for the VQE 
wavefunctions yielded comparably high fidelity, 
demonstrating that while hardware noise remains a 
concern, the proposed circuit designs and 
optimization strategies sufficiently mitigate many of 
its adverse effects (Quantum Computing in 
Bioinformatics Review, 2024). 

 
Figure 3: Quantum fidelity scores for hotspot and non-
hotspot data. 

4 DISCUSSION 

This research significantly advances our previous 
knowledge in computational biology and quantum 
computing by demonstrating a unified framework 
that integrates structural and genomic data from the 
TART-T and TART-C genes. While previous studies 
have explored the applications of quantum computing 
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to either classification tasks or quantum chemistry 
simulations, few have tackled both within a single, 
cohesive framework focused on a biologically 
relevant set of genes (Roosan, 2024a; Beer, 2022). By 
jointly analyzing structural coordinates alongside 
genetic sequences, this research reveals that quantum 
algorithms can extract insights from dual data streams 
more holistically than purely classical approaches 
(Wu et al., 2024). This study advances computational 
biology by integrating structural and genomic data of 
the TART-T and TART-C genes using quantum 
computing, demonstrating that quantum algorithms 
extract insights from dual data streams more 
holistically than classical methods (Roosan, 2024a; 
Beer, 2022; Wu et al., 2024). A robust QNN predicts 
hotspot mutations using amplitude-encoded structural 
and genetic features, leveraging superposition to 
efficiently handle complex datasets (Quantum 
Computing in Bioinformatics Review, 2024; Roosan, 
2024c; Interface-Driven Peptide Folding, 2024). 
VQE simulates biomolecular processes at the 
electronic level for TART-T and TART-C, offering 
accurate energy estimates on near-term devices 
(Cleveland Clinic & IBM Research, 2024; Roosan, 
2024b). Quantum computing’s alignment with 
quantum mechanics enables precise modeling of 
molecular interactions, surpassing classical 
limitations (Roosan, 2024b; Wu et al., 2024). The 
approach suggests potential for accelerating multi-
omics analyses and adapting to other systems 
(Roosan & Chok et al., 2024; Roosan, 2022). Despite 
hardware constraints like noise and limited qubits 
(IBM’s Error Correction Breakthrough, 2024), this 
research highlights quantum computing’s promise as 
a transformative tool in computational biology 
(Quantum Computing in Bioinformatics Review, 
2024; Cleveland Clinic & IBM Research, 2024). 

5 CONCLUSIONS 

In conclusion, this work demonstrates a significant 
leap forward in unifying quantum computing 
approaches for both classification and molecular 
energy estimation tasks in computational biology. By 
coupling a QNN and a VQE within a cohesive 
pipeline, we have shown that TART-T and TART-C 
gene analyses—encompassing genomic sequence 
data and molecular structural information—can be 
conducted at a high level of accuracy and fidelity.  
This work marks a key advance in using quantum 
computing for computational biology, integrating 
classification and molecular energy estimation. 
Focusing on the TART-T and TART-C genes, a QNN 

accurately predicts mutations by encoding structural 
and genetic data into quantum states, while a VQE 
delivers reliable molecular energy estimates. These 
results highlight quantum computing’s potential for 
multi-omics data integration and quantum chemistry 
simulations in biological research. Despite challenges 
like hardware noise and qubit limitations, the hybrid 
classical-quantum approach lays a strong foundation 
for future studies into the quantum aspects of 
biological systems. 

ACKNOWLEDGEMENTS 

We acknowledge Merrimack College for support. 

REFERENCES 

Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & 
Woerner, S. (2021). The power of quantum neural 
networks. Nature Computational Science, 1(6), 403–
409. https://doi.org/10.1038/s43588-021-00084-1 

Beer, K. (2022). Quantum neural networks. 
https://doi.org/10.15488/11896 

Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., 
Salzmann, R., Scheiermann, D., & Wolf, R. (2020). 
Training deep quantum neural networks. Nature 
Communications, 11(1), 808. https://doi.org/10.1038/ 
s41467-020-14454-2 

Callison, A., & Chancellor, N. (2022). Hybrid quantum-
classical algorithms in the noisy intermediate-scale 
quantum era and beyond. Physical Review A, 106(1), 
010101. https://doi.org/10.1103/PhysRevA.106.010101 

Cerezo, M., Sharma, K., Arrasmith, A., & Coles, P. J. 
(2022). Variational quantum state eigensolver. Npj 
Quantum Information, 8(1), 113. https://doi.org/ 
10.1038/s41534-022-00611-6 

Cleveland Clinic & IBM Research. (2024, May 29). 
Researchers apply quantum computing methods to 
protein structure prediction. Journal of Chemical 
Theory and Computation. Retrieved from 
https://newsroom.clevelandclinic.org/2024/05/29/clev
eland-clinic-and-ibm-researchers-apply-quantum-
computing-methods-to-protein-structure-prediction 

Funcke, L., Hartung, T., Jansen, K., Kühn, S., Schneider, 
M., Stornati, P., & Wang, X. (2022). Towards quantum 
simulations in particle physics and beyond on noisy 
intermediate-scale quantum devices. Philosophical 
Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences, 380(2216), 
20210062. https://doi.org/10.1098/rsta.2021.0062 

IBM’s Error Correction Breakthrough. (2024, March). 
Nature. Retrieved from https://www.ibm.com/ 
quantum/blog/nature-qldpc-error-correction 

Interface-Driven Peptide Folding. (2024, January). arXiv. 
Retrieved from https://arxiv.org/abs/2401.05075 

Classifying Hotspots Mutations for Biosimulation with Quantum Neural Networks and Variational Quantum Eigensolver

289



Islam, R., Roosan, M., Mayer, J., & Clutter, J. (2016). 
Supporting novice clinicians cognitive strategies: 
System design perspective. IEEE-EMBS International 
Conference on Biomedical and Health Informatics, 
2016, 509. https://doi.org/10.1109/BHI.2016.7455946 

Islam, R., Weir, C., & Del Fiol, G. (2016). Clinical 
complexity in medicine: A measurement model of task 
and patient complexity. Methods in Information in 
Medicine, 55, 14–22. https://doi.org/10.3414/ME15-
01-0031 

Islam, R., Weir, C., & Del Fiol, G. (2014). Heuristics in 
managing complex clinical decision tasks in experts’ 
decision making. Proceedings (IEEE International 
Conference on Healthcare Informatics), 2014, 186–
193. https://doi.org/10.1109/ICHI.2014.32 

Islam, R., Weir, C. R., Jones, M., Del Fiol, G., & Samore, 
M. H. (2015). Understanding complex clinical 
reasoning in infectious diseases for improving clinical 
decision support design. BMC Medical Informatics and 
Decision Making, 15, 101. https://doi.org/10.1186/s 
12911-015-0221-z 

Li, Y., Phan, H., Law, A. V., Baskys, A., & Roosan, D. 
(2023). Gamification to improve medication adherence: 
A mixed-method usability study for MedScrab. Journal 
of Medical Systems, 47(1). https://doi.org/10.1007/ 
s10916 -023-02006-2 

Quantum Computing in Bioinformatics Review. (2024, 
July). Briefings in Bioinformatics, 25(5). Retrieved 
from https://academic.oup.com/bib/article/25/5/bbae39 
1/7733456?login=false 

Roosan, D. (2022). The promise of digital health in 
healthcare equity and medication adherence in the 
disadvantaged dementia population. Pharmaco-
genomics, 23(9), 505–508. https://doi.org/10.2217/pgs-
2022-0062 

Roosan, D. (2024a). Comprehensive guide and checklist for 
clinicians to evaluate artificial intelligence and 
machine learning methodological research. Journal of 
Medical Artificial Intelligence, 7. https://doi.org/ 
10.21037/jmai-24-65 

Roosan, D. (2024b). Integrating Artificial Intelligence with 
Mixed Reality to Optimize Health Care in the 
Metaverse. In Augmented and Virtual Reality in the 
Metaverse (Springer Series on Cultural Computing). 
Cham: Springer. https://doi.org/10.1007/978-3-031-57 
746-8_13 

Roosan, D. (2024c, July). Utilizing Quantum Computing-
based Large Language Transformer Models to Identify 
Social Determinants of Health from Electronic Health 
Records. In 2024 International Conference on 
Electrical, Computer and Energy Technologies (pp. 1–
6). Sydney, Australia. https://doi.org/10.1109/ICECET 
61485.2024.10698600 

Roosan, D. (2024d). Artificial Intelligence-Powered Large 
Language Transformer Models for Opioid Abuse and 
Social Determinants of Health Detection for the 
Underserved Population. Proceedings of the 13th 
International Conference on Data Science, Technology 
and Applications, 15–26. https://doi.org/10.5220/ 
0012717200003756 

Roosan, D., Chok, J., Li, Y., & Khou, T. (2024). Utilizing 
Quantum Computing-based Large Language 
Transformer Models to Identify Social Determinants of 
Health from Electronic Health Records. In 2024 
International Conference on Electrical, Computer and 
Energy Technologies (pp. 1–6). Sydney, Australia. 
https://doi.org/10.1109/ICECET61485.2024.10698600 

Roosan, D., Clutter, J., Kendall, B., & Weir, C. (2022). 
Power of heuristics to improve health information 
technology system design. Applied Clinical 
Informatics, 2, 114–122. 

Roosan, D., Kim, E., Chok, J., Nersesian, T., Li, Y., Law, 
A. V., & Li, Y. (2022). Development of a dashboard 
analytics platform for dementia caregivers to 
understand diagnostic test results. In International 
Conference on Biomedical and Health Informatics (pp. 
143–153). Cham: Springer Nature Switzerland. 

Roosan, D., Law, A. V., Karim, M., & Roosan, M. (2019). 
Improving team-based decision-making using data 
analytics and informatics: Protocol for a collaborative 
decision support design. JMIR Research Protocols, 
8(11). https://doi.org/10.2196/16047 

Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., 
Grant, E., Wossnig, L., Rungger, I., Booth, G. H., & 
Tennyson, J. (2022). The Variational Quantum 
Eigensolver: A review of methods and best practices. 
Physics Reports, 986, 1–128. https://doi.org/10.1016/ 
j.physrep.2022.08.003 

Wu, Y., Li, Y., Baskys, A., Chok, J., Hoffman, J., & 
Roosan, D. (2024). Health disparity in digital health 
technology design. Health and Technology, 1–11. 

 

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

290


