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Abstract: Citation manipulation occurs when references are deliberately included in academic works for reasons 
unrelated to their genuine scholarly merit. Instead of serving their primary purposes—such as supporting 
arguments, providing context, or guiding readers—these citations are often utilized to inflate metrics like 
citation counts artificially. Manipulated citations tend to deviate from the standard patterns and structures 
found in authentic citation networks. Consequently, when such networks are perturbed by removing certain 
nodes or connections, these manipulated citations are more likely to exhibit inconsistencies. This paper 
introduces a method for detecting citation manipulation by studying how citation patterns change under 
random perturbations of the citation graph. The method employs the GraphSAGE algorithm to generate 
embeddings of the altered graph in an Euclidean space, thereby reconstructing the removed edges. The 
approach assumes that legitimate citations are bolstered by a network of indirect connections, leading to 
closely related embeddings for nodes linked by authentic citations that facilitate the accurate prediction of 
missing edges.  By iteratively perturbing the graph and assessing the accuracy of edge reconstruction, the 
method highlights suspected manipulated citations, which consistently exhibit poor reconstruction 
performance, signifying supposed anomalous comportment. Numerical experiments validate the effectiveness 
of this approach in identifying anomalies within citation networks, highlighting its potential as a reliable tool 
for enhancing the integrity of scholarly communication.

1 INTRODUCTION 

Citation consistency is a fundamental issue to 
research integrity, as it directly impacts the reliability 
and trustworthiness of scientific literature. 
Inappropriate, particularly manipulated citations 
often occur in scientific literature when references are 
deliberately included in academic works for reasons 
other than genuine scholarly merit. Instead of 
supporting arguments, providing background, or 
guiding readers, these citations are predominantly 
used to escalate metrics like citation counts 
artificially. This practice is frequently employed to 
enhance the perceived impact and prestige of 
researchers, journals, or institutions and has 
significant detrimental effects, eroding the core 
principles of academic discourse: accuracy, 
objectivity, and scientific integrity. 
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The paper (Prabha, 1983) emphasizes the scale of this 
subject, indicating that more than two-thirds of 
references in a typical paper may be superfluous, 
underscoring the widespread occurrence of 
questionable citation practices. Others (Fong and 
Wilhite, 2017) explore unethical practices in 
scholarly publishing, focusing on honorary 
authorship and coercive citation. The study exposes 
the widespread prevalence of these manipulative 
practices across various academic disciplines such 
that a significant number of respondents reported 
instances of including honorary authors in their 
research projects and facing pressure to incorporate 
unnecessary citations. 

Common schemes to increase citation amount 
described by (Jacobes, 2016), (Falaga ang Alexiou, 
2008), (Wilhite, Fong and Wilhi, 2019), and 
(Ioannidis and Thombs, 2019), include:  
• Self-Citation Clusters: Excessive self-citation to 

heighten personal citation counts. 
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• Mutual Citation Agreements (citation cartels): 
Groups of researchers or journals decide to cite 
each other's work or publish special issues with 
highly cited specific articles.  

• Citation Stacking: Journals citing their own 
articles to inflate impact factors. 

• Inclusion of Irrelevant Citations: Referencing 
unrelated works to benefit cited authors or 
journals. 

• Strategic publication: Publishing articles likely 
to receive disproportionate attention (e.g., 
reviews or editorials). 

These manners distort evaluations of academic 
performance and the significance of scholarly 
contributions, erode the trustworthiness of academic 
publishing, and mislead stakeholders, including 
researchers and funding bodies. Manipulation also 
impacts younger researchers by promoting shortcuts 
over developing rigorous scholarly habits.  They 
undermine the integrity of citation systems and 
scholarly evaluation systems. To combat this issue, 
the academic community needs stricter editorial 
policies, promote transparent citation practices, and 
employ advanced algorithms to detect anomalous 
citation patterns. 

Several surveys (Resnik, Gutierrez-Ford, and 
Peddada, 2008), (Wilhite and Fong, 2012) and (Wren 
and Georgescu, 2022) have been conducted to 
explore the prevalence and characteristics of 
reference list manipulation, underscoring the critical 
need for attention to this issue. 

Many studies reveal that manipulated citations 
often deviate significantly from the established norms 
and ethical standards of scholarly referencing. 
Numerous authors have likened these citations to 
rumours, emphasizing their tendency to propagate 
without genuine relevance or merit. While we do not 
delve into a comprehensive review of all studies cited 
in these reviews, we briefly recall several. 

Citation network analysis usually incorporates 
three key aspects: the number of citations, the 
structure of the citation network, and the topical 
relevance reflected in citation relationships. The 
Paper (Liu, Bai, Wang, et al., 2024) employs semantic 
main path network analysis to generate a precise and 
comprehensive understanding of domain evolution, 
revealing more coherent development trajectories. 

The article (Wren and Georgescu, 2022) presents 
a combination of statistical techniques to identify 
peculiar citation manners in academic articles to 
uncover instances where authors might intentionally 
manipulate reference lists to boost their citation 
counts artificially. 

Surveys cited in this paper have explored various 
dimensions of reference list manipulation, such as the 
prevalence of coercive citation practices. For 
instance, the paper (Fong and Wilhite, 2017) 
examines the frequency of pressure on authors to 
include specific citations. A survey (Resnik, 
Gutierrez-Ford, and Peddada, 2008) of 283 authors 
reveals that a significant proportion (22.7%) had 
experienced situations where a reviewer insisted on 
including unnecessary references to their own work. 
Furthermore, another survey by (Wilhite and Fong, 
2012) reported that over 20% of respondents had 
faced pressure from journal editors to include specific 
citations. 

The current study is built on the framework 
introduced in (Avros, Keshet, Toledano Kitai., 
Vexler, and Volkovich, 2023), aiming to analyse 
connections within a citation graph by examining 
their behavior under network perturbations using the 
Node2Vec method (Grover and Leskovec, 2016) 
employing a graph embedding technique designed to 
capture node representations through random walks 
within the graph. The underlying hypothesis suggests 
authentic relationships within the graph are inherently 
more robust to conceivable graph disruptions. 

The presented research also operates on the 
premise that manipulated or fraudulent citations 
create irregularities in the citation network, making 
them more prone to detection under specific network 
perturbations. These anomalies are introduced 
intentionally to boost publications' perceived impact 
or credibility artificially. Such manipulation citations 
diverge from the natural citation patterns and 
structures within the network. As a result, when the 
network undergoes perturbations, such as removing 
specific nodes or edges, these anomalous citations are 
more likely to exhibit detectable inconsistencies, 
distinguishing them from legitimate citations. 

Following this general standpoint, this paper 
explores a method for detecting citation manipulation 
by examining how citation patterns respond to the 
random removal of elements from the citation graph. 
The approach leverages the GraphSAGE algorithm 
(Hamilton, Ying, and Leskovec, 2017) to generate 
embeddings of the permuted graph in an Euclidean 
space, thereby reconstructing the removed edges. The 
underlying assumption is that legitimate citations are 
supported by a robust network of indirect 
connections, resulting in closely related embeddings 
for nodes connected by genuine citations.  

This proximity aids in accurately predicting the 
missing edges. By systematically perturbing the 
graph and evaluating the reconstruction accuracy, the 
approach identifies manipulated citations, which tend 
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to demonstrate poor reconstruction performance, 
thereby revealing their anomalous nature. The 
provided numerical experiments demonstrate that this 
technique effectively identifies anomalies within 
citation networks, supplying a valuable tool for 
detecting citation manipulation. 

The suggested approach in this paper, while 
focusing on identifying "aberrant" citation patterns, 
has inherent restrictions that can lead to inaccuracies, 
especially when applied to multidisciplinary articles 
or phenomena like "sleeping beauties”. A "sleeping 
beauty" article receives minimal attention primarily 
but later experiences a surge in citations due to 
significant developments or rediscovery. 
Additionally, mentions of ancient works by historical 
figures like Newton and Archimedes often are uncited 
due to their common knowledge, so citing such an 
article can be comprehended as an anomaly. 
Multidisciplinary articles integrating datasets and 
methodologies from multiple fields pose another 
challenge. One potential strategy is to match each 
citation to its relevant dataset within its respective 
domain, though alternative approaches may be 
considered. 

The manuscript proceeds as follows: Section 2 
introduces the GraphSAGE model embedding. 
Subsequently, Section 3 details the proposed model 
for detecting citation manipulation. Experimental 
evaluation is presented in Section 4, followed by a 
summary and concluding remarks in Section 5. 

2 GraphSAGE MODEL 
EMBEDDING 

GraphSAGE (Hamilton, Ying and Leskovec, 2017) 
stands as a notable model in the realm of Graph 
Convolutional Networks (GCNs), drawing 
inspiration from the Weisfeiler-Lehman graph 
isomorphism test to deliver advanced capabilities for 
inductive representation learning on large and 
dynamic graphs. Unlike transductive learning 
methods, which rely on the entire graph being present 
during training and inference, GraphSAGE is 
uniquely suited for evolving graph structures and 
scenarios where new nodes are introduced post-
training. One of the approach's core strengths lies in 
its ability to harness rich node attributes—such as 
user profiles in social networks, chemical properties 
in molecular graphs, or bibliometric metadata in 
citation networks—while also considering the 
graph’s structural context. By aggregating 
information from a node's local neighborhood, the 

model generates embeddings that effectively capture 
topological relationships and feature-based nuances, 
enabling it to learn highly expressive node 
representations.  

A notable feature of GraphSAGE is its flexibility 
in choosing aggregation functions, such as mean, 
LSTM-based, or pooling, allowing practitioners to 
tailor the model to the specific needs of their 
applications. This versatility, efficiency, and 
scalability have made GraphSAGE a cornerstone for 
various graph-related tasks, such as Community 
Detection, Node Classification, Link prediction, etc.  
To aggregate feature information from a node's local 
neighbourhood, including attributes like degrees or 
textual features of neighboring nodes, GraphSAGE 
employs a powerful and flexible framework, which 
generates node embeddings through a forward 
propagation process using learned model parameters. 
This procedure iteratively gathers information from a 
node's neighbors, combines it, and transforms it into 
a compact and meaningful representation. 

The algorithm describes a method for generating 
node embeddings in a graph. It iteratively updates 
node representations, starting with the graph and 
initial node features. During each iteration, a node's 
representation is updated by aggregating information 
from its neighbours and merging it with its current 
representation.  

This merged information is passed through a 
neural network layer to generate the updated 
representation. Repeating this process for a fixed, 
appropriately chosen number of iterations produces 
final embeddings that capture local and global graph 
structure. 
 
Data:  
• A graph 𝐺 =  (𝑉, 𝐸), where 𝑉 is the set of 

nodes, input features {𝑥௩, ∀𝑣 ∈  𝑉}, and 𝐸 is 
the set of edges. 

• Feature matrix 𝑋 ∈ ℝ||×ௗ, where 𝑑 is the 
dimension of node features. 

• Aggregation function AGGREGATE. 
• Number of layers 𝐾. 
• Weight matrices 𝑊 for  𝑘 = 1, 2, … , 𝐾. 
• Non-linearity 𝜎(⋅) (e.g., ReLU). 
• Neighbourhood sampling size 𝑆. 
• Embedding dimension 𝐷𝑖𝑚 

Result: Node embeddings  𝑍 ∈ ℝ||×; 
 

1. Initialize node representations: 
For each node 𝑣 ∈ 𝑉, initialize the node 
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representation: ℎ௩ = 𝑥௩, where 𝑥௩ is the initial 
feature vector for the node 𝑣. 

2. Message passing and aggregation: 
For each layer 𝑘 = 1 𝑡𝑜 𝐾: 
a. For each node 𝑣 ∈ 𝑉: 
• Sample a fixed-size set of neighbors   𝑁ௌ(𝑣) ⊂ 𝑁(𝑣) (if sampling is used), 

where 𝑁(𝑣) refers to the neighborhood of 
a node 𝑉 in a graph 𝐺 =  (𝑉, 𝐸). 

• Aggregate the representations of neighbors 𝑁ௌ(𝑣):  
                                    𝑚௩ =𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸({ℎ௨ିଵ: 𝑢 ∈ 𝑁ௌ(𝑣)}) 

• Concatenate the aggregated message 𝑚௩ 
with the current ℎ௩ିଵ 

 ℎ௩ = 𝜎(𝑊 ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ௩ିଵ, 𝑚௩)). 
3. Normalize embeddings: 

Normalize ℎ௩ to maintain numerical stability if 
required. 

4. Output final embeddings: 
After 𝐾 iterations, the final node embeddings 
are: 𝑧௩ = ℎ௩   ∀𝑣 ∈ 𝑉. 

Algorithm 1: GraphSAGE- Embedding Generation 
Algorithm. 

Key Components: 
1. Aggregation Function (AGGREGATE): 
Examples of aggregation functions include:  
• Mean Aggregator.  
• Pooling Aggregator.  
• LSTM Aggregator: Applying an LSTM over the 

sequence of neighbour embeddings. 
2. Sampling Neighbourhood: 
To scale to large graphs, only a subset of neighbors is 
sampled for aggregation. 

Dimension outlines refer to the size of the hidden 
layers within a neural network. This is a crucial 
parameter that the user must specify. A common 
practice is keeping the dimension consistent 
throughout all layers or gradually reducing it as the 
network's depth increases. 

3 APPROACH 

This section outlines the presented method for 
estimating the reliability of citations in academic 
systems, which may signal manipulation or 
fraudulent activity grounded in the premise that 
manipulated citations are intentionally added to 

inflate the perceived impact of specific publications. 
Such citations are expected to exhibit inconsistencies 
and become detectable when a citation network is 
subjected to perturbations. So, it is hypothesized that 
it is possible to identify these irregularities and 
expose suspicious citations by examining the stability 
of citations under arbitrary disturbances introduced to 
the citation network involving randomly removing 
edges in a controlled manner. These modifications 
simulate different scenarios to evaluate the network’s 
robustness, stability, and structural integrity. 
Applying these perturbations aims to expose 
vulnerabilities within the network and increase the 
likelihood of anomalies or manipulated elements 
displaying abnormal behaviour, thereby 
distinguishing them from authentic components. 

A link prediction is conducted to maintain the 
network’s coherence following these perturbations. 
This step utilizes node embeddings of the permuted 
network to measure the similarity or proximity 
between node pairs. Various similarity metrics are 
employed, such as cosine similarity, Euclidean 
distance, and graph-based measures like mutual 
neighbours and the Jaccard coefficient. 

The citation graph is treated as undirected in this 
study, focusing on the overall connectivity between 
papers rather than the direction of citations. This 
undirected perspective allows for a comprehensive 
analysis of the network’s structure and patterns, 
capturing relationships and dependencies among 
papers irrespective of whether they are cited. 

A pseudocode of the proposed approach is given 
as Algorithm 2. 

 
Data:  
• A graph 𝐺 =  (𝑉, 𝐸), where V is the set of 

nodes, input features  {𝑥௩, ∀𝑣 ∈  𝑉}, and 𝐸 is 
the set of edges. 

• Feature matrix 𝑋 ∈ ℝ||×ௗ, where 𝑑 is the 
dimension of node features. 

• Aggregation function 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸. 
• Number of layers 𝐾. 
• Embedding dimension 𝐷𝑖𝑚 
• Weight matrices 𝑊 for  𝑘 = 1, 2, … , 𝐾.. 
• Non-linearity 𝜎(⋅) (e.g., ReLU). 
• Neighbourhood sampling size 𝑆. 
• 𝑁_𝑖𝑡𝑒𝑟—Number of perturbations. 
• 𝐹𝑟—Fraction of edges randomly omitted in each 

iteration. 
• 𝑆𝑖𝑚—Similarity measure. 
• 𝑇𝑟—Similarity threshold. 
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Result: a sorted array 𝑅𝑒𝑠𝑢𝑙𝑡0 in ascending order; 
1. Load the dataset 𝐺 =  (𝑉, 𝐸),    
2. Initialize an array 𝑅𝑒𝑠𝑢𝑙𝑡0 of zeros with a 

length equaling the number of edges in 𝐺, 
3. For 𝑖𝑡𝑒𝑟 = 1: 𝑁_𝑖𝑡𝑒𝑟 do: 

• Create a temporary dataset 𝐺_𝑇 by removing the 𝐹𝑟 fraction of edges in 𝐺 without replacement. 
• Create an embedding of 𝐺_𝑇: 𝑊(𝐺_𝑇) = 

GraphSAGE (𝐺_𝑇, 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸, 𝑊, 𝜎, 𝑆, 𝑁_𝑖𝑡𝑒𝑟, 𝐹𝑟, 𝑆𝑖𝑚, 𝑇𝑟). 
• Calculate for all pairs of nodes of 𝐺_𝑇 the 

similarity values between all nodes, 
• Compose a set 𝐸𝐷_𝑅 of the edges reconstructed 

using the procedure:  
   Link_prediction (𝐺_𝑇, 𝑊(𝐺_𝑇), 𝑆𝑖𝑚, 𝑇𝑟),  

• For edge in 𝐸𝐷_𝑅 do:  
  𝑅𝑒𝑠𝑢𝑙𝑡(𝑒𝑑𝑔𝑒)  =  𝑅𝑒𝑠𝑢𝑙𝑡(𝑒𝑑𝑔𝑒)  +  1 

4. Summarize by sorting the array 𝑅𝑒𝑠𝑢𝑙𝑡0 in 
ascending order. 

Algorithm 2: A pseudocode of the proposed approach. 

The process starts by downloading the examined 
citation graph and initializing a zero-filled array 
named 𝑅𝑒𝑠𝑢𝑙𝑡0, whose length matches the number of 
edges in 𝐺 . Then, it proceeds through 𝑁_𝑖𝑡𝑒𝑟 
sequential iterations. In each iteration, a temporary 
graph, 𝐺_𝑇  is generated by randomly removing a 
fraction 𝐹𝑟 of edges from 𝐺. This temporary graph is 
then embedded into ℝௗ  using the GraphSAGE 
algorithm. A similarity measure ( 𝑆𝑖𝑚 ) and a 
threshold (𝑇𝑟) are introduced to enhance the method. 
A similarity measure quantifies the similarity 
between node pairs and the threshold (𝑇𝑟) determines 
whether a pair is considered "connected" if the 
similarity score between two nodes is greater than 𝑇𝑟, 
they are classified as connected; otherwise, they are 
considered disconnected. This criterion is then used 
in the link prediction procedure to distinguish 
between connected and disconnected nodes within 
the graph. 𝐿𝑖𝑛𝑘_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝐺_𝑇, 𝑊(𝐺_𝑇), 𝑆𝑖𝑚, 𝑇𝑟)  is a 
procedure designed to predict the presence of an edge 
between two nodes. 
 
Data: 

• 𝐺—Graph of paper citations. 
• 𝑛ଵ, 𝑛ଶ -two nodes in 𝐺. 
• 𝑊(𝐺)—Embedding of Graph 𝑇. 
• 𝑆𝑖𝑚—Similarity measure. 
• 𝑇𝑟—Similarity threshold. 

Result: If it is feasible to predict potential links 
amid nodes 𝑛ଵ and 𝑛ଶ : false or true.  
1. If the similarity score 𝑆𝑖𝑚 (𝑛ଵ, 𝑛ଶ) is bigger 

than 𝑇𝑟, the procedure returns 1 (true), 
indicating that an edge could suppositionally be 
between 𝑛ଵ and 𝑛ଶ.  

2. Otherwise, if the similarity score is less than or 
equal to 𝑇𝑟, the procedure returns 0 (false), 
indicating that there is likely no edge between 𝑛ଵ and 𝑛ଶ.  

Algorithm 3: A link_prediction procedure. 

4 NUMERICAL EXPERIMENTS 

To investigate the datasets, we conduct numerical 
experiments with 500 (number of perturbations) 
iterations per experiment and explore different 
parameter settings. These tests explored three key 
parameters: 𝐹𝑟 (set at 0.3, 0.4, and 0.5), 𝑇𝑟 =  0.95, 
and the cosine similarity.  The number of layers 𝐾 is 
10. All weights in 𝑊 for 𝑘 = 1,2, … , 𝐾 are equal to 
1.  Non-linearity activation function 𝜎(⋅) is ReLU. 
The neighbourhood sampling size 𝑆 is 2. 

The main goal is to assess the distribution of the 
reconstruction rate for the edges. An edge is deemed 
"non-reconstructed absent" when the similarity 
between the two nodes it connects does not surpass 
established thresholds. The results are presented 
using histograms that illustrate the distribution of 
edge recovery success rates obtained during an 
iterative procedure. In these visualizations, color 
coding highlights critical areas: 
• Red: Represents the lower bound of 

reconstructed edges for the bottom 10% of the 
data. 

• Blue: Covers the range of reconstructed edges 
between 10% and 50%. 

• Yellow: Indicates 50% and 90% of reconstructed 
edges. 

• Green: Covers the range of reconstructed edges 
above 90% of reconstructed edges. 

4.1 Cora Dataset 

The Cora dataset, a widely recognized benchmark for 
machine learning and network analysis research, 
consists of 2,708 scientific papers categorized into 7 
distinct classes within the machine learning field. It 
features 5,429 citation connections, making it well-
suited for evaluating algorithms for tasks like 
document classification and link prediction. 
GraphSAGE embedding dimensions are influenced 
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by factors such as the number of layers, hidden layer 
dimensions, and aggregation methods, which are 
explored by testing dimensions (32, 16, 64, 128, 256). 
This hyperparameter tuning process identified 𝐷𝑖𝑚 = 256  as our application's most apposite 
embedding dimension. 

4.1.1 Experiments with Real Data 

The following 3 figures demonstrate the results of the 
given Aggregation function (𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸). 

 
Figure 1: Histograms of reconstruction rate obtained for the 
Cora dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=’Mean’. 

 
Figure 2: Histograms of reconstruction rate obtained for the 
Cora dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=’Pool’. 

 
Figure 3: Histograms of reconstruction rate obtained for the 
Cora dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=’LSTM’. 

First, it must be noted that it is highly uncommon 
to observe a normal distribution in subjects connected 
to citation distributions, as this goes against the well-
established trend that citation distributions are 
typically skewed with a long-tail pattern. This implies 

that a small proportion of highly cited papers 
accumulate most citations, while the vast majority 
receive relatively few. Such skewness is often 
explained by phenomena like the "Matthew effect" 
(where highly cited papers attract even more 
citations), the influential nature of groundbreaking 
works, and the impact of prevailing research trends. 
So, in citation networks, the Matthew effect posits 
that highly cited papers tend to attract further 
citations, thereby contributing to a skewed 
distribution of citations within the scholarly 
landscape. Moreover, it contradicts the results stated 
in (Avros, Keshet, Toledano-Kitai, Vexler, and 
Volkovich, 2023) and (Avros, Haim., Madar, Ravve, 
and Volkovich, 2024). 

The observation of a normal citation distribution 
might indicate an inappropriate choice of the 
aggregation function. It appears that an LSTM-based 
aggregation is not appropriate for this relatively small 
dataset. 

4.1.2 Sanity Checks 

The Modified versions of the CORA dataset are 
tested to evaluate the model's performance 
thoroughly. The variation includes a 15% and 30% 
increase in edges, simulating noise or unexpected 
connections. These changes allow us to assess the 
model's ability to generalize and adapt to 
transformations in the graph's underlying structure. 
The experiments are provided for 𝐹𝑟=0.3. 

 
Figure 4: Histograms of reconstruction rate obtained for 
noise versions of the Cora dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=’Mean’. 

As was expected, the injected noises significantly 
increase the distribution of positive asymmetry, i.e., 
the tail of the distribution extends towards the right 
side of the number line. The most visible influence 
occurs in 30% noise attitude (the upper panel). To 
ensure consistency in analysis, the distributions of all 
three dataset versions are presented using the 
identical binning structure of 4 colored areas as that 
utilized for the original, "clean" dataset without any 
added noise. 
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Table 1: The reconstructed edges in 3 dataset versions 
within 4 colored areas. 

Noise attitude 1 2 3 4 
0.3 740 2890 2778 705

0.15 519 2401 2667 683 
0.0 131 1553 2575 1119 

The presented results provide evidence of the 
model's readiness for deployment. A notable 
observation is an increase in the frequencies of the 
two first categories, accompanied by shifts in the 
frequency of the last group. The appropriate skewness 
values also support this conclusion. 

Table 2: The skewness attitude calculated for 3 datasets. 

Noise attitude 0.30 0.15 0.0 
Skewness 0.19 0.37 0.58 

4.2 PubMed Dataset 

PubMed is a freely available database curated by the 
U.S. National Library of Medicine (NLM), a part of 
the National Institutes of Health (NIH). It serves as a 
comprehensive platform for accessing biomedical 
and life sciences literature. The database primarily 
includes references and abstracts from scientific 
journals, spanning various disciplines such as 
medicine, biology, healthcare, bioinformatics, 
biochemistry, and public health. The core of 
PubMed's content is sourced from **MEDLINE**, 
NLM’s primary bibliographic database. Additionally, 
it integrates literature from **PubMed Central 
(PMC)**, a free repository for full-text biomedical 
articles. Hosting over **35 million citations and 
abstracts**, PubMed offers coverage that extends 
back to the 1940s and is regularly updated with the 
latest research findings. The dataset exhibits a 
network structure with 19,717 nodes representing 
papers and 88,648 edges representing citation links 
between them. The articles are classified into 3 
distinct thematic categories. 

 
Figure 5: Histograms of reconstruction rate obtained for the 
PubMed dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=’Mean’. 

 
Figure 6: Histograms of reconstruction rate obtained for the 
PubMed dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=Pool’. 

 
Figure 7: Histograms of reconstruction rate obtained for the 
PubMed dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=LSTM’. 

In all considered circumstances except for the 
“LSTM” case, the appearing histograms are bimodal, 
suggesting a mixture distribution where the observed 
data originates from two separate underlying 
components. This pattern typically indicates that the 
data is not homogeneous but fairly composed of two 
subpopulations governed by its own distribution. The 
“Expectation-Maximization (EM) algorithm” can be 
employed to uncover these subpopulations. The 
resulting clusters, derived from the histogram's 
bimodal nature, enable a deeper understanding of the 
data's composition, allowing researchers to explore 
each subpopulation's distinct properties and 
templates. Examples of such partitions are given in 
the following figure. 

 
Figure 8: Histograms of reconstruction rate obtained for 
the PubMed dataset with 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸=Mean’ with 
clusters boundary. 
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The vertical red lines assign the boundary 
between clusters. As can be seen, the partitions are 
about the same in all cases, which can indicate the 
presence of two subpopulations in the edge 
community. 

5 SUMMARY AND 
CONCLUSIONS 

This research introduces a new methodology for 
detecting suspicious citations in scientific literature 
using the GraphSAGE algorithm and enhanced 
citation graph embeddings. The method has shown 
effectiveness in uncovering citation anomalies 
through extensive testing. However, challenges arise 
in handling interdisciplinary research and "sleeping 
beauties"—articles initially overlooked but later 
recognized due to delayed breakthroughs—making it 
difficult for the model to differentiate genuine citation 
dynamics from anomalies. 

Approximately 80% of citation edges studied in 
the study are identified as vulnerable to distortion, 
revealing their lack of robustness within the citation 
graph. These edges are flagged as potentially 
manipulated, highlighting the fragile nature of 
citation datasets and the significant impact that 
individual edges can have on network stability and 
reliability. Despite structural differences between 
datasets, shared characteristics are identified, 
suggesting universal tendencies within citation 
systems. The Cora dataset displayed a homogeneous 
structure with a higher proportion of suspicious 
citations, while an analysis of the larger and more 
heterogeneous PubMed dataset reveals two distinct 
citation groups: one associated with suspicious edges 
and another with more stable, well-reconstructed 
citations. 

All datasets considered exhibit a stable core of 
reliable connections, reflecting the gradual 
accumulation of trustworthy citations over time. 
Nonetheless, even in datasets regularly updated with 
new publications, a substantial number of edges are 
found to be unstable or irrelevant, suggesting that 
citation datasets inherently include connections 
disposed to manipulation or unreliability. 
Reconstruction score distributions demonstrated a 
positively skewed, unimodal pattern, where most 
citations clustered around lower scores, with a right-
skewed tail influenced by higher scores. This 
distribution implies that a significant portion of 
citations may lack reliability, raising concerns about 
potential manipulation.  

To validate the proposed approach, an experiment 
is conducted with artificially augmented citation 

graphs obtained by adding random noise expressed in 
random edges. The results validate the model's 
effectiveness in detecting such anomalies, further 
reinforcing its value as a reliable tool for identifying 
citation manipulation. The proposed method provides 
a framework for dynamically monitoring research 
trends and integrating new articles into citation 
graphs, leveraging a stable core of knowledge to 
evaluate individual links. Exploring positions within 
the recovery histogram offers insights into citation 
reliability and susceptibility to manipulation. 

This research proposes new avenues for 
understanding citation dynamics, emphasizing the 
role of stable reconstructed edge clusters in 
maintaining citation network integrity. It also 
highlights universal patterns within citation systems, 
offering valuable insights for developing robust tools 
for citation analysis and anomaly detection. 
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