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Abstract: The article presents a novel approach to detecting nested anomalies in citation networks. These anomalies, as 
irregularities within citation patterns, significantly threaten the reliability of academic research. Traditional 
methods for anomaly detection often study the entire citation graph, missing abnormalities within specific 
subfields or research clusters. Unlike these methods, our approach delves deeper by examining articles within 
the citation network at different nested scales. Such an approach allows anomalies that might be missed to be 
uncovered by focusing on a single level, revealing hidden patterns across various granularities, detecting a 
broader spectrum of nested irregularities, and offering a more nuanced understanding of how citation patterns 
deviate from the expected. The presented approach supports identifying potential issues, such as citation 
manipulation, and uncovering emerging trends within the network. The delivered numerical experiments also 
demonstrate the method's ability to estimate the consistency of the dataset structure.  

1 INTRODUCTION 

The research on anomalies in citation networks, a 
complex and pressing issue, is of utmost importance 
for the integrity and reliability of scholarly 
communication. Understanding these incongruities 
involves identifying multiple irregularities or 
unexpected outliers within the larger citation patterns. 
Investigating citation patterns at multiple levels can 
uncover critical insights, including identifying 
improper citations, potentially fraudulent activities, 
and emerging knowledge-sharing trends. Our 
approach aims to recognize potential issues, such as 
citation manipulation, and uncover emerging trends 
within the citation realm. The need for a more 
nuanced understanding of how citation patterns 
deviate from the expected is crucial for ensuring the 
integrity and reliability of scholarly communication 
and enhancing the accuracy of citation-based metrics 
and analyses.  

The anomaly papers may manifest at multiple 
levels of the citation network hierarchy, indicating 
deviations or inconsistencies in citation patterns 
snuggled within broader citation relationships. 
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Certain articles may exhibit abnormal citation 
behavior, such as a disproportionate number of 
citations from articles located in other clusters of 
papers. These irregularities may indicate citation 
manipulation, biased referencing, or emerging 
research trends within specific subfields. For 
instance, a paper may contain citations to obscure or 
irrelevant sources, self-citations intended to 
artificially inflate the author's citation count, or 
citations to predatory journals or discredited research.  

While a paper may conform to expected citation 
norms, specific citations within the paper may stand 
out as inconsistent. Unethical citation practices are 
not just a minor inconvenience but a serious threat to 
the core principles of academic discourse – precision, 
impartiality, and scientific credibility. Researchers 
commonly acknowledge the uneven value of citations 
and attempt to differentiate them by type and 
importance (e.g., weighting), but this approach 
remains limited. Prabha's work (Prabha, 1983) 
underscores the gravity of the issue, revealing that 
over two-thirds of references in a paper might be 
needless. This statistic highlights the prevalence of 
dubious citations that undermine the integrity of the 
academic record.  
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Scholarly citation practices are not immune to 
author bias, which takes various forms. Excessive 
self-citation, for example, occurs when authors cite 
their work excessively, potentially to bolster their 
publication count or perceived impact. Coercive 
citation involves reviewers or editors pressuring 
authors to cite specific references, sometimes 
including their own or those from journals. 

Citation networks can exhibit phenomena like 
citation rings, where groups of researchers 
reciprocally inflate each other's citation counts, and 
ghost citations, fabricated references to strengthen 
arguments or create the illusion of broader support. 
Data-related issues, such as inaccurate reference 
formatting or ambiguity in author names, further 
complicate citation tracking. External influences, like 
the bias towards citing studies from prestigious 
journals or those funded by entities, also skew citation 
practices. Moreover, erratic citation patterns may 
emerge as scholars establish foundational works and 
methodologies in emerging research fields.  

As widely acknowledged, citation analysis is 
focused on identifying various anomalies. This 
attention stems from the concern raised in the 
introduction that these anomalies may originate from 
inaccurate references in a specific context. The 
effectiveness of anomaly detection hinges on 
selecting the most appropriate algorithm for the 
specific data type and desired data-centric outcome.  

Most studies in the mentioned field (see, e.g., (Liu 
2022), (Liu, 2024)) concentrate on anomaly citation 
recognition, examining a citation graph in its entirety 
and losing the graph granularity. An anomaly paper 
in a citation network is one whose citation patterns 
deviate significantly from the norm for its field and 
topic. These deviations can indicate various issues, 
potentially impacting the integrity of the academic 
record. Such an anomaly is associated with the paper's 
position within the citation network. Unexpected co-
citation patterns can signal anomalies, such as a 
highly cited paper only co-cited with irrelevant 
works. 

The community structure is also important to 
consider, considering whether the paper belongs to a 
cluster of highly interconnected papers that exhibit 
unusual citation behavior. So, anomalies can exhibit 
a spectrum of deviations from the norm, indicating 
that their departure from typical patterns can vary in 
severity across different instances, creating a nested 
anomaly structure.  

Unlike traditional methods, this paper presents a 
multi-level analysis for more comprehensive 
detection, examining articles at various granularities 
to uncover overlooked irregularities.     The findings 

of this research can be applied to various fields, 
including citation analysis, software engineering, and 
scholarly communication, to detect irregularities, 
uncover emerging trends, and enhance the accuracy 
of citation-based metrics and analyses, thereby 
improving the quality and trustworthiness of 
academic research evaluation.  

Aiming to recognize anomaly papers on nested 
citation levels, we base our research on the method 
proposed in (Tang, 2022). It is an innovative 
approach to harnessing spectral information within 
Graph Neural Networks (GNNs) to detect anomalies. 
It proposes a new network architecture called a Beta 
Wavelet Graph Neural Network (BWGNN).  

The proposed method involves a detailed 
examination of articles' location in a network, starting 
from their broad structural attributes and narrowing 
down to finer connection elements to identify 
anomalies in the citation nested patterns.  

Aiming to prepare the initiating anomaly sets in 
data clusters, a citation graph is embedded using the 
Node2Vec method (Grover, 2016) and clustered in a 
linear space. Subsequently, the outer shell of the 
clusters—those points most distant from the cluster 
centers—is identified as the initial set of anomalies. 
We employ the BWGNN network trained on a dataset 
with elements assigned as anomalies or normal 
elements to better understand the identified 
anomalies. After categorizing the data points, the 
network identifies anomalies and their connections 
within the network. These anomalies are then 
removed, resulting in a cleaner dataset. The process 
is then repeated using this reduced graph to refine the 
detection and analysis of anomalies at further deeper 
levels. 

2 MATHEMATICAL 
FRAMEWORKS  

Subsections 2.1 and 2.2 establish the background for 
BWGNN to be employed throughout this study. 

2.1 Signal on Graphs 

An attributed graph, G = {V, E}, is characterized in 
this study by a collection of nodes V and unweighted 
edges E connecting the nodes. The degree matrix D is 
a diagonal matrix where Dii denotes the degree, or 
number of connections, of vertex i. The adjacency 
matrix A is a square matrix where Aij signifies the 
presence (with a 1) or absence (with a 0) of an edge 
between vertices i and j.  Let L=D-A be the regular 
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Laplacian (not that the normalized one also can be 
used) matrix with eigenvalues arranged in ascending 
order, 0 =  𝜆ଵ ≤ ⋯ ≤ 𝜆ே , and a corresponding 
orthonormal basis of eigenvectors 𝑈 = (𝑢ଵ, 𝑢ଶ, … , 𝑢ே).  

Except for the two endpoints 𝜆ଵ  and 𝜆ே the 
remaining eigenvalues can be partitioned into low 
frequencies {𝜆ଵ, 𝜆ଶ, ⋯ , 𝜆௞}  and high frequencies {𝜆௞ାଵ, 𝜆௞ାଶ, … , 𝜆ே} using an arbitrary threshold 𝜆௞ . 
The paper (Tang, 2022) brings attention to the “right-
shift” phenomenon concept. Anomalies disturb a 
graph's spectral energy distribution, causing it to shift 
towards higher frequencies. So, regular graphs 
display a specific energy pattern, but anomalies 
disrupt this pattern by focusing more energy on high-
frequency elements. 

This concept can be clarified by considering the 
known case of the Fourier transform on graphs. Just 
like a regular Fourier transform breaks down a 
complex signal into its basic frequencies, the graph 
Fourier transform acts as a similar tool for network 
data. It decomposes the data into fundamental 
components unique to the network's structure. 

 Here, the spectral energy distribution of a signal 𝑥 =  (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥ே)் ∈ 𝑅ே on a graph is given by the 
signal's frequency components obtained by the named 
transform  𝑥ො =  (𝑥ොଵ, 𝑥ොଶ, ⋯ , 𝑥ොே)் = 𝑈்𝑥 . 

Let us introduce  𝑝(𝜆௞) = 𝑥ො௞ଶ∑ 𝑥ො௧ଶே௧ୀଵ  

as the spectral energy distribution at 𝜆௞ (1 ≤ 𝑘 ≤𝑁).  The famous coefficient of variation can be 
interpreted as the level of anomalies present in the 
distribution.  An increasing proportion of anomalies 
corresponds to a more significant coefficient of 
variation in the energy distribution. If the distance 
between anomalies and the mean vector expands, the 
indicator also rises, designating a greater degree of 
anomalies. To quantify the changes in the spectral 
energy distribution relative to the degree of 
anomalies, a metric called the Energy Ratio is 
introduced as follows: 𝜂௞(𝑥, 𝐿) = ∑ ௫ො೟మೖ೟సభ∑ ௫ො೟మ೟ಿసభ  , (1 ≤ 𝑘 ≤ 𝑁 − 1). 

Generally, as the coefficient of variation increases, 
the expected value of the inverse of the low-
frequency energy ratio also increases. This means that 
a greater number of outliers or anomalies in the 
dataset results in a higher average of the inverse low-

frequency energy ratio. Therefore, a greater degree of 
anomaly results in the spectral energy distribution 
showing reduced concentration on the low-frequency 
eigenvalues. A spectral energy ratio can be used to 
detect anomalies in a graph. However, this method is 
sufficiently complex and slow for large graphs. A 
simpler and faster method has been proposed, 
focusing on the spectral domain. 

To accomplish this, a piecewise linear function is 
introduced within the interval from zero to 𝜆ேିଵ . 
Between two successive eigenvalues [𝜆௞, 𝜆௞ାଵ] this 
function equals to 𝜂௞(𝑥, 𝐿) . The residual area 
between this simplified curve and a line representing 
constant energy (g(t) = 1) is termed the high-
frequency area (Shigh). It can be calculated through 
elementary manipulations without the necessity for 
eigendecomposition:  𝑆௛௜௚௛(𝑥) = ௫೅௅௫௫೅௫ . 

This equation demonstrates the close relationship 
between a signal's energy distribution in the spectral 
domain and the smoothness in the spatial domain. 
Consequently, when the signal x demonstrates similar 
values between connected nodes, resulting in a 
smaller 𝑥்𝐿𝑥 suggests a lower degree of irregularity. 

2.2 Beta Wavelet Graph Network 

As indicated in (Tang, 2022), many existing Graph 
Neural Networks (GNNs) face challenges from using 
low-pass filters and prioritizing information from 
lower frequencies, potentially leading to oversight of 
high-frequency anomalies of interest. While adaptive 
filters allow them to adjust their focus, they may still 
need more specificity in targeting the frequency band 
where anomalies reside (band-pass) or accurately 
pinpointing the location of these anomalies within the 
graph (spectral-localized). This issue arises because, 
even in anomalies, a substantial portion of the graph's 
energy remains concentrated on lower frequencies. 
Consequently, these adaptive GNNs may exhibit 
behavior akin to low-pass filters, potentially missing 
critical high-frequency anomalies. 

To better handle anomalies, a new graph neural 
network architecture is proposed based on 
Hammond's graph wavelet theory (Hammond, 2011), 
which is well-known for its band-pass nature. This 
theory represents a significant advancement in signal 
processing and analysis, as it extends the capabilities 
of wavelets to graphs. Researchers can analyze 
signals within intricate graph structures, unlike 
traditional wavelets limited to Euclidean spaces. It 
provides them with a robust toolkit for conducting 
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localized analysis on graphs, like how wavelets 
facilitate the examination of signals in time or 
frequency domains.  

Generally, this graph wavelet transform is created 
on a “mother” wavelet ψ and utilizes a set of wavelets 
as bases, denoted as 𝑊 =  (𝑊టభ , 𝑊టమ , ⋯ ) . In 
formal terms, the application of 𝑊ట೔ to a graph signal 
x ∈ RN can be expressed as:  𝑊ట௜(𝑥) = 𝑈𝑔௜(𝛬)𝑈்𝑥. 

To avoid computing the eigen decomposition of the 
graph Laplacian, the kernel function 𝑔௜  is chosen 
commonly as a polynomial function represented as 𝑈𝑔௜(𝐿)𝑈்  =  𝑔௜(𝐿) 

The presented research selects a slightly modified 
beta distribution density as the graph kernel function: 𝛽௣,௤(𝑤) =ቊ ଵ஻(௣ାଵ,௤ାଵ) 𝑤௣(1 − 𝑤)௤,        𝑖𝑓 𝑤 ∈ [0,1]0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 𝑝, 𝑞 ∈ 𝑅ା and B is the standard Beta function, 
also called the Euler integral of the first kind. Aiming 
to cover all eigenvalues 𝜆 ∈ [0,2] of the normalized 
graph Laplacian 𝐿 a modified kernel  

*
( , )( ) ( , )

1
2 2p q w p q

wβ β=  
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𝛽∗௣,௤ is a polynomial for  𝑝, 𝑞 𝜖ℕା. Thus,  

( ) ( ) ( )p q
* T
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W U U

2Β( p 1,q 1)
β

−
= =

+ +
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Let us choose a constant 𝑝 + 𝑞 = 𝐶 to generate a 
set of C+1 the Beta wavelet transforms 𝑊 with the 
same order:  𝑊 = (𝑊଴,஼, 𝑊ଵ,஼ିଵ, … , 𝑊஼,଴). 

Here is a low-pass filter 𝑊଴,஼, However, all the other 
functions provide band-pass filters of different scales. 
Based on the introduced beta graph wavelet, BWGNN 
is proposed for anomaly detection.  𝑍௜ = (𝑊୧,஼ିଵ൫𝑀𝐿𝑃(𝑋)൯, 𝐻 = 𝐴𝐺𝐺(𝑍଴, 𝑍ଵ, … , 𝑍஼). 

MLP(⋅) represents a multi-layer perceptron, while 
AGG(⋅) is a basic aggregation function like 
summation or concatenation. Following aggregation, 
the resultant representation H is forwarded to another 
MLP employing the Sigmoid function to determine 
the abnormal probability.  

2.3 Node2Vec Graph Embedding  

Analogous to word embedding, graph embedding 
methodologies are designed to distill the fundamental 
attributes of nodes and edges within a graph into 
continuous vectors of diminished dimensions. In a 
manner akin to word embeddings, which elucidate the 
semantic nuances and interrelationships among 
words in textual contexts, graph embeddings 
elucidate the structural layout and interconnections 
intrinsic to a graph.  

The famous Node2Vec approach (Grover, 2016) 
constitutes a particular algorithm employed for graph 
embedding, which addresses converting a graph into 
numerical representations for each node. Termed 
embeddings, these numerical representations 
encapsulate the relationships among nodes within the 
graph. Analogous to word embedding, where words 
with analogous meanings possess similar 
embeddings, Node2Vec attempts to generate 
embeddings wherein closely interconnected nodes 
within the graph exhibit analogous numerical 
representations. 

Node2Vec uses random walks on graphs, with a 
bias, during this exploration process. This bias allows 
it to balance two important aspects of a node's 
neighborhood: Homophily and Structural 
Equivalence. Two settings, namely “return” and 
“inout”, regulate the algorithm's exploration behavior 
by covering the network. These settings influence the 
direction of the random walk, dictating its next steps. 
• Local Exploration: “Return(p)” - This setting 

governs the likelihood of the walk revisiting 
recently traversed nodes. A higher “return” value 
results in the walk staying near its starting point, 
emphasizing the exploration of the local 
neighborhood and capturing the network's 
structural characteristics. 

• Global Exploration: “Inout(q)” - This setting 
determines whether the walk explores outward to 
new regions or inward towards previously visited 
nodes. A higher “inout” value encourages 
outward exploration, facilitating the discovery of 
diverse network regions. 
 
Node2Vec balances exploring novel graph areas 

and exploiting information from neighboring nodes 
by adjusting settings, particularly using probabilities 
1/p and 1/q. 

After generating random walks, Node2Vec 
considers each walk ostensibly a sentence in natural 
language and encodes the nodes using Word2Vec 
word embeddings. Node2Vec operates with the Skip-
gram approach, where the embedding captures the 
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structural similarities between nodes, effectively 
translating their proximity or connectivity within the 
network. The Skip-gram model is trained on a large 
text corpus. For each word (target), the approach 
considers a window of surrounding words (context) 
and aims to predict these context words based solely 
on the internal representation of the target word. 

3 NESTED ANOMALIES’ 
STRUCTURE APPROACH  

The proposed procedure seems to unfold as follows: 
Algorithm 1.  
Pseudocode of the procedure: 
Input parameters: 
• GraphG -A citations graph. 
• Node2Vec procedure: 
 p and q – “return” and “inout” parameter values. 
 Nwalk- The number of random walks.  
 Lwalk-a length of a random walk. 
 d- a dimension of the Word2Vec embedding. 
• H-a number of levels in the hierarchy. 
• Cl- a clustering algorithm with KCl- a number of 

the clusters in GraphG. 
• Fr - a core fraction in clusters. 
• C-a constant to generate a set of C+1 the Beta 

wavelet transforms  
Procedure: 
a. Load the dataset GraphG. 
b. Initialize the set of anomaly nodes 𝑉௔ = ∅. 
c. For iter = 1: H do: 

1. Create a temporal dataset Giter by omitting all 
anomaly nodes from 𝑉௔ together with the 
connections between 𝑉௔ and 𝐺𝑟𝑎𝑝ℎ𝐺\𝑉௔. 

2. Create an embedding of Giter:  
W(Giter) = Node2Vec(Giter, Nwalk ,p, q, d). 

3. Cluster W(Giter) using Cl into KCl clusters. 
a. Calculate distances from each point to 

its cluster centroid.  
b. In each cluster, select a fraction Fr of 

the points closest to the centroid as the 
cluster core while designating the 
remaining points as anomalies. 

c. Update 𝑉௔ as a union of all cluster 
anomalies. 

d. Update 𝑉௡ as a union of all cluster cores. 
e. Train BWGNN(C) on 𝑉௔, 𝑉௡ 
f. Assign each node in Giter recognized as 

an anomaly to set 𝑉௔. 
d. Summarize the results. 

4 NUMERICAL STUDY  

4.1 CORA Dataset  

The CORA dataset is famous for machine learning 
and natural language processing researchers, 
especially those interested in citation networks. It is a 
collection of computer science research papers. Each 
paper is represented as a bag of words by terms 
appearing in the paper. The dataset also includes 
information on how these papers cite each other, 
forming a network of citations. So, CORA has the 
following features:  

• 2,708 Scientific Papers (the nodes of the 
network) 

• 5,429 Citation Links 
• A binary bag of words Vector for Each 

Paper based on a dictionary of 1,433 unique 
terms. 

• 7 Paper Categories: The papers are neatly 
classified into 7 different areas as presented 
in Table 1.  

Table 1: Research Areas Presented in the CORA Dataset. 

 Field Amount 
1. Neural Networks 818 
2. Probabilistic Methods 426 
3. Genetic Algorithms 418 
4. Theory 351 
5. Case-Based 298 
6. Reinforcement Learning 217 
7. Rule Learning 180 

Figure 1 partially visualizes the CORA dataset 
resting upon 2000 nodes. Different categories are 
colored another way. The experiments are conducted 
using a specified set of parameters.  

• p = q = 1. 
• Nwalk = 200.  
• Lwalk = 50. 
• d = 64. 
• H =10. 
• Cl- the PAM algorithm (see, e.g., 

(Kaufman, 1990)) with the K-means++ 
initialization and KCl =7. 

• Fr = 0.7, 0.8, 0.9.  
• C= 64 

 
It is important to note that while the number of 
clusters used in the algorithm matches the number of 
categories, the resulting partition does not correspond 
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to the original categorization. The Cramér's V 
correlation coefficient between two partitions is 
0.048, indicating an absence of significant 
correlation. This discrepancy likely arises due to 

differences in how papers are assigned. The applied 
embedding method inherently relies on the citation 
base partition. The obtained results are presented in 
Tables 2-4.  

Table 2: Distribution of anomaly papers during the sequential iterations and inherent categories for cora for FR=0.7. 

Iteration\ 
          cluster 

1 2 3 4 5 6 7 Sum 

1 26 2 17 11 11 0 10 77 
2 1 16 16 0 15 10 9 67 
3 5 4 7 0 9 25 9 59 
4 21 17 12 7 25 4 1 87 
5 16 8 1 5 1 11 6 48 
6 1 7 14 17 2 38 13 92 
7 3 7 0 7 6 13 4 40 
8 3 15 0 1 7 14 8 48 
9 6 13 0 8 2 15 8 52 
10 21 9 7 7 6 33 0 83 

Sum 103 98 74 63 84 163 68  

Table 3: Distribution of anomaly papers during the sequential iterations and inherent categories for cora for FR=0.8. 

Iteration\ 
          cluster 

1 2 3 4 5 6 7 Sum 

1 14 7 10 22 24 17 0 94 
2 6 7 6 0 8 6 8 41 
3 3 3 15 2 12 1 0 36 
4 18 9 4 1 9 0 11 52 
5 2 7 8 8 11 0 3 39 
6 8 10 0 11 11 1 7 48 
7 11 17 6 0 0 11 23 68 
8 3 10 12 3 2 1 2 33 
9 13 8 11 1 6 0 1 40 
10 2 8 15 1 7 6 6 45 

Sum 80 86 87 49 90 43 61  

Table 4: Distribution of anomaly papers during the sequential iterations and inherent categories for cora for FR=0.9. 

Iteration\ 
          cluster 

1 2 3 4 5 6 7 Sum 

1 14 13 0 4 10 11 1 53 
2 4 9 9 1 3 3 5 34 
3 4 7 3 9 6 4 0 33 
4 4 3 5 5 3 13 1 34 
5 2 3 2 2 2 18 0 29 
6 1 0 1 0 0 13 0 15 
7 3 0 5 0 4 11 0 23 
8 2 8 6 1 10 8 3 38 
9 9 2 3 8 2 0 6 30 
10 0 2 3 0 0 0 0 5 

Sum 43 47 37 30 40 81 16  
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Figure 1: Partial visualization of the CORA dataset.  

It appears interesting to consider the behavior of the 
number of nested anomalies during iterations. The 
following Figure 2 demonstrates an example of such 
a performance for Fr=0.9 through 30 sequential 
iterations.  

 
Figure 2: The averaged number of anomalies calculated for 
CORA data with Fr=0.9 through 30 sequential iterations.  

This observation underscores the robustness and 
stability of the CORA dataset's structure. As the 
number of iterations increases, the characteristic 
behavior consistently demonstrates a natural 
tendency to decrease, indicating a reliable and well-
defined framework within the dataset.  

4.2 PubMed-Diabetes Dataset  

The “PubMed-Diabetes Dataset” is a meticulously 
curated compilation of scientific articles delving into 
diabetes research sourced from the extensive 
biomedical literature on PubMed. Managed by the 
National Center for Biotechnology Information 
(NCBI) and the U.S. National Library of Medicine, 
PubMed is a central hub for accessing scientific 
advancements across the life sciences. This database 
encompasses many publications, including research 

papers, reviews, and scholarly articles spanning 
various biomedical disciplines. Leveraging this 
extensive repository, the PubMed-Diabetes dataset 
focuses on articles investigating different aspects of 
diabetes, offering valuable insights into this complex 
condition.  

To delve into the thematic connections among 
articles in diabetes research, we adopted a subset 
analysis approach. Specifically, we randomly 
extracted 3000 nodes from the PubMed-Diabetes 
dataset, constituting roughly 10% of the entire 
dataset. This sample size is deemed statistically 
significant for conducting network analysis. 
Remarkably, within this subset, we identified 1995 
edges, representing approximately 90% of the total, 
indicating links between the respective articles.  

Exploring this subset of the PubMed-Diabetes 
dataset allows us to analyze thematic relationships 
and uncover potential knowledge gaps, like the 
CORA dataset analysis. The analysis provided for 
this sampled dataset with the exchange of KCl value 
to 3, which is the inherent number of the categories in 
the dataset, supplies the following result for Fr=0.9. 
(see, Table 5).  

Figure 3 presents the average number of 
anomalies calculated for PubMed data with Fr=0.9 
through 10 sequential iterations.  

 
Figure 3: The average number of anomalies calculated for 
PubMed data with Fr=0.9 through 10 sequential iterations.  

This curve exhibits more unstable behavior than 
the graph shown in Figure 2. 

This instability could be attributed to the random 
sampling method used to construct this dataset. The 
inherent randomness in the sampling process likely 
introduced more significant variability, leading to the 
observed fluctuations in the curve. This suggests that 
the inborn data structure significantly affects the 
resulting stability.  
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Table 5: Distribution of anomaly papers during the 
sequential iterations and inherent categories for PubMed for 
Fr=0.9.  

Iteration\c
luster 1 2 3 Sum 

1 54 1 2 57 
2 29 1 1 31 
3 1 0 0 1 
4 0 0 1 1 
5 17 0 0 17 
6 0 0 1 1 
7 24 0 0 24 
8 0 30 0 30 
9 0 21 1 22 

10 20 1 10 31 
Sum 145 54 16  

5 CONCLUSIONS 

This paper introduces a novel multi-level analysis 
approach for detecting anomalies within citation 
networks. Unlike traditional methods that focus on a 
single level, this approach examines articles at 
various granularities, inspired by the work of (Tang, 
2022), which leverages Beta Wavelet Graph Neural 
Networks (BWGNNs) to utilize spectral information 
for pinpointing anomalies. The proposed process 
begins with Node2Vec embedding and sequential 
clustering to identify initial anomalies. The 
Node2Vec approach is applied to embed the current 
graph into Euclidian space, making it possible to use 
clustering to reveal the initial anomalies set fed into 
BWGNN for further refinement. The detected outliers 
and their connections are removed, resulting in a 
cleaner dataset. This process is repeated, each 
iteration revealing at each step a level in a nested 
structure of anomalies within the citation network. 
This stable structure is essential for conducting 
accurate and meaningful analyses, ensuring reliable 
results, and genuinely reflecting the inherent 
relationships among the data items.  
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