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Abstract: The development of Natural Language (NL) interfaces to access relational databases attracted renewed interest
with the use of Large Language Models (LLMs) to translate NL questions to SQL queries. This translation
task is often referred to as text-to-SQL, a problem far from being solved for real-world databases. This paper
addresses the text-to-SQL task for a specific type of real-world relational database storing data extracted
from engineering CAD files. The paper introduces a prompt strategy tuned to the text-to-SQL task over such
databases and presents a performance analysis of LLMs of different sizes. The experiments indicated that
GPT-4o achieved the highest accuracy (96%), followed by Llama 3.1 70B Instruct (86%). Quantized versions
of Gemma 2 27B and Llama 3.1 8B had a very limited performance. The main challenges faced in the text-
to-SQL task involved SQL complexity and balancing speed and accuracy when using quantized open-source
models.

1 INTRODUCTION

The development of Natural Language (NL) inter-
faces to access relational databases attracted renewed
interest with the use of Large Language Models
(LLMs) to translate NL questions to SQL queries.
This translation task is often referred to as text-to-
SQL.

Companies are increasingly interested in using
text-to-SQL to support business processes that require
easy access to databases at both the operational and
strategic levels. However, they need to address sev-
eral challenges to make this technology viable, such
as semantic data integration, which allows LLMs not
only to understand how different databases relate to
each other but also to understand the semantics of the
data (Campos et al., 2023).

Concerns about cost and data privacy are also
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driving companies to seek alternatives to proprietary
LLMs. Despite their constant evolution, the potential
of open-source LLMs is under-exploited, even as no-
table advances have been made in programming tasks,
mathematical reasoning, and text generation (Chiang
et al., 2023). Much of the research on text-to-SQL fo-
cuses primarily on proprietary LLMs, leaving open-
source LLMs behind (Gao et al., 2023).

This paper addresses the text-to-SQL task for one
very specific type of real-world relational database
storing data extracted from engineering CAD files.
The paper introduces a prompt strategy tuned to the
text-to-SQL task over such databases and presents a
performance analysis of LLMs of different sizes, both
proprietary and open source.

The paper assumes that the objects and their
property values are first extracted from engineering
Computer-Aided Design (CAD) files, which repre-
sents 3D models of industrial plants. Then, the data
extracted are stored in a relational table with three
columns, called an object-property-value table. Each
row in the table has the format (o, p,v), where o is an
object ID, p is the name of one of the object proper-
ties, and v is the property value. The use of triples is
a familiar strategy to address the enormous variability
of the object properties.
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Albeit it would seem more natural to store such
triples in RDF (Resource Description Framework)1,
there are two basic reasons for opting for a rela-
tional approach. First, on the practical side, relational
database systems are still the preferred option of IT
teams, a tradition that is difficult to escape. Second,
on the data modeling side, the value v extracted from
the CAD files is frequently a string of the form “5
mm” (or a much more complex string), that is, v rep-
resents the property value and the unit of measure.
This suggests that it would be preferred to use quadru-
ples (o, p,v,u), separating the unit u from the value
v, which is still not difficult to model as a relational
table with four columns. By contrast, in RDF, one
would have to reify the value and use three triples, say,
(o, p, i), (i, : value,v), and (i, : unit,u), which compli-
cates synthesizing SPARQL queries.

However, storing data as triples poses two chal-
lenges for the text-to-SQL task. The first challenge
lies in that the second column of the table stores the
property names, which must be linked to the terms
used in NL questions; in the familiar text-to-SQL
task, this schema linking step is much simpler since
it is performed mostly against the table or column
names that occur in the relational schema. The second
challenge is that retrieving objects based on multiple
filters over distinct property values requires multiple
joins of the object-property-value table with itself; in
the familiar text-to-SQL task, the SQL query compila-
tion step does not require such multiple joins, since a
single tuple would store all (or most) property values
of an object.

The first contribution of this paper is a prompt
strategy to help an LLM in the text-to-SQL task in
this specific scenario. The prompt strategy has in-
structions for constructing SQL queries over an ob-
ject property value table, and examples of SQL tem-
plates covering frequent NL questions the users sub-
mit.

The second contribution of the paper is an evalua-
tion, using real data and the proposed prompt strategy,
of four LLMs, where three are open-source – LLama
3.1 70B Instruct, Gemma 2 27B, and Llama 3.1 8B
– and one is proprietary – GPT-4o. The experiments
indicated that GPT-4o achieved the highest accuracy
(96%), followed by Llama 3.1 70B Instruct (86%).
Quantized versions of Gemma 2 27B and Llama 3.1
8B had a low performance. The results suggested that
the proposed prompt strategy was essential to achieve
proper performance, and that balancing speed and ac-
curacy, when using quantized open-source models,
remained challenging.

The paper is structured as follows. Section 2

1https://www.w3.org/TR/rdf11-concepts/

presents related work. Section 3 introduces the
database modeling adopted in the paper. Section 4
details the proposed prompt strategy. Section 5 de-
scribes the experiments. Section 6 discusses the re-
sults obtained in the experiments. Finally, Section 7
contains the final remarks and suggests future work.

2 RELATED WORK

Text-to-SQL is an established task in the field of nat-
ural language processing (NLP), aimed at translat-
ing questions in natural language into SQL queries,
thereby facilitating access to databases for users with-
out specialized technical knowledge.

Before the popularization of large language mod-
els (LLMs), two main streams addressed the text-to-
SQL task. The first was based on using sequence-to-
sequence (Seq2Seq) models (Sutskever et al., 2014).
An encoder would analyze the schema structure of re-
lated tables and understand the semantics of the nat-
ural language question. Then, a decoder would gen-
erate the tokens of the SQL query, producing them
one by one based on the encoded representation of the
question. The second paradigm involved fine-tuning
pre-trained language models (PLMs), such as BERT
(Devlin et al., 2019), which leverage the knowledge
acquired from large collections of texts. These mod-
els demonstrated significant effectiveness in enhanc-
ing the performance of text-to-SQL mapping tasks in
later contexts (Shi et al., 2024).

Regarding the state-of-the-art (SOTA), the current
literature on text-to-SQL based on LLMs focuses on
two main approaches: the first is prompt engineer-
ing, which does not require retraining the model and
takes advantage of LLMs’ ability to be directed to-
ward specific tasks through the addition of data, in-
structions, and examples to the prompt. This ap-
proach offers greater flexibility by allowing the use of
simple techniques, such as few-shot learning (Brown
et al., 2020) and Chain-of-Thought (CoT) (Wei et al.,
2024), as well as more sophisticated techniques based
on Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020), which enhance large language mod-
els (LLMs) by combining them with external knowl-
edge bases. The second is fine-tuning, which involves
training an LLM on text-to-SQL-specific datasets.
Comparing the two approaches, prompt engineering
requires fewer data, is faster, and can yield good re-
sults. However, fine-tuning tends to improve LLM
performance, but requires a more extensive training
dataset (Shi et al., 2024).

With the use of LLMs, there has been a significant
increase in the accuracy of text-to-SQL experiments
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on benchmarks, such as Spider (Yu et al., 2019), con-
tinuously raising the state of the art in this field. To
give an idea of the progress, in 2023, the execution
accuracy on Spider increased from around 73% to
91.2%. A significant limitation of Spider, though,
is that its dataset primarily comprises simple SQL
queries that use few tables, which does not reflect the
complexity of most real-world databases. Therefore,
more realistic benchmarks have been created for test-
ing LLMs, such as BIRD (Li et al., 2024), Dr. Spider
(Chang et al., 2023), and Spider 2.0 (Lei et al., 2024).

Spider 2.02, an evolution of Spider 1.0, is a frame-
work comprising 632 real-world text-to-SQL work-
flow problems, derived from enterprise-level database
use cases. The databases in Spider 2.0 are sourced
from real data applications, often containing over
1,000 columns and stored in local or cloud database
systems such as BigQuery and Snowflake. Solv-
ing problems in Spider 2.0 frequently requires un-
derstanding and searching through database metadata,
dialect documentation, and even project-level code-
bases. Early evaluations indicate that, based on Ope-
nAI o1-preview3, the code agent framework success-
fully solves only 17.0% of the tasks, compared with
91.2% on Spider 1.0 and 73.0% on BIRD. The re-
sults on Spider 2.0 show that while language models
demonstrated remarkable performance in code gener-
ation – especially in prior text-to-SQL benchmarks –
they require significant improvement to achieve ade-
quate performance for real-world enterprise usage.

A comprehensive survey of text-to-SQL strate-
gies can be found in (Shi et al., 2024), including a
discussion on benchmark datasets, prompt engineer-
ing, and fine-tuning methods. The Web site Awe-
some Text2SQL4 lists tools with the best performance
across various text-to-SQL benchmarks, and the DB-
GPT-Hub project5 explores how to use LLMs for text-
to-SQL.

In particular, LangChain6 is a framework that
helps develop text-to-SQL strategies using LLMs.
LangChain is compatible with MySQL, PostgreSQL,
Oracle SQL, Databricks, SQLite, and other DBMSs.
Very briefly, the LangChain SQLQueryChain au-
tomatically extracts database metadata, creates a
prompt, and passes this metadata to the model. This
chain greatly simplifies the creation of prompts to ac-
cess databases. In addition to including the schema in

2The code, baseline models, and data are available at
https://spider2-sql.github.io

3https://openai.com/index/
introducing-openai-o1-preview/

4https://github.com/eosphoros-ai/Awesome-Text2SQL
5https://github.com/eosphoros-ai/DB-GPT-Hub
6https://docs.langchain.com

the prompt, this chain allows providing sample data
that can help a model build correct queries when the
data format is unclear. Sample rows are added to the
prompt after the column information for each corre-
sponding table.

Some recent work on the text-to-SQL task based
on LLMs has obtained promising results using real-
world data. (Coelho et al., 2024) proposes a technique
based on Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) to enhance the performance of
LLMs in the text-to-SQL task on a real-world rela-
tional database from an energy company.

Finally, this paper differs from the (relational)
text-to-SQL approaches in that it focuses on a very
specific relational database storing triples. It also dif-
fers from text-to-SPARQL strategies, such as that de-
scribed in (Avila et al., 2024), developed for generic
RDF datasets.

3 THE PROPOSED DATABASE
CONSTRUCTION PROCESS

This section describes the database construction
process based on data extracted from engineering
Computer-Aided Design (CAD) files, which repre-
sents models of industrial plants. The examples that
follow are based on data from a floating production
storage and offloading (FPSO) unit of an oil and gas
company, used in Section 5 for the experiments, but
the process is general and typical of engineering data.

The database construction process has the follow-
ing basic steps. First, the raw data are extracted from
the JSON (JavaScript Object Notation) files of engi-
neering projects stored in a Computer-Aided Design
(CAD) information system, which represents mod-
els of industrial plants. The data refer to hundreds
of properties related to materials, weight, tempera-
ture, pressure, location, among others, with their cor-
responding values. The data must undergo a clean-
ing process to ensure completeness and consistency.
Then, the resulting cleaned data is also stored as
JSON files.

Next, the JSON files are remapped and stored in a
relational table, called an object-property-value table,
with three columns: id, property, and value (see Ta-
ble 1). The id column stores object IDs, the property
column stores property names, and the value column
stores the values of these properties.

After ingesting the data into the object-property-
value table, the table rows are analyzed to investigate
their nature. The value column stores heterogeneous
data and may include null values. Also, several nu-
meric values appear along with their units of mea-
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Table 1: Snippet from object-property-value table.

id property value
ID-1 Length 10 mm
ID-2 Max Temperature 25 C
ID-2 Weight 100 kg
ID-3 Material Carbon Steels
ID-3 Created on 01/01/2000 10:25:35

... ... ...

sure, typically for properties such as weight, height,
elevation, pressure, and so on. This presents a signifi-
cant challenge for LLMs which need to generate SQL
queries that can handle these idiosyncrasies.

As mentioned in the introduction, a value ex-
tracted from the CAD files is frequently a string of the
form “5 mm” (or a much more complex string), that is,
the value represents the property value and the unit of
measure. This suggests that it would be preferred to
use quadruples (o, p,v,u), separating the unit u from
the value v, which is still not difficult to model as a re-
lational table with four columns. The implementation
used in the experiments described in Section 5 does
not take into account this further transformation since
it proved difficult to separate the property value from
the unit of measure in the real-world data used. This
point thus requires further investigation.

4 THE PROPOSED PROMPT
STRATEGY

The proposed prompt strategy to help an LLM in
the text-to-SQL task for an object-property-value ta-
ble, as described in Section 3, is divided into three
main blocks – context, instructions, and examples –
as shown below.

# Context: {context}
# Instructions: {instructions}
# Examples: {examples}

Create an SQL query based on the best
example that matches the question below:

In the context block, the LLM is conditioned to
assume the role of a database expert, whose task is to
generate a valid SQL query for the database in ques-
tion. The structure of the table and its columns is
prompted to the LLM. A list of all property names
that occur in the property column is added to this sec-
tion.

The second block contains specific instructions for
constructing an SQL query, such as using the property
column whenever a question refers to a property, and
the value column when it relates to the value of that

property. In this block, a list is also added with all
property names that are categorical and their respec-
tive values. These values must always be used when
constructing the SQL query.

In the implementation used in Section 5, it should
be noted that the questions are asked in Portuguese
and all data stored in the database are in English.
Therefore, the LLM must be able to identify a prop-
erty of an object mentioned in the question in Por-
tuguese and identify the English translation from the
list provided in the prompt. This posed an additional
challenge for the text-to-SQL task.

The LLM is also instructed always to return the
SQL query on a single line without any formatting to
make it easier to compare it with the expected SQL.
Furthermore, the LLM is asked never to explain its
answer, but just to return the SQL code.

In the last block, eight generic SQL examples are
inserted, one for each type of clause or function fre-
quently observed in the translations of the user ques-
tions. These examples serve as templates for the LLM
to use as references.

Below the examples, the LLM is instructed to gen-
erate the SQL query based on the best corresponding
example.

For instance, one of the eight SQL examples in-
serted in the prompt is:
- To select objects that have more than one
property with their specific values:

SELECT DISTINCT tp1.id
FROM object-property-value tp1
JOIN object-property-value tp2

ON tp1.id = tp2.id
WHERE tp1.property = 'p1'

AND tp1.value = 'v1'
AND tp2.property = 'p2'
AND tp2.value = 'v2'

which indicates how to perform a self-join on the
object-property-value table, where p1 and p2 repre-
sent generic properties, and v1 and v2 their corre-
sponding values.

5 EXPERIMENTAL SETUP

5.1 LLMs Tested

The experiments tested four LLMs of different sizes
(see Table 2): GPT-4o 2024-05-137, Llama 3.1 70B
Instruct, Llama 3.1 8B8, and Gemma 2 27B9. GPT-

7https://openai.com/index/hello-gpt-4o/
8https://llama.meta.com/
9https://ai.google.dev/gemma/
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4o is a proprietary model from OpenAI, and the other
three are open-source models from Meta and Google.

5.2 Hardware and Software Setup

GPT-4o was run at OpenAI via the Microsoft Azure
cloud computing platform. Llama 3.1 70B Instruct
was run on HuggingChat10. Llama 3.1 8B and
Gemma 2 27B were downloaded using Ollama11 with
a 4-bit quantization level (Q4 0), which reduces their
original size to allow execution on computers with-
out powerful hardware. They were run on a personal
computer with a 10th-generation Intel Core i7 proces-
sor, featuring six processing cores, 32 GB of RAM,
and a 64-bit Windows operating system. All models
were executed with the temperature setting set to 0 to
minimize response variability and achieve more pre-
dictable results.

5.3 Benchmark

The benchmark consisted of a database with data
from a floating production storage and offloading
(FPSO) unit of an oil and gas company, constructed as
described in Section 3. The resulting object-property-
value table contained 312,982 rows, related to 6,228
distinct objects, and 110 distinct properties, among
which 37 have categorical values about classes, sub-
classes, standard categories and types of equipment.

The benchmark featured 50 NL questions and
their ground truth SQL translations. The NL ques-
tions were formulated in Portuguese, covering differ-
ent SQL clauses and functions, as summarized in Ta-
ble 3.

The questions were designed from the perspective
of an inexperienced database user who would like to
ask questions about one or more properties of one or
more engineering equipment. Also, the user might not
know which units of measurement are stored in the
database for some properties, such as weight, width,
pressure, etc. Therefore, some questions were formu-
lated with units of measurement different from those
that appear in the database, such as tons instead of
kilograms. The benchmark also included questions
about equipment that has properties with null values,
reflecting the reality of the data.

Each NL question was accompanied by a ground-
truth SQL translation and the result of its execution
on the database. For example, an NL question involv-
ing a self-join and its ground-truth SQL translation
is (data were anonymized with asterisks to preserve
confidentiality):

10https://huggingface.co/chat/
11https://ollama.com/

Question: “List in alphabetical order all the objects
that are 100mm long and have fluid code ‘*’.”

SQL:
SELECT DISTINCT t1.id
FROM object-property-value t1
JOIN object-property-value t2

ON t1.id = t2.id
WHERE t1.property = '*'

AND t1.value = '100 mm'
AND t2.property = '*'
AND t2.value = '*'

ORDER BY t1.id

5.4 Performance Measure

The experiments measured the accuracy of the LLM
text-to-SQL task over the benchmark, defined as the
percentage of NL questions correctly translated, as
usual.

Let QN be an NL question, QGT be its ground truth
SQL query, and QLLM be the SQL query the LLM
generated for QN . The correctness of QLLM was com-
puted as follows. QLLM was first syntactically com-
pared with QGT . If QLLM and QGT were not iden-
tical, QLLM was tentatively marked as incorrect and
executed on the database for further validation. If the
execution of QLLM produced the expected results for
QN , QLLM was re-evaluated as correct. This process
eliminated false negatives.

The incorrect SQL queries were analyzed to dis-
cover new approaches for improving the prompt.
Thus, the incorrect SQL queries provided insights to
increase accuracy.

6 RESULTS AND DISCUSSION

Table 4 shows the results obtained in the experiments.
The columns of the table correspond to the model,
model parameters, duration (elapsed time to run all 50
NL questions), number of correct answers (“Hits”),
number of incorrect answers (“Errors”), and the ac-
curacy. GPT-4o achieved the best accuracy of 96%,
followed by Llama 3.1 70B, which achieved 86%.
Gemma 2 27B reached 28%, and Llama 3.1 8B just
10%.

It should be noted that, without the proposed
prompt strategy, all models achieved a negligible per-
formance on the benchmark (results not included in
Table 4). This was indeed expected, given the chal-
lenges of schema linking and SQL translation already
pointed in the introduction.

GPT-4o took around one minute to answer all NL
questions, the least time of all experiments. Llama
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Table 2: LLM models used in the experiments.

LLM Model Params Context Window Quantization Level Owner Released
Llama 3.1 8B 128K Q4 0 Meta 07/23/2024

Llama 3.1 Instruct 70B 128K - Meta 07/23/2024
Gemma 2 27B 8K Q4 0 Google 06/27/2024
GPT-4o - 128K - OpenAI 05/13/2024

Table 3: Distribution of the ground truth SQL queries.

Clauses and Aggregate
Functions

Questions Quantity

SELECTa 01-10 10
COUNT 11-20 10

SELF-JOIN 21-30 10
AVG 31-40 10
MAX 41-43 3
MIN 44-46 3

GROUP BY and
HAVING

47-50 4

a Only SELECT projections.

3.1 8B, the smallest of all models, took approximately
21 minutes, while Gemma 2 27B, the medium-sized
model, took about 1 hour. However, these results are
unfair since these open-source models were run on
a (very) small local server. The duration for Llama
3.1 70B Instruct was not measured because questions
had to be manually submitted to HuggingChat. How-
ever, the response time for each question was rela-
tively quick, taking just a few seconds.

GPT-4o generated just two wrong SQL queries. In
the first query, GPT-4o generated a WHERE clause
with a carbon steel material value different from that
of the ground truth SQL query. A more detailed
analysis of the types of materials in the database
revealed that “carbon steel” was written as “Car-
bon Steels” or “Steel - Carbon”, which are synonym
terms. Therefore, the SQL query generated by GPT-
4o was not necessarily incorrect but incomplete. The
prompt should include instructions regarding synony-
mous terms in the database, and the ground truth SQL
query should be reformulated. The second wrong
SQL query referred to counting the number of ob-
jects with fewer than 30 distinct properties. GPT-4o
failed to return the total number of objects, but instead
counted each object that had fewer than 30 distinct
properties.

Llama 3.1 70B Instruct failed on seven SQL
queries. The model used the wrong properties and
values and selected two SQL templates incorrectly. It
failed on the same issues as GPT-4o and generated
only one invalid SQL query with a syntax error.

Llama 3.1 8B generated 45 incorrect SQL queries,
25 of which could not be executed in the database due

to syntax errors. The LLM made several mistakes by
translating property names from the database, which
were in English, into Portuguese, disregarding the
explicit instruction in the prompt. It also created
names for properties that were not provided in the
prompt, resulting in incorrect SQL queries. The ex-
amples added to the prompt helped the LLM craft
SQL queries in the expected format, but the lack of
attention to the use of properties affected the outcome.

Gemma 2 27B performed slightly better than
Llama 3.1 8B. It generated 36 incorrect SQL queries,
19 of which could not be executed in the database due
to syntax errors. It also made several mistakes by
misusing property names, either translating or mod-
ifying them. It removed special characters that ap-
peared in some property names, such as underscores
and hash signs. Additionally, it incorrectly used the
units of measurement provided in the prompt when
attempting to extract numerical values from the value
column, sometimes swapping millimeters with meters
and using a Celsius degree symbol that is different
from the one specified. Most of the time, Gemma
was able to rely on the best SQL example given in
the prompt to answer an NL question.

It is important to highlight that the accuracy of
the models was much poorer before the removal of
false negatives. GPT-4o achieved 62% while Llama
3.1 70B Instruct, Llama 3.1 8B, and Gemma 2 27B
obtained 36%, 2% and 0%, respectively. Indeed, syn-
tactically comparing the LLM-generated SQL query
with the ground truth SQL query resulted in many
false negatives – in several cases, the order of the fil-
ters in the WHERE clauses were different, as well as
the aliases adopted in the JOIN clauses.

Finally, an important point to consider is that
Llama 3.1 8B and Gemma 2 27B were downloaded in
their Q4 0 quantization version to enable execution
on a personal computer, which significantly impacts
the quality of their results. Other quantization levels
that reduce the loss of quality were tested, but they
proved to be unfeasible due to the extreme slowness
of model processing on the hardware used, as well as
frequent CPU memory overflows, consuming 100%
of the RAM.
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Table 4: Results of experiments.

LLM Model Durationa Hits Errors Accuracy
Llama 3.1 8B 00:21:22 5 45 10%

Llama 3.1 Instruct 70B - 43 7 86%
Gemma 2 27B 01:19:12 14 36 28%

GPT-4o 00:01:03 48 2 96%
a Ellapsed time to run all 50 questions in hours, minutes and seconds.

7 CONCLUSIONS

This paper addressed the text-to-SQL task for one
very specific type of real-world relational database
storing data extracted from engineering CAD files.
The paper introduced a prompt strategy tuned to the
text-to-SQL task over such databases, which was es-
sential to achieve good performance. The paper con-
cluded with a comparative analysis between different
LLMs for executing the text-to-SQL task using real-
world data from an oil and gas company.

The analysis of the experimental results showed
that GPT-4o was the most accurate model, achiev-
ing 96% accuracy after removing false negatives, with
only two errors in 50 NL questions processed. One of
these errors revealed a flaw in the SQL ground truth
itself.

On the other hand, among the open-source mod-
els, Llama 3.1 70B Instruct achieved the best accuracy
with 86% showing a competitive result. The quan-
tized versions of Gemma 2 27B and Llama 3.1 8B had
very modest performances, although there was a sig-
nificant improvement after removing false negatives.
Gemma 2 27B’s accuracy reached 28%, surpassing
Llama 3.1 8B, which achieved only 10%.

The limitations of these quantized open-source
models, especially regarding their ability to gener-
ate correct, syntax-error-free SQL queries, can be at-
tributed in part to the quantization level required to
run them on lower-capacity hardware. This suggests
that the performance could be improved by using
models with other quantization levels that reduce pre-
cision loss or even non-quantized models. Naturally,
running open-source LLMs without quantization de-
mands a better computational infrastructure, which
leads to higher costs.

The main errors in the open-source models were
due to incorrect property name translations, creation
of nonexistent properties, and mishandling of special
characters and units. Beyond prompt examples, suc-
cess depends on clear question formulation, prompt
adjustments, model size, configuration, and quantiza-
tion level, especially for open-source models.

The prompt strategy proposed in this paper can
be adapted to other domains and applications that

require storing objects and their properties as key-
value pairs. Future work might include conducting
new experiments along many lines. First, new experi-
ments with non-quantized open-source models should
be conducted, in particular to test the limitations of
the context window, albeit it was observed in the ex-
periments that the average size of the prompts was just
8K and did not exceed the models’ capacity. Second,
an enhanced prompt should be tested to handle cat-
egorical attributes with synonymous values, possibly
using a knowledge graph to guide the LLM in dealing
with such situations. Finally, the experiments should
be expanded to cover a combination of engineering
data with other types of data.
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