VRSLOG: An Approach to Log Immersive Experiences in Virtual
Reality Systems

Divij D.®2, Y. Raghu Reddy®P, Radha Krishna B.©¢ and Sai Anirudh Karre®¢

a

divij.d@students.iiit.ac.in, {raghu.reddy, saianirudh.karre} @iiit.ac.in, radha.krishna@research.iiit.ac.in

Keywords:

Abstract:

Software Logging, Virtual Reality, Log Analysis.

Software developers commonly use logging mechanisms to gather runtime data. Over the years, this infor-

mation has been used for various purposes like debugging, behavioral analysis, system comprehension, etc.
Frameworks such as log4j and Logback have helped standardize logging practices by incorporating Software
Engineering principles. Logging interactions in Virtual Reality (VR) applications can help understand user
behavior and assist with automated conformance checks. In this paper, we introduce VRSLOG, a general-
ized logging framework that can capture interactions across diverse VR scenes without any changes to the
framework. We implement a prototype of the VRSLOG framework and demonstrate the generation of log
files. Further, the log files are used to conduct conformance checks against a predefined expected sequence of

events within the VR scene.

1 INTRODUCTION

Emerging technologies like Virtual Reality (VR) have
been primarily focused on the consumer segment in
the past and most the developers of the VR applica-
tions had their origins from the gaming community.
In recent years the adoption of VR applications has in-
creased in enterprise application domains like health-
care, education, manufacturing, etc. Karre et al. have
surveyed VR practitioner community and argued that
the development process for building VR enterprise
applications needs to be more rigorous and some of
the practices from traditional enterprise software de-
velopment process need to be adopted by VR commu-
nity (Karre et al., 2019).

One of the aspects of application development that
has lot of support in traditional software development
but is still not well researched/implemented in VR ap-
plication development is debugging and error track-
ing. Debugging VR applications can be challenging
due to their complex nature, involving 3D rendering,
input devices, and immersive environments. Compre-
hensive logging helps in capturing and tracing errors,
crashes, or unexpected behavior. Additionally, appro-

https://orcid.org/0009-0007-1964-5932
https://orcid.org/0000-0003-2280-5400
https://orcid.org/0009-0000-9363-494X
4@ nttps://orcid.org/0000-0001-7751-6070

o

iel

D., D, Reddy, Y. R., B., R. K. and Karre, S. A.

VRSLOG: An Approach to Log Immersive Experiences in Virtual Reality Systems.
DOI: 10.5220/0013434900003928

Paper published under CC license (CC BY-NC-ND 4.0)

priate checks can be put in to ensure sequence of in-
teractions.

Logging is a popular technique used by developers
to debug their applications. Logging, in simple terms,
is keeping a record of events in a system. As software
applications scale to enterprise-grade levels, the limi-
tations of ad-hoc logging become increasingly appar-
ent, underscoring the necessity for structured logging.
Logging frameworks such as Log4j and Logback fa-
cilitate structured logging and provide the user with
ready-made logging features such as log levels, filters,
formatters, etc., and help in standardizing the logs. A
logging framework, at minimum, needs to accomplish
the following':

* Easily allow the creation of log messages
* Send log messages to the output stream

* Be transparent to the running application i.e., the
application should behave the same independent
of whether the logging feature is enabled or dis-
abled

Logging user interactions in VR can provide valu-
able insights into how users navigate, interact with en-
vironments, and respond to stimuli. This data can be
analyzed to improve the design of VR experiences,
enhance usability, and create more personalized or
adaptive environments. Capturing the sequence and

! Apache Logging Services: What is logging?

229

In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 229-239

ISBN: 978-989-758-742-9; ISSN: 2184-4895

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

correctness of the execution of the task(s) within the
immersive environment can help provide evidence of
compliance, aid in audits, and demonstrate that users
are performing the tasks according to specified guide-
lines. For example, in a VR application designed to
train users in laboratory procedures and the safe han-
dling of potentially hazardous chemicals, a key aspect
of the learning process is understanding the correct
protocols for carrying out the experiments. In prac-
tice, however, a user may begin heating the chemi-
cals without closely monitoring the experiment. In
the real world, a supervisor has to monitor and cor-
rect the user’s actions. Even in a VR application, cur-
rent systems predominantly require a human evalu-
ator to supervise the user interactions in the VR ses-
sion or record the videos to provide feedback at a later
point. While this method can be effective, scaling
such an approach vis-a-vis trainers and learners is dif-
ficult. This scalability limitation can be a bottleneck
to adopting VR applications, especially in training.

In this paper, we propose automating the capture
of user interactions via logging mechanisms. Our
goal is to circumvent the need for a human supervisor,
thus making the system more scalable. A common
characteristic in training is the expectation from the
user to perform actions within the VR environment
according to some predetermined sequences. By cap-
turing user behavior and interactions through logging,
we can evaluate a user’s performance based on a gen-
eral pattern of expected interactions through confor-
mance checks on the generated logs. At first glance,
it may seem like these logs can be captured easily us-
ing existing frameworks such as log4j. However, the
absence of such a solution in the real world indicates
that logging in VR applications remains a non-trivial
task due to its unique nature. While Unity and Un-
real provide some built-in logging mechanisms, these
are not directed to providing developers with the abil-
ity to conduct conformance checks. Further, they are
also unable to help the developer solve issues particu-
lar to VR which is explained in the following text. In
fact, these built-in logging mechanisms can be used
to implement our logging framework in the respective
engines.

Typically, VR applications are not developed from
scratch. VR developers use game engines such as
Unityz, Unreal3, etc., which have its own physics and
logic to determine object behavior. For instance, Fig-
ure 1 shows a partial scene of a VR application de-
signed for training a laboratory user to follow the
correct protocol while conducting experiments. In
such an application, a user may accidentally drop the

2VR Solutions with Unity
3Unreal Engine for Extended Reality (XR)

230

beaker on the ground while performing the experi-
ment. The notion of gravity is typically handled by
the in-built physics engine in Unity as well as Unreal.
So, it becomes difficult for the developer to log such
interactions even though they are relevant. As the sce-
narios get more complex, the role of the underlying
game engine increases. Given such limitations in log-
ging certain user interactions in VR applications, the
direct utilization of standard logging frameworks like
log4j in the VR domain is near impossible. Hence,
there exists a need for a logging framework specifi-
cally tailored to the VR domain.

In this paper, we introduce a logging framework
called VRSLOG that aims to automate the tracking of
object properties along with developer-defined logs.
VRSLOG is a plug-and-play logging framework for
VR scenes which focuses on the bare minimum at-
tributes to capture user behavior as suggested by the
meta-model for VR systems (Karre et al., 2023). We

Figure 1: Chemical beaker on a Bunsen burner.

identify 2 key properties that VRSLOG must have for
addressing the problem and facilitating the evaluation
of interactions with only log files:

1. Generalizability: It must be fit for use across di-
verse VR scenes rather than a specific scenario.
Further, it should not require framework-level
modifications to ensure it works across multiple
scenes.

2. Conformance: It should facilitate conformance

VRSLOG: An Approach to Log Immersive Experiences in Virtual Reality Systems

checks on the generated logs, comparing them
against a predefined sequence of events.

VRSLOG is built with the above two key proper-
ties as the main focus. Even though, we demonstrate
the logging framework using Unity as the underlying
game engine in this paper, it can easily be applied
to other scenarios with different game engines, edi-
tors, and languages. It’s possible to extend the use
case of the framework to that of general 3D game de-
velopment which has slightly similar requirements to
that of VR. However, we choose to focus solely on
VR scenarios since both differ in the specifics such as
point-of-view offered, hardware capabilities, immer-
siveness, etc.

Overall, in this paper, we introduce a novel logging
framework with the following key contributions:

* Generalizability and Ease of Use: The proposed
framework can be used with a diverse set of VR
scenes without requiring changes to the scene it-
self.

* Portability Across Technologies: It is compati-
ble with multiple VR editors.

* Conformance Checking: The framework sup-
ports functionality for verifying conformance to
predefined sequence of events.

The rest of the paper is structured as follows.
Section 2 presents the related work, and Section 3
presents our proposed logging framework VRSLOG.
Section 4 describes the experiment scene along with a
basic implementation. Section 5 discusses the results
obtained from our experiment, and Section 6 high-
lights the current study’s limitations and possible di-
rections for future work. Section 7 concludes the pa-
per.

2 RELATED WORK

Multiple studies have been done on improving and
analyzing logging methods in the literature. Some
studies have explored the application of rigorous Soft-
ware Engineering practices to logging within typical
software systems (Jia et al., 2018; King et al., 2017;
Veeraraghavan et al., 2011; Zhang et al., 2011; Chen,
2019). The findings from these studies demonstrate
that the application of Software Engineering prac-
tices to logging has led to improvements in logging
methodologies. In a general logging study, Li et al.
analyzed the benefits and costs of logging along with
the strategies to balance them by surveying develop-
ers directly. These strategies included identifying dif-
ferent log levels, identifying critical and unexpected
parts/outcomes of the system, and reducing repeated

logging (Li et al., 2021). Rong et al. studied the trade-
off between extensive logs and the overhead cost. Ad-
ditionally, their work showed that although logging is
an important practice, it’s still largely done in an ad-
hoc manner based on the individual experience of de-
velopers (Rong et al., 2017). Gu et al. reinforced the
idea of having a standardized logging format in their
work. They observed an increase in the effective-
ness of log analysis when a common format was fol-
lowed. Their work also identified performance over-
head as one of the major issue while logging, and in-
troduced ways such as dynamic logging as a potential
solution (Gu et al., 2023). Even though the logging
framework discussed in our paper focuses on the VR
domain, many of the benefits, challenges, and poten-
tial solutions identified in the above-related works are
applicable. For instance, dynamic logging can be ap-
plied to the VR domain to control the granularity of
logging during a particular session.

Louto presented an extensive study in the system-
atic literature review on user logging in VR. The work
argued that research on logging development in VR
is rare and even when logging is done for research
purposes, the details of the method are not discussed
extensively. Further, the work suggests that major-
ity benefits of logging are due to log analysis (Luoto,
2018). This helps us establish that while capturing
data is necessary for logging, the major focus should
be kept on the analysis of these logs.

Some studies on VR Logging have attempted to
provide a solution to log user behavior while limiting
their scope to a very specific use case for VR. Ritchie
et al. investigated capturing user rationale and inten-
tion in a non-intrusive manner through user logging.
However, their proposed solution was limited to the
context of the example that they used, cable organiza-
tion. This is a major drawback since their framework
must be changed and adapted manually to each spe-
cific use case (Ritchie et al., 2008). Similarly, Kloiber
et al. presented a solution closely tied with their sce-
nario of assembly simulation. While their approach
allows users to manually simulate an assembly pro-
cess while tracking their performance, it creates high
coupling between the VR scenario and the logging
system (Kloiber et al., 2021). VRSLOG alleviates this
issue by focusing on generalizability to ensure that the
solution can be integrated into multiple use cases with
minimal extra effort on the developers’ part.

Belfore et al. utilized Virtual Reality Model-
ing Language (VRML) and Java servlets to cap-
ture the state information of all the objects in the a
scene (Belfore and Chitithoti, 2000; Carey, 1998).
However, capturing the general state and properties
of all the objects present in a scene is not an effective

231

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Main Thread Appender Thread
/_og Ievels/ /:onfig FiI%
| Appender . Destination
. ovects || o
Raw Object . . Logger
nformation Filter Object ‘ Object ’
Appender N
. »| Destination
t2
Objec (Database)
Log

Format

Figure 2: Workflow of VRSLOG.

solution as it can result in performance degradation of
the VR scene due to the computation involved.

Pathmanathan et al. presented a system that uti-
lizes 3D eye tracking data from real-world environ-
ments (Pathmanathan et al., 2023). Their proposed
solution works well when in-depth analysis of the
VR scene is required since they capture relatively
complex and large amount of data. However, this
makes data processing difficult and may necessitate
the presence of an expert for effective understanding.
VRSLOG can compliment their work by facilitating
filtering, using standardized log format, log levels,
multiple appenders, etc.

A few other unique approaches for log analysis
have also been proposed. Flotynski et al. explored the
challenge of logging interactions in immersive sys-
tems by employing temporal relations, known as 4D
Fluents, to represent information. They proposed a
method of creating and assigning time slices to ob-
jects as their properties change over time (Flotyniski
and Sobocinski, 2018). Their work can serve as
a foundation for others to improve upon. In con-
trast, the work presented by Hubenschmid et al. pro-
vides a comprehensive solution which can be used
for detailed analysis of the VR scene from both an
internal and external perspective thus providing the
benefits of both (Hubenschmid et al., 2022). Their
work focuses on advanced replay mechanisms and
in-depth analysis of the data. Similar to the work
done by Pathmanathan et al., VRSLOG can com-
pliment their framework by retaining the benefits of
both approaches. In the current work, however, we
have avoided capturing complex data as our goal is to
build a framework that be used to conduct simple con-
formance checks. Capturing more complex data can
make data post-processing as well as analysis difficult
in this scenario.

232

Buche et al. also introduced a novel approach for
building Intelligent Tutoring Systems in virtual envi-
ronments. They proposed MASCARET, a model ca-
pable of organizing interactions between agents and
providing these agents with reactive, cognitive as well
as social abilities (Buche et al., 2003). This generic
organizational model can be applied upon scenarios
to help users identify the important agents and proper-
ties of the scenario. In this manner, MASCARET can
complement our logging framework VRSLOG by al-
lowing users to describe the scenario details and other
relevant information with ease.

3 LOGGING FRAMEWORK

Typically, VR developers define the themes, expected
actions, and responses of VR scenes. However, the
potential action-responses of a VR scene participant
can be unpredictable and thus, it may not be feasible
to create an exhaustive set. They may not be limited to
the behaviors explicitly defined by the VR developer
(as discussed previously in the chemical laboratory
example). Logging such undefined system-level in-
teractions makes VR development difficult for devel-
opers and may shift their focus from creating quality
VR scenes to data logging. In this work, we strive to
bridge this gap by introducing a novel logging frame-
work, VRSLOG.

VRSLOG’s is based on the bare minimum model
template proposed by Sai et al. (Karre et al., 2023).
Their work provides a template for the minimalistic
set of elements and relationships that must exist in a
VR application. The meta-model template proposed
by them facilitates specification and development of
VR applications. They identify different model el-

VRSLOG: An Approach to Log Immersive Experiences in Virtual Reality Systems

ements such as Article (any 3D object with specific
dimensions and physical properties), Action, Behav-
ior, and other model elements as the basic building
blocks of any VR software system. The model tem-
plate can be extended to various domain-specific or
application-specific elements.

VRSLOG can work with different VR editors and
languages. The framework can also be implemented
easily as packages across different editors since the
requirements are kept minimal to ensure generaliz-
ability. This shows the portability of VRSLOG across
various VR editor technologies. In its current form,
VRSLOG supports the following methods for log-
ging:

1. User-Defined Logging at Multiple Levels: This
is the same as traditional logging frameworks.
VRSLOG allows the VR developer to insert their
own log statements and control the level of log-
ging thereby providing flexibility and control over
the logs that are generated.

2. Auto-Logging Through Configuration File:
This allows the user to define a configuration file
that outlines various objects and properties that
are of interest to the user. Properties such as po-
sition, and rotation, which are essential for defin-
ing the state of an object, are captured automat-
ically at definite intervals or after the occurrence
of specified events. While this method does not
allow for as much control over the logs as user-
defined logging, it offers a way for the user to de-
fine directives which the system uses to automati-
cally log information and track object behaviors.

Furthermore, to facilitate a streamlined and simple
integration of VRSLOG within VR scenes, minimal
changes (if any) are required to the existing code for
logging purposes. Unlike other logging frameworks,
the developer is not required to author the log state-
ments manually as auto logging is facilitated through
our configuration file, though it is possible to do so
if required. Figure 2 presents the overall workflow of
our system further described in this section.

The configuration file illustrates the auto-logging
behavior of VRSLOG offering developers significant
control on customizing logging. Developers are re-
quired to specify the names or references of the ob-
jects that are to be tracked along with the scope and
frequency of tracking them individually. Following
are the detailed properties that are required as part of
the configuration file for a given object:

* Position: This property captures the global coor-
dinates of the object at a particular instant along
with the object name and time of capturing the
log. We additionally allow the user to define

the minimum time/displacement after which a log
should be registered for the object. For example,
if a log was registered when an object was present
at (0,0,0) and we have defined the minimum dis-
placement for logging position to be 1 unit, then
the object will need to move out of the unit sphere
centered at the origin to register another log mes-
sage. If neither the minimum time nor minimum
displacement is provided by the developer in the
configuration file, the filter object assumes a mini-
mum time of 1 second for this property by default.

* Rotation: This tracks the 3D vector representing
the rotation of the object around its own axes. The
additional options provided to the developer are
similar to those described for position previously.

* Seen: This property tracks whether an object is
currently visible to the VR user and registers a log
whenever an object enters or leaves the field of
view of the user.

* Interaction: This property tracks whether any in-
teraction/input has been registered by the user on
an object. This interaction can be made through
controllers or hands directly depending on the VR
scene.

Although enabling logging of more specific object
properties might ease the developer’s task, we re-
frain from doing so to maintain the generalizability
across various VR scenes and editors. These proper-
ties enable us to record essential aspects of the objects
within the virtual environment. We track position,
and rotation as they are mandatory for defining the
absolute location and orientation of an object in the
VR scene. In contrast, the ”seen” property captures
an object’s location relative to the user, distinguishing
between objects that are visible to the user and those
that are not. This distinction is important because we
anticipate that the user will primarily respond to ob-
jects within their current field of view.
All of the logs generated by automatic logging are set
to the “Auto” log level in order to suppress the gener-
ation of these logs, developers must explicitly define
it within the configuration file.

VRSLOG is divided into 3 major modules: (a) Fil-
ter Object, (b) Logger Object, and (c) Appenders.

3.1 Filter Object

This component is primarily tasked with distinguish-
ing between different logging levels. We define the
following levels for our custom logs:

1. Info: This log level is used to provide informa-
tion about what is part of an application’s regular
operation, such as a startup/shutdown.

233

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

2. Debug: This log level is used for diagnostic in-
formation in the development process that is not
necessarily harmful to the software.

3. Warn: This log level can be a precursor to an er-
ror and indicates that an unusual situation might
have been detected.

4. Error: This log level is used to track when the
VR scene has entered into an undesired state that
should not be possible if the software was working
as intended.

5. Off: This log level denotes that no manual logs
will be registered by the logger and is the highest
possible rank.

Additionally, we introduce an additional log level
“Auto”, which contains the log messages generated
through our auto-logging system based on the config-
uration file. Apart from distinguishing between log
levels, the filter object is also tasked with filtering ob-
ject information for automatic logging based on the
configuration file provided by the user. The configu-
ration file contains the names/references of the objects
the developer wants to track, the desired properties to
log, and other such necessary details. The filter object
assumes default values for any missing entries.

3.2 Logger Object

The logger object is the central component of
VRSLOG, which receives filtered log information
from the filter object. It serves as the connection
between raw information and the appenders and is
responsible for formatting the logs to ensure format
consistency between logs. The logger object can be
associated with multiple appenders to allow logging
to multiple locations at the same time through multi-
threading. This significantly decreases the perfor-
mance overhead faced by the system.

3.3 Appenders

Appenders are responsible for printing logging mes-
sages to multiple locations, such as consoles and files,
and even for sending these messages over the net-
work. Appenders are independent of each other’s
functioning and the only relation between them is
that their source of data is the same. Furthermore,
since appenders perform the write operation, which
can be costly, we utilize threading to enhance the per-
formance. The following types of appenders are sup-
ported by the framework:

1. Remote Appender: It uses REST to send log
messages to a remote server.

234

2. File Appender: It appends the log events to a file
present locally on the device.

3. Console Appender: Console Appender appends
the log events to the console that the program cur-
rently has access to.

These appenders find their use in different scenar-
ios. For example, a console appender may be used
for printing custom log messages by the developer
when running the scene on an editor instead of the
Head Mounted Display during its development phase
whereas a remote appender may be used during the
execution of a scene for collecting all the logs at a
central location. REST (Fielding and Taylor, 2000)
protocol is used here to maintain generalizability as
it is widely supported. Other mechanisms (for in-
stance, wired) may be faster but they may also limit
the scope of the framework. In cases when high-
frequency tracking information is required, File Ap-
pender can be used to reduce the network overhead
created by a remote appender. Considering the po-
tential performance impact of intensive logging oper-
ations, especially when using a remote appender, we
optimize by making use of multi-threading and sepa-
rating expensive POST requests from the rest of the
computation.

We integrated multi-threading by maintaining a
thread pool used for queuing operations. The thread
pool is configured with a limited number of threads
in order to ensure an upper bound on thread creation
by the system. This helps avoid scenarios where an
unbounded number of threads can lead to excessive
memory consumption. Further, this approach also ad-
dresses the overhead associated with creating a new
thread for each operation. However, parallelization
may lead to the logs being de-synced as events may
be written in an arbitrary order by different threads.
In order to address this, we assign a serial number to
each log message and maintain a priority queue on the
server-side which receives the logs from the system
and consumes them serially. In this manner, we can
queue the expensive POST requests on other threads
allowing parallelism in logging. This helps in sepa-
rating scene execution and the most computationally
expensive parts of our logging approach.

The three modules along with the configuration
file greatly enhance the flexibility of logging opera-
tions within the system. As various aspects such as
filtering, text formatting, and log destination are man-
aged by distinct components within VRSLOG, it be-
comes effortless to change any one of them indepen-
dently without affecting the others. Moreover, devel-
opers need only declare and define the relevant ob-
jects (filter object, configuration file, logger object,
appender) to integrate this framework into their VR

VRSLOG: An Approach to Log Immersive Experiences in Virtual Reality Systems

Figure 3: Anteroom with gloves and wash basin.

scene, thereby eliminating the necessity for modifica-
tions to the existing software/code base.

4 AN EXAMPLE
IMPLEMENTATION

To demonstrate the efficacy of VRSLOG in captur-
ing user behavior and enabling evaluation, we imple-
mented a prototype within the Unity engine, which
uses C# programming language. The source code is
made available as part of our resources *. We define a
VR scene aligning with the following conditions:

* The scene requires the user to follow a sequence
of steps that reflect multiple state changes rather
than simply checking the end state as a sufficiency
criteria for evaluation.

e The scene must have a need for user evaluation
which would otherwise require oversight from a
human supervisor.

In light of the above constraints, we have chosen to
use a scene in a chemical laboratory setting. In this
scene, the user is required to follow the prescribed
protocol to enter the laboratory and perform an ex-
periment (figure 3). The user is first required to en-
ter the anteroom, wash their hands at the basin, and
then put on gloves (figure 4) before proceeding into
the main laboratory area. Additionally, there are two
separate gates to the laboratory: one designated for
entry and the other for exit (figure 5). After entering
the laboratory, the user is expected to first read the
given instructions, and then perform the experiment
accordingly while making use of the stopwatch pro-
vided. This stopwatch can be operated using the three
buttons visible on the table. After completing the ex-
periment, the user is required to exit through the des-
ignated exit gate, discard their gloves in the dustbin,
and wash their hands before leaving. We incorporate

“https://doi.org/10.5281/zenodo.13789213

VRSLOG into the environment only after initially de-
veloping the virtual laboratory scene. This sequence
was intentionally followed to highlight the minimal-
istic nature of changes needed to the preexisting code
base and objects in order to enable logging capabili-
ties.

In order to plug our logging framework in their
scene, a developer would need to create a ’logger”
script that constructs the different components of the
framework (FilterObject, LoggerObject, Appender-
Object(s)) and connect them via class attributes. They
would also be required to pass relevant parameters
such as the config file path and log level when con-
structing FilterObject and then call the FilterAndPass
method of the FilterObject in the Update function pro-
vided by Unity. Similarly, if VRSLOG is to be ap-
plied on applications written in Unreal Engine, they
can follow a similar approach and call the FilterAnd-
Pass method in the Tick(float DeltaSeconds) function
provided by Unreal. Although, the application is im-
plemented using C++ in Unreal (instead of C# for
Unity), the framework itself is not dependent on any
programming language. This makes it possible to im-
plement it in any language easily.

Table 1 shows the properties of the different ob-
jects present within the scene. A brief reason for se-
lecting the component and its respective properties is
also provided in the table. Further, we set the log level
to ”Info” and attach a File Appender and a Remote
Appender to the Logger Object. Finally, we conduct
a runtime session with a user and generate the logs
which can be used for analysis.

S DISCUSSION

The log file obtained from VRSLOG can be used for
various purposes. Currently, the analysis is a manual
process where the logs are inspected to understand
what transpired in the scene. This method utilizes
logs to circumvent the requirement of a human super-
visor. Due to the large nature of the log file, we dis-

Figure 4: Instructions and the experiment setup.

235

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: Logging Properties of Experiment Components.

Component Property | Reason

Faucet Interaction | Used for washing
hands before and
after the experiment

Lab Gloves Interaction | Worn before the start

of the experiment
Labels the entry gate

EntryLabel Seen

ExitLabel Seen Labels the exit gate

Stopwatch Interaction | Used for turning

Button stopwatch on and off

Reset Button | Interaction | Used for resetting
stopwatch

User Capsule | Position Used for tracking

user’s position
Instructions and
timer readings are
present on it

Blackboard Seen

Bunsen Interaction | User for heating the

burner beaker

Beaker Seen Contains the solution
for experimenting

Dustbin Interaction | User for discarding

the gloves

cuss a small excerpt from the log. We have also pre-
sented a part of the log file along with the discussions
for easier understanding of the workings of our im-
plementation. The complete log file generated as part
of this example is available as part of our resources.”.

The log data for the initial part of the scene ex-
ecution reveals that the user first interacts with the
faucet and then with the gloves. The gate labels then
enter the field of view of the user in order for them
to find the entry gate after which they enter the main
room. The data then reveals that the blackboard with
instructions remains in the field of view of the user
for a significant period. We can infer that the user
spent this time looking at the blackboard as this be-
havior aligns with the expected workflow, wherein
users would need to read the steps of the experiments
at the start.

Figure 5: Entry and exit gates.

Shtps://doi.org/10.5281/zenodo. 13789213

236

"timestamp": 7.871,

"name": "Capsule",
"property": "position",
"value": [4.98,1.09,-5.17]

"timestamp": 14.256,
"name": "Faucet_1",
"property": "interaction",
"value": [2.74,1.1,-3.85]

-

"timestamp": 19.607,

"name": "Glove_1",
"property": "interaction",
"value": [2.66,1.03,-4.96]
}
{
"timestamp": 22.042,
"name": "ExitLabel",
"property": "seen",
v al U, Crue

Afterwards, the log data shows that the user turns
on the burner for the first step of the experiment and
starts the stopwatch right after to ensure minimal er-
ror. It is clear from the logs that the beaker remains
in the field of view of the user for the period when it’s
being heated. This also aligns with our expected be-
havior from the user, since they are expected to mon-
itor the experiment closely at all points of time.

{

"timestamp": 55.664,

"name": "Burner_1",
"property": "interaction",
"value": [-0.98,0.95,-4.64]

"timestamp": 55.98,

"name": "StopwatchButton",
"property": "interaction",
"value": [-1.48,0.86,-4.57]

"timestamp": 65.58601,

"name": "StopwatchButton",
"property": "interaction",
"value": [-1.62,0.86,-4.51]

VRSLOG:

"timestamp": 66.304,

"name": "Burner_1",
"property": "interaction",
"value": [-0.76,0.95,-4.65]

When the user turns off the heating, however, the
log data indicates that the stopwatch was started a
few seconds late hence introducing a significant time
delay between the two events. This extra time de-
lay causes the solution to cool down for longer than
the prescribed time which can be hazardous in certain
cases. This indicates a clear error in the workflow em-
ployed by the user.

{

"timestamp": 66.304,

"name": "Burner_1",
"property": "interaction",
"value": [-0.76,0.95,-4.65]

"timestamp": 66.68101,

"name": "ResetButton",
"property": "interaction",
"value": [-1.91,0.86,-4.4]

—~——

"timestamp": 69.98,

"name": "StopwatchButton",
"property": "interaction",
"value": [-1.59,0.86,-4.53]

Finally, the user starts heating the beaker again for
the third step. However, the log data indicates that the
beaker remains non-visible for a significant period.
This means that the user had not been monitoring the
experiment while it was being heated. This indicated
another error in the workflow of the user which may
prove to be a hazard since certain chemicals must al-
ways be monitored closely.

{

"timestamp": 84.052,

"name": "Burner_1",
"property": "interaction",
"value": [-0.82,0.95,-4.56]

"timestamp": 84.68101,

An Approach to Log Immersive Experiences in Virtual Reality Systems

"name": "ResetButton",
"property": "interaction",
"value": [-1.94,0.86,-4.32]

"timestamp": 87.708,
"name": "Beaker_1",
"property": "seen",
"value": false

The analysis presented above demonstrates the
ability of our logs to capture user behavior. We can
successfully record both the expected and unexpected
behavior of the user and distinguish between the two.
This showcases VRSLOG’s ability to not only capture
user behavior but for evaluating it as well.

6 LIMITATIONS AND FUTURE
WORK

The primary limitation of our work remains that we
demonstrate a manual evaluation of our logs to deter-
mine user behavior. While this method circumvents
the requirement of a human supervisor to oversee the
VR session through logs, it still involves a human in
the loop presenting a potential challenge. As part of
our future work, we are planning to extract the rel-
evant data from the logs without involving a human,
thus automating the evaluation process and generating
relevant insights. In continuation, we are also explor-
ing approaches to increase the scalability of logging-
based evaluation.

We are also looking at proposing standards simi-
lar to SCORM® and xAPI’ (interaction standards for
web and mobile e-learning content) for VR software
using VRSLOG. It facilitates the standardization of
VR content consumed through e-learning or simula-
tions. This will significantly impact the phase shift of
conventional e-learning content towards the VR do-
main.

There are several advantages to building a logging
framework that can log VR applications. In addition
to teaching and learning, we plan to build an auto-
mated conformation conformance checking of user
behavior in future. Further, logging in VR applica-
tions can provide extensive datasets that can be used
in training models to better understand user behavior,
predict actions, or enhance immersive experiences by

6SCORM: Technical standard for e-learning
7xAPI: Experience API

237

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

making the environments more responsive and adap-
tive.

7 CONCLUSION

Despite the large potential of VR in various domains,
the scale of its application in the market remains rel-
atively small even today. A possible reason for this
could be the ad-hoc development landscape in the
VR domain which lacks any standardized develop-
ment methodologies. This makes the development
and maintenance of VR applications very difficult and
costly. The application of rigorous Software Engi-
neering practices in the VR domain is necessary to
mitigate these issues. This is especially true with the
rise of enterprise VR and the increase in the scale of
VR software systems in recent years. We highlight the
advantage that VR holds over traditional 2D screen
interfaces for capturing user behavior in our work and
propose VRSLOG, a logging framework that can aid
developers in the process.

We reason that logging in VR is a non-trivial task
due to the dynamic nature of the objects, and the exis-
tence of interactions and events that are not predefined
by the developers. We take inspiration from exist-
ing frameworks like log4j, which work for traditional
software systems, to build a solution for VR logging.
We focus on two major properties while developing
the framework, the first of which is generalizability.
The second property is the ability to conduct confor-
mance checks on the generated log files. To enforce
generalizability, we build VRSLOG while focusing
on its compatibility with a minimal template of VR
software (Karre et al., 2023).

Finally, we implement a prototype of the sug-
gested framework in Unity and generate logs from
a VR scene. The VR scene used for this purpose is
a training application for laboratory technicians. We
analyze the generated logs to demonstrate how they
can be used for capturing user behavior circumvent-
ing the need for a human supervisor.

REFERENCES

Belfore, L. and Chitithoti, S. (2000). An interactive
land use vrml application (iluva) with servlet assist.
In 2000 Winter Simulation Conference Proceedings
(Cat. No.OOCH37165), volume 2, pages 1823-1830
vol.2.

Buche, C., Querrec, R., De Loor, P., and Chevalillier, P.
(2003). Mascaret: pedagogical multi-agents systems
for virtual environment for training. In Proceed-

238

ings. 2003 International Conference on Cyberworlds,
pages 423-430.

Carey, R. (1998). The virtual reality modeling language
explained. IEEE MultiMedia, 5(3):84-93.

Chen, B. (2019). Improving the software logging practices
in devops. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion), pages 194-197.

Fielding, R. T. and Taylor, R. N. (2000). Architectural styles
and the design of network-based software architec-
tures. PhD thesis. AAI9980887.

Flotyniski, J. and Sobocinski, P. (2018). Logging inter-
actions in explorable immersive vr/ar applications.
In 2018 International Conference on 3D Immersion
(IC3D), pages 1-8.

Gu, S., Rong, G., Zhang, H., and Shen, H. (2023). Log-
ging practices in software engineering: A systematic
mapping study. IEEE Transactions on Software Engi-
neering, 49(2):902-923.

Hubenschmid, S., Wieland, J., Fink, D. 1., Batch, A., Za-
germann, J., Elmqvist, N., and Reiterer, H. (2022).
Relive: Bridging in-situ and ex-situ visual analytics
for analyzing mixed reality user studies. In Proceed-
ings of the 2022 CHI Conference on Human Factors
in Computing Systems, CHI *22, New York, NY, USA.
Association for Computing Machinery.

Jia, T., Li, Y., Zhang, C., Xia, W., Jiang, J., and Liu,
Y. (2018). Machine deserves better logging: A log
enhancement approach for automatic fault diagnosis.
In 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages
106-111.

Karre, S. A., Mathur, N., and Reddy, Y. R. (2019). Is vir-
tual reality product development different? an empir-
ical study on vr product development practices. In
Proceedings of the 12th Innovations in Software En-
gineering Conference (Formerly Known as India Soft-
ware Engineering Conference), ISEC "19, New York,
NY, USA. Association for Computing Machinery.

Karre, S. A., Pareek, V., Mittal, R., and Reddy, R. (2023).
A role based model template for specifying virtual re-
ality software. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE *22, New York, NY, USA. Associa-
tion for Computing Machinery.

King, J., Stallings, J., Riaz, M., and Williams, L. (2017). To
log, or not to log: using heuristics to identify manda-
tory log events—a controlled experiment. Empirical
Software Engineering, 22:2684-2717.

Kloiber, S., Settgast, V., Schinko, C., Weinzerl, M.,
Schreck, T., and Preiner, R. (2021). A system for col-
laborative assembly simulation and user performance
analysis. In 2021 International Conference on Cyber-
worlds (CW), pages 93—100.

Li, H., Shang, W., Adams, B., Sayagh, M., and Hassan,
A. E. (2021). A qualitative study of the benefits and
costs of logging from developers’ perspectives. [EEE
Transactions on Software Engineering, 47(12):2858-
2873.

VRSLOG: An Approach to Log Immersive Experiences in Virtual Reality Systems

Luoto, A. (2018). Systematic literature review on user log-
ging in virtual reality. In Proceedings of the 22nd In-
ternational Academic Mindtrek Conference, Mindtrek
’18, page 110-117, New York, NY, USA. Association
for Computing Machinery.

Pathmanathan, N., Oney, S., Becher, M., Sedlmair, M.,
Weiskopf, D., and Kurzhals, K. (2023). Been there,
seen that: Visualization of movement and 3d eye
tracking data from real-world environments. Com-
puter Graphics Forum, 42(3):385-396.

Ritchie, J. M., Sung, R. C., Rea, H., Lim, T., Corney, J. R.,
and Howley, 1. (2008). The use of non-intrusive user
logging to capture engineering rationale, knowledge
and intent during the product life cycle. In PICMET
"08 - 2008 Portland International Conference on Man-
agement of Engineering & Technology, pages 981—
989.

Rong, G., Zhang, Q., Liu, X., and Gu, S. (2017). A system-
atic review of logging practice in software engineer-
ing. In 2017 24th Asia-Pacific Software Engineering
Conference (APSEC), pages 534-539.

Veeraraghavan, K., Lee, D., Wester, B., Ouyang, J., Chen,
P. M., Flinn, J., and Narayanasamy, S. (2011). Dou-
bleplay: parallelizing sequential logging and replay.
In Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVI, page
15-26, New York, NY, USA. Association for Com-
puting Machinery.

Zhang, C., Guo, Z., Wu, M., Lu, L., Fan, Y., Zhao, J., and
Zhang, Z. (2011). Autolog: facing log redundancy
and insufficiency. In Proceedings of the Second Asia-
Pacific Workshop on Systems, APSys "11, New York,
NY, USA. Association for Computing Machinery.

239

