
Micro4Delphi: A Process for the Modernization of Legacy Systems in
Delphi to Microservice Architecture

Lucas Fernando Fávero1,2, Gabriel Soares Mário1,3 and Frank José Affonso1 a

1Department of Statistics, Applied Mathematics and Computation, São Paulo State University – UNESP,
PO Box 178, Rio Claro, 13506-900, São Paulo, Brazil

2Integrativa, Chile Street, 240, Catanduva, 15800-430, São Paulo, Brazil
3SuperSoft, 16A Avenue, 1190, Rio Claro, 13506-720, São Paulo, Brazil

Keywords: Software Modernization, Delphi, Legacy Systems, Microservice Architecture, MSA.

Abstract: The modernization of legacy systems to microservice architecture (MSA) has been a subject of interest in both
academic and industrial areas. This architectural style has facilitated the development of software systems
by composing them as a collection of small and loosely coupled services, each running in its process and
communicating with lightweight mechanisms. In parallel, Delphi is an integrated development environment
(IDE), based on the Object Pascal programming language, that enables the rapid application development of
software for desktop, mobile, web, and console applications. Although the software systems developed in
Delphi have considerable relevance in contemporary software, there is a lack of documented processes that
facilitate the modernization of legacy systems in Delphi to MSA. This paper presents the Micro4Dephi, a
modernization process based on six well-defined activities. Each activity is constituted by a step set, which
may vary in number and content, thus allowing such activities to be performed. A case study was conducted
to show the applicability of the process proposed in this paper. The results provide important evidence that
enables a clear perspective on the process’s contribution to software modernization.

1 INTRODUCTION

Microservice architecture (MSA) has emerged as a
feasible alternative for the design or modernization of
legacy or monolithic systems for computational sce-
narios that are more modern (e.g., elastic) and en-
able the absorption of new users or execution envi-
ronment needs. Such systems must be divided into
small and loosely coupled services, each running in
isolated processes and communicating via lightweight
mechanisms. Furthermore, it is suggested that these
services be designed around the business capabili-
ties of these systems and must be deployable inde-
pendently through automated processes (Lewis and
Fowler, 2019; Newman, 2021).

Drawing a parallel between legacy and mono-
lithic systems, Pressman and Maxim (2019) suggest
that legacy can be understood as a system developed
with obsolete computing resources (e.g., architectural
models, programming languages, databases) for the
current computing scenario. According to (Lewis and
Fowler, 2019), the absence of developers also be-

a https://orcid.org/0000-0002-5784-6248

comes a system developed with current technologies
a legacy, as the developers must utilize techniques to
comprehend it for any maintenance activity. As ar-
gued by Dragoni et al. (2017), monolithic systems
were designed with an architectural organization that
presents challenges in terms of scalability and adapt-
ability to evolving requirements. Examples of adver-
sities associated with monolithic systems include high
coupling, concurrency in teams working on the same
code base, and the high impact of changes Newman
(2021). Therefore, regardless of the specific type of
software (i.e., legacy or monolithic), software mod-
ernization has been revealed as a feasible alternative
for companies that intend to overcome the aforemen-
tioned adversities and enhance the availability of their
systems to end users, considering recent technologies,
architectural models, and modern computing scenar-
ios (Soldani et al., 2018).

Regardless of the system’s organizational struc-
ture, whether monolithic or not, the focus of this pa-
per is on the modernization of legacy systems devel-
oped in Delphi for MSA. According to Embarcadero
(2024), Delphi is an integrated development environ-

328
Fávero, L. F., Mário, G. S. and Affonso, F. J.
Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture.
DOI: 10.5220/0013434400003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 328-339
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



ment (IDE), supported by the Object Pascal program-
ming language, that enables the rapid application de-
velopment of software for desktop, mobile, web, and
console applications. The decision to modernize sys-
tems developed in Delphi was predicated upon sev-
eral factors, including its sustained importance within
the current technological environment. This relevance
can be attributed to the IDE’s robust developer com-
munity and extensive development resources, such as
rapid development and seamless integration with cur-
rent technologies (TIOBE, 2024).

As revealed by the investigation conducted by
Almeida et al. (2024) and Fávero and Affonso (2024),
software modernization initiatives identified in the ex-
isting literature can be viewed as partial solutions, as
such initiatives address specific steps within a com-
plex and wide-ranging context. Therefore, it can be
stated that there is no modernization process in the
literature that provides a solid foundation for sup-
porting the transition of legacy systems from Delphi
to MSA, encompassing activities from understanding
the legacy system to monitoring microservices in the
execution environment. Aiming to contribute to the
presented research scenario, this paper presents Mi-
cro4Delphi, a process structured in six activities cov-
ering the spectrum of actuation, from legacy system
comprehension to microservice monitoring. It is im-
portant to highlight that each process’s activity has a
set of steps that can vary in number and purpose to
achieve the desired outcome.

The findings reveal that Micro4Delphi has a good
potential to contribute to software modernization, as
it is the first initiative that addresses the moderniza-
tion of systems developed in Delphi to MSA. These
findings also suggest that Micro4Delphi represents a
theoretical framework by which this process may be
instantiated to support other programming languages.
Finally, it is important to highlight that the case study
detailed in this paper provides a significant theoreti-
cal and practical contribution to the advancement of
microservice application development using Delphi.

The reminder of this paper is organized as follows:
Section 2 presents the background and related work; a
description of Micro4Delphi is provided in Section 3;
Section 4 presents a case study to show the applica-
bility of Micro4Delphi; and Section 5 summarizes the
conclusions and perspectives for further research.

2 BACKGROUND AND RELATED
WORK

This section presents the background and related
work that contributed to the development of Mi-

cro4Delphi. Initially, concepts of Delphi, MSA, and
software modernization are described. Next, related
work on the software modernization of legacy sys-
tems to MSA is addressed.

Delphi. According to Embarcadero (2024), Del-
phi is a robust and contemporary IDE that provides
the advantages of a unified code base with the bene-
fits of publishing native applications for any device.
In terms of innovations, this IDE also provides sup-
port for the plugin architecture of artificial intelli-
gence (e.g., OpenAI1). Finally, it is also noteworthy
that Delphi has an active community, as evidenced by
its ranking on the Tiobe index (TIOBE, 2024). Based
on the presented context, the motivation for modern-
izing software developed in Delphi for MSA appears
to be well-founded and compelling.

MSA. Microservice architecture is an architec-
tural style that facilitates the development of appli-
cations as a set of small, loosely coupled, and in-
dependent microservices (Lewis and Fowler, 2019).
Regarding the development and deployment activity,
such microservices may be written in different pro-
gramming languages and use different databases. Be-
cause of loose coupling, microservices can be in-
dependently deployed by fully automated processes
through the utilization of lightweight, container-based
platforms (Soldani et al., 2018). Richardson (2018)
suggests that a pattern language for microservices can
be used to support the development of a new system
or the modernization of an existing one. These pat-
terns represent solutions to common knowledge prob-
lems that overcome adversities related to, for exam-
ple, decomposition, transactions, communication via
messages, service discovery, among others.

Software Modernization. The monolith was one
of the earliest architectural approaches utilized in
the software industry because of its ease of develop-
ment and deployment and inherent benefits (e.g., sim-
plified code base management and direct scalability
within a single software unit). However, as mono-
lithic systems have grown in size, many adversities
have emerged, including low productivity, extended
delivery times, and the overall complexity of the code
bases (Soldani et al., 2018). These challenges have
impeded the ability to incorporate emerging technolo-
gies and potentially reduce development cycles and
releases. In this direction, Colanzi et al. (2021a) sug-
gests the modernization of legacy systems to MSA as
a feasible alternative to overcome such challenges.

As related work, to the best of our knowledge,
there is no process for the modernization of legacy
systems developed in Delphi to MSA. In order to en-
sure the originality of the process proposed in this

1https://openai.com

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

329



paper, a systematic mapping was conducted based
on guidelines established by Petersen et al. (2015).
After a systematic process of investigation, 43 stud-
ies were selected because they presented some evi-
dence related to software modernization (i.e., legacy
or monolithic) to MSA. Because of space and scope
limitations, the details of this mapping will not be pre-
sented in this paper. The detailed research protocol
and the list of primary studies that served as the basis
for the modernization process presented in this paper
are available in Fávero and Affonso (2024).

3 MICRO4DELPHI

This section presents Micro4Delphi, a process result-
ing from a collaborative endeavor involving software
engineering researchers and practitioners from two
companies that specialize in the development of soft-
ware systems in Delphi.

On the researchers’ side, a literature mapping
was conducted by Fávero and Affonso (2024) and the
findings provided concrete evidence regarding a set of
macro activities that are essential to a modernization
process, namely: planning, analysis, decomposition,
development, integration, and monitoring. Moreover,
such mapping also identified a sequence of steps that
can be followed to achieve the objectives of these ac-
tivities, generating the initial draft of the process.

On the practitioners’ side, a rigorous process
analysis was conducted to evaluate the relevance and
applicability of the outlined activities and steps (i.e.,
the initial version). Such analysis provided a set of ev-
idence that was used to improve the proposed process
(i.e., the second version). It is worth highlighting that
a presentation on software modernization and MSA
concepts was carried out before the aforementioned
analysis. The purpose of this presentation was to
establish a unified understanding of this background
among the practitioners engaged in this activity.

Based on the evidence provided by the practition-
ers specialized in Delphi, a meeting for conflict reso-
lution was conducted. The objective of this meeting
was to resolve discrepancies and uniform the consen-
sus between researchers and practitioners on the ac-
tivities and steps for the Micro4Delphi process. As a
result, a definitive version of the process was estab-
lished, as illustrated in Figure 1. Next, a description
of each activity and its respective steps is addressed.

As illustrated, the development team (i.e., domain
specialists and software architects) conducts the soft-
ware modernization of the legacy system to the MSA
through a cyclical and incremental approach. Ac-
cording to Pressman and Maxim (2019), iterative ap-

proaches have proven to be feasible in modernization,
enabling not only the translation of legacy systems
but also the incorporation of new requirements to ful-
fill updated user demands. Regarding the legacy sys-
tem, the proposed process was designed without con-
sideration of the existence of documentation artifacts.
Therefore, it is anticipated that researchers and prac-
titioners interested in utilizing the process will have
access solely to the source code repository of this sys-
tem, to transform it into an executable system (see
Legacy System).

Planning is an indispensable activity in any soft-
ware development project, including the moderniza-
tion of legacy systems to MSA. By planning mod-
ernization activities, organizations and development
teams increase the chances of success by anticipat-
ing potential adversities and ensuring that objectives
are achieved within the defined deadlines and re-
sources. In short, this activity involves the delineation
of the objectives, strategies, and resources necessary
to achieve the desired results. From the perspective
of the organization, the adoption of a development
support methodology and the use of infrastructure to
enable distributed application development have been
demonstrated to be effective approaches for conduct-
ing modernization practices (Auer et al., 2021; Li
et al., 2020). Next, the steps associated with the plan-
ning activity are described.

1.1.Scope definition. This step is essential for any
initiative that aims to support the modernization of
legacy systems to MSA, as it involves establishing a
precise definition of the scope and goals of the sys-
tems (i.e., legacy and modernized). To do so, this
step aims to establish a perimeter for the function-
alities/operations that must be migrated to microser-
vices, aligned with all requirements that must be met
for both legacy and modernized systems. Further-
more, this step must be conducted in a manner that
is aligned with the expectations of stakeholders and
focused on the successful delivery of the objectives of
the modernized system (Li et al., 2020).

1.2.Team structuring. This step proposes a reor-
ganization of the teams responsible for modernization
according to specific criteria, including size, multi-
disciplinary knowledge capacity, independence, au-
tonomy, and alignment with DevOps (Development
and Operations) practices. The delineation of respon-
sibilities, formation of a multidisciplinary team, es-
tablishment of leadership, promotion of collabora-
tion and communication, and fostering of continu-
ous learning can facilitate the organization of effec-
tive teams (Mazzara et al., 2021).

1.3.Organizational culture. This step is based on
the premise that modernization is an activity that goes

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

330



Micro4Delphi

1.1. Scope definition
1.2. Team structuring
1.3. Organizational culture
1.4. Training

2.1. Business model
2.2. Legacy system
2.3. Database
2.4. User interface
2.5. Technological structure 

3.1. Microservice candidates
3.2. Microservice ranking
3.3. Decomposition design
3.4. Data restructuring
3.5. API modeling
3.6. QA and metrics 
3.7. Documentation 

4.1. Data repository 
4.2. Test cases
4.3. Microservice development
4.4. Database migration
4.5. Version control
4.6. Monolith to microservices 

5.1. Service Mesh
5.2. CI/CD

5.3. Test

6.1. Dashboard
6.2. Issue alerts

6.3. Maintenance
6.4. Rollback

6.Monitoring

1.Planning

2.Analysis

3.Decomposition

4.Development

5.Integration

Development team

Legacy System

+

Modernized
System

Microservices

Legend:

Loop activity

Figure 1: The Micro4Delphi Process.

beyond the translation of a legacy system into MSA,
requiring a change in the organizational culture of
companies. Such changes require a shift in focus from
business capabilities to the continuous and valuable
delivery of software. A learning-oriented mindset, en-
couragement of experimentation, collaboration, open
communication, resilience, flexibility, and committed
leadership are some factors that can contribute to the
organizational culture of companies (Mazzara et al.,
2021; Colanzi et al., 2021b).

1.4.Training. This step has proven to be essential
for the planning activity in a modernization process.
In this direction, experience reports presented by Sol-
dani et al. (2018) suggested that an understanding of
the microservices architecture style and training in the
technology stack that will be utilized in the target sys-
tem are factors that can facilitate success in modern-
izing a legacy system to this architectural style.

Analysis is a crucial activity element in the mod-
ernization process, as it enables developers to ascer-
tain the availability of software artifacts from legacy
systems, including source code repositories, binary
systems, and documentation artifacts. As a result, it is
expected that enough information will be gathered to
facilitate the formulation of a decision-making pro-
cess that will determine the optimal point of initia-
tion for the decomposition process. This requires the
identification of the legacy system’s constituent com-
ponents and functionalities, an understanding of its
business domain boundaries, an analysis of the de-
pendencies between the aforementioned components,
and the establishment of a preliminary foundation for
the design and implementation of the MSA (Krause
et al., 2020; Ma et al., 2022b; Bandara and Perera,

2020). Next, a description of the steps associated with
the analysis is addressed.

2.1.Business model. This step suggests that the
development team should have a comprehensive un-
derstanding of the business operations and processes
implemented in the legacy system. As a result, this in-
vestigation provides valuable insights to development
teams on how IT systems can best support and lever-
age the organization’s business objectives and opera-
tions. To do so, developers must investigate how the
different parts of the legacy system support or affect
the organization’s business processes. This investiga-
tion enables the system boundaries and interactions to
be defined, which can then be redefined or optimized
in the new architecture (Dehghani et al., 2022).

2.2 to 2.4 (Legacy systems, database, and user
interface). To ensure a comprehensive understand-
ing of the legacy system, the development team must
conduct an architectural evaluation in this step, cov-
ering internal and external components, functionali-
ties, integrations, database, and user interface. Here,
the objective is to identify problematic points, such as
obsolete code, complex dependencies, performance
bottlenecks, and areas of low scalability. This analy-
sis facilitates the team’s understanding of moderniza-
tion challenges and risks, enabling the formulation of
a suitable strategy to ensure the modernized system
aligns with company requirements (Trabelsi et al.,
2022). As evidenced by Lewis and Fowler (2019),
a microservice can be defined as a self-contained ap-
plication that encompasses code for its functionality,
data storage, and user interface. Therefore, when
addressing limitations from the perspective of func-
tionality and database, it is imperative to consider

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

331



how users interact with the aforementioned function-
ality (Ma et al., 2022b). This involves gathering feed-
back on usability, user experience, visual design, and
other aspects related to interacting with the software.
Based on such insights, the development team can de-
sign and implement a modern, intuitive, and effective
user interface for the microservices, ensuring a posi-
tive experience for end users (Prasandy et al., 2020).

2.5.Technological structure. This step concerns
the definition of the software architecture and the
technologies that will be adopted for the microser-
vice implementation. This includes selecting the pro-
gramming languages, frameworks, platforms, and in-
frastructure services to support the new architectural
design. The technology structure should be chosen
based on the business requirements, the features of
the legacy system, the need for scalability, availabil-
ity, and security, and the development team’s capabil-
ities. Effective planning at this step can facilitate a
seamless transition to the MSA and the success of the
modernization project (Michael Ayas et al., 2021).

Decomposition is an activity that focuses on soft-
ware architecture, with special attention on the ex-
traction of microservice candidates from the legacy
system. According to Lewis and Fowler (2019), the
design of microservices must consider the organiza-
tional and business aspects that they offer to users.
The challenge of this activity is to determine the op-
timal size for the microservices, which should be di-
vided into smaller units with low coupling and high
cohesion. Once designed, each microservice should
be responsible for a delimited context, providing a
cohesive set of functionalities with a well-defined
scope to meet a specific business capability (Krause
et al., 2020). Although there are (semi)automated
techniques that facilitate the decomposition of sys-
tems into microservices, it is recommended that, ini-
tially, functionalities with low impact or risk be prior-
itized during a modernization process (Osman et al.,
2022). To do so, the development team must establish
a strategy for selecting candidate microservices that
will add greater value and have fewer external depen-
dencies. Next, the steps associated with the planning
activity are described.

3.1.Microservice candidates. During this step, a
rigorous analysis of legacy system functionalities is
essential to determine the viability of potential mi-
croservice candidates (Sellami et al., 2022). Among
the approaches existing in the literature that can sup-
port decomposition, the most frequently utilized are:
(i) decomposition by delimited context, which aims
to identify the areas of the system that have cohe-
sive and well-defined responsibilities, representing a
delimited business context; (ii) adequate granularity,

which aims to evaluate the size and complexity of the
functionalities of the legacy systems. Microservices
that are too small can result in excessive communi-
cation, while those that are too large can compro-
mise the scalability and maintainability of the mod-
ernized system; and (iii) loose coupling, which aims
to identify functionalities with few external depen-
dencies that can be isolated and maintained indepen-
dently. This approach helps to minimize coupling be-
tween microservices and facilitates the evolution and
maintenance of the modernized system.

3.2.Microservice ranking. In this step, candidate
microservices are ranked in order of importance, aim-
ing to promote continuous and valuable software in-
tegrity (Sellami et al., 2022). In this sense, the investi-
gation conducted by Fávero and Affonso (2024) sug-
gests the following guidelines: (i) the most critical or
essential use cases for the business; (ii) the microser-
vices that offer the greatest commercial value or that
address the most urgent customer needs; (iii) the mi-
croservices that are prerequisites for other microser-
vices or that have few external dependencies; and
(iv) the microservices that are simpler to implement
or that have lower technical risk. It is also notewor-
thy that scoring and classification strategies, such as
value versus effort analysis, have proven to be a fea-
sible alternative in other software domains and can be
easily adapted to the context of this paper.

3.3.Decomposition design. At this step, develop-
ers should focus on establishing the communication
interface for each microservice, respecting the sys-
tem’s business capabilities. In this sense, they should
also dedicate particular attention to the management
of dependencies between microservices, aiming to
minimize coupling and ensure independence. To do
so, it is recommended that architectural patterns and
good software engineering practices be used to de-
sign and implement microservices, such as contain-
ers, container orchestration, API Gateway, and Circuit
Breaker (Richardson, 2018). Moreover, robust test-
ing and validation strategies have also proven a fea-
sible alternative for the decomposition and design of
new microservices, thereby ensuring the quality and
integrity of these services (Trabelsi et al., 2022).

3.4.Data restructuring. Similarly to the previ-
ous step, the developers must restructure (i.e., de-
compose) the legacy system’s databases in this step
to make them compatible with the microservices that
will be developed. To do so, they should focus on
identifying the different types of data, relationships
between entities, and coupling of database entities.
This will facilitate the decomposition of the legacy
system’s data model into smaller, more specialized
schemas, which can then be tailored to meet the spe-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

332



cific requirements of each microservice. Moreover,
it is recommended that this activity be carried out in
parallel with the previous one (Parikh et al., 2022).

3.5.API modeling. In this step, developers should
focus their efforts on modeling the APIs, which repre-
sent the microservices contracts (Kyryk et al., 2022).
This step can be summarized as follows (Erl et al.,
2012): (i) identification of the resources or function-
alities (i.e., business entities) that will be exposed
by the microservices; (ii) definition of RESTful end-
points, ensuring that each resource is represented by a
unique URI (Uniform Resource Identifier) and acces-
sible through standard HTTP methods, such as GET,
POST, PUT, and DELETE; (iii) selection of appropri-
ate data formats to represent the API resources (e.g.,
JSON - JavaScript Object Notation); (iv) documen-
tation of the API contracts clearly and comprehen-
sively, specifying the input parameters, expected re-
sponses, and possible HTTP status codes; (v) version-
ing the API to ensure compatibility with future ver-
sions; (vi) security-oriented design so that authentica-
tion and authorization mechanisms are implemented
in such APIs so that the system resources and data
be protected; (vii) API documentation to facilitate
discovery and understanding of its functionality; and
(viii) testing (e.g., unit, integration, and acceptance)
to ensure the correct functioning of the APIs and their
compliance with the specified contracts.

3.6.QA and Metrics. At this step, it is crucial
to determine which quality attributes (QA) and met-
rics should be associated with the modernized sys-
tem (Trabelsi et al., 2022). According to Fávero and
Affonso (2024), QA and metrics are indispensable el-
ements of microservice-based systems, given the in-
trinsic nature of such systems. This investigation also
revealed that code reviews, software testing, and static
code analysis can assist in defect identification and
correction. In parallel, metrics can be used to ascer-
tain the efficacy of tests, the rate of defects identified,
the average time to rectify defects, code coverage,
and so forth. From the product’s perspective, met-
rics can be adopted to evaluate the modernized sys-
tem’s reliability, performance, usability, and response
time (Krause et al., 2020).

3.7.Documentation. Developers should focus
their efforts on preparing documentation for the sys-
tem that will be modernized in this step. In short,
essential documentation artifacts must be concise
and understandable, accurately reflecting the system’s
logical models, design, and architecture. To do so,
it is recommended that these artifacts meet the fol-
lowing criteria: documentation coverage, target au-
dience, and access format. The documentation must
be consistently reviewed and updated throughout this

step, as inconsistencies may compromise the modern-
ization process and necessitate exclusive use of the
source code for all development (Parikh et al., 2022).

Once the scope of the problem has been delin-
eated and a preliminary solution of the modernization
has been proposed, teams can proceed with the mi-
croservices development activity. As evidenced by
the findings of the investigation conducted by Fávero
and Affonso (2024), this activity can be carried out
in two approaches: (i) developing new code from
scratch, and (ii) extracting microservices from the
legacy source code. First, the legacy code is identi-
fied as having minimal value, and developers should
prioritize the preservation of the functionalities of the
legacy system by implementing a new source code.
Second, the legacy code is deemed valuable and can
be leveraged to extract and transform the functional-
ities of the legacy system into equivalent microser-
vices. Independent of the approach, it is also crucial
to consider the gradual migration strategy for this ac-
tivity, whereby the legacy system’s previous version
should be discontinued after the microservice imple-
mentation to prevent maintenance issues arising from
the coexistence of functionalities in two distinct lo-
cations (Prasandy et al., 2020; Michael Ayas et al.,
2021; Bandara and Perera, 2020).

4.1.Data repository. In this step, the company
must prepare the development infrastructure aligned
with the principles and practices of DevOps, en-
abling the independent and parallel development of
microservices by the development teams. Such struc-
ture facilitates continuous software delivery, thereby
ensuring the realization of the benefits associated with
microservices-based development from both an orga-
nizational and customer perspective (i.e., those inter-
ested in modernization) (Mazzara et al., 2021).

4.2.Test cases. In this step, the execution scenar-
ios must be delineated to evaluate whether the sys-
tem or its functionalities meet the established require-
ments. Planning tests have been a feasible alternative
in modernizing legacy systems, as it involves identify-
ing the input conditions, the steps to be followed, and
the expected results for each functionality. Therefore,
it can be said that test cases serve as a basis for verify-
ing whether the software meets the requirements and
behaves as expected (Prasandy et al., 2020).

4.3.Microservice development. In this step, the
microservices are developed following the design and
technological specifications, as well as the business
and technical requirements established in the previ-
ous steps (i.e., 2.1, 3.1 to 3.7). As a result, the ob-
jective is to integrate the microservices in a way that
ensures their collective functionality. During imple-
mentation, it is recommended that developers adhere

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

333



to best practices in software engineering, such as writ-
ing clean and modular code, to ensure the scalabil-
ity and resilience of the microservices. Moreover, it
is also suggested that tools be used to develop, man-
age versions of, and deploy the microservices. Once
the microservices have been developed, they are sub-
jected to a series of tests, debugging procedures, and
deployment in a production environment for use by
end users (Michael Ayas et al., 2021).

4.4.Database migration. In this step, the mi-
croservice databases must be created based on the un-
derstanding gathered in Steps 1.1, 2.1 to 2.4, and 3.4.
The database migration is a complex task, encom-
passing the transfer of both the data schema and the
data itself. According to Fávero and Affonso (2024),
this step must be carried out in parallel with the mi-
croservice development, since there is an intrinsic re-
lationship between the microservice functionality and
its data. Moreover, another relevant aspect to consider
for a successful database migration is the data migra-
tion between the old and the new schema to ensure
the integrity of information between the legacy and
modernized systems (Prasandy et al., 2020).

4.5.Version control. Version control is an essen-
tial practice in microservice-based development, as
it enables the tracking and management of changes
to both the source code and the system configuration
over time. Furthermore, version control enables the
rollback to previous versions in the event of compli-
cations and facilitates the deployment of new software
versions in a regulated and automated manner. In this
direction, it is also recommended that versioning for
the microservice contract be defined, as well as ver-
sion control of its source code. To do so, development
teams must create individual repositories for each mi-
croservice in this step (Freire et al., 2021).

4.6.Monolith to microservices. This step transi-
tions the system from its legacy version to a modern-
ized one. This transition should occur gradually as
the microservices develop, allowing both systems to
coexist (Bandara and Perera, 2020).

Integration is an activity that aims to combine
and synchronize the microservices developed to com-
pose the modernized system. During this activity,
the microservices are linked through APIs or other
communication channels, facilitating the transfer of
data and information essential for the system’s over-
all functionality. This activity may also entail the inte-
gration of the modernized system with other systems
or external components to address the novel system
requirements. Moreover, integration may involve the
configuration of continuous deployment pipelines and
process automation, to facilitate the distribution of
microservices in different environments, such as de-

velopment, testing, and production. Upon completion
of this activity, the integrated system is expected to
be prepared for deployment and made accessible for
utilization by end users (Parikh et al., 2022).

5.1.Service Mesh. In this step, microservices
are packaged into images and deployed into contain-
ers for insertion into the operational environment.
This activity also includes defining messaging, rout-
ing, load balancing, discovery services, among others.
The service mesh refers to the communication and in-
teraction between the various microservices that make
up a system, as well as the monitoring, diagnostics,
and maintenance mechanisms used to ensure their
health and performance (Parikh et al., 2022).

5.2.CI/CD. This step encompasses the following
activities: continuous integration (CI), continuous de-
livery (CD), and continuous deployment. CI requires
submitting code changes to be merged into the pri-
mary branch. Automated build and test processes
guarantee that the code in the main branch main-
tains production quality. Thus, teams can identify
problems related to compatibility or code conflicts,
mitigating the probability of introducing errors and
quality issues into the system. In CD, a production-
like environment automatically receives code changes
passing through the CI process. To ensure continuous
delivery in a microservice environment, it is impor-
tant to have a robust set of automation tools, com-
prehensive automated testing, and a culture of col-
laboration and effective communication between de-
velopment teams. Continuous deployment requires
that code modifications have undergone the preced-
ing two steps (i.e., CI/CD) and are prepared for auto-
mated deployment to the production environment. A
CI/CD process that is to be considered robust should
include the following features: (i) the creation and de-
ployment of microservices in an independent manner;
(ii) the deployment of said microservices in environ-
ments designated for development, testing, and qual-
ity assurance; (iii) the concurrent deployment of both
existing and new versions; and (iv) the packaging of
images in containers within the production environ-
ment (Dehghani et al., 2022; Parikh et al., 2022).

5.3.Test. This step represents the automation of
unit and integration tests for microservices. Unit tests
aim to verify the individual behavior of small parts of
the code, usually functions or methods, isolating them
from other system parts. These tests are automated to
be executed quickly and repeatedly whenever changes
exist in the code, ensuring that new features do not
break existing ones, and facilitating the early detec-
tion of bugs. Integration tests aim to verify the inter-
action between different system components, such as
modules, microservices, or external systems. These

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

334



tests automate the verification of the functionality and
compatibility of the system as a whole, ensuring that
the individual components operate correctly together.
By automating unit and integration tests, development
teams can proactively identify and correct problems,
reducing the time needed to validate code changes
and increasing the reliability and stability of the soft-
ware. To automate tests, it is recommended to use
specific testing tools, development frameworks, and
continuous integration practices, which facilitate the
automatic execution of tests in controlled environ-
ments and the generation of detailed reports on test
results (Parikh et al., 2022; Prasandy et al., 2020).

Monitoring is an essential activity in
microservice-based systems because of the dis-
tributed and complex nature of these systems.
Therefore, monitoring in microservices environments
involves collecting and analyzing performance-
related metrics, such as response time, error rate,
resource usage (e.g., CPU, memory, network), and
availability. Such metrics are collected at runtime and
can be visualized through dashboards and reports,
providing valuable insight into the system’s health
and helping to identify bottlenecks, failures, and
optimization opportunities. Furthermore, monitoring
activities can include the early detection and alert-
ing of anomalies and potential problems, thereby
enabling operations and development teams to take
corrective action expeditiously and minimize the
impact on end users. The implementation of a
monitoring system in microservice environments
necessitates the utilization of specialized tools and
platforms for the collection, storage, and analysis of
monitoring data, as well as observability practices
aimed at enhancing system comprehension and
diagnosis in the event of problems (Ma et al., 2022a).

6.1.Dashboard. This step involves implementing
dashboards to provide centralized, continuous feed-
back on metrics and microservice’s health (Freire
et al., 2021). To do so, a set of tools can be utilized
as dashboards and, simultaneously, facilitate the ob-
servability of the modernized system, collecting a set
of metrics, trace information, and log (Tozzi, 2022).
Metrics can be defined as a logical meter used to mea-
sure and record data over a specified period. Trace
information refers to data associated with the life cy-
cle of a single transactional object in a system, which
can be transaction specific or related to other aspects
of the system’s operation. Logs deal with discrete
events that occur while running a system, such as er-
ror messages, audit events, or request-specific meta-
data. Among the tools referenced in the literature,
Grafana2 has distinguished itself as a valuable re-

2https://grafana.com

source and an open-source solution.
6.2.Issue alerts. This step addresses the process-

ing of warning messages (or alerts) when the system
transitions to a critical or attention state. The alerts
may assist in the early detection and mitigation of
problems to prevent microservice disruption. Alert-
ing represents a key practice to microservice moni-
toring, as it enables immediate notification to opera-
tions and development teams of significant events or
issues that could impact system availability or perfor-
mance (Freire et al., 2021).

6.3.Maintenance. This step requires the collab-
oration of development teams to ensure the coordi-
nation and maintenance of preventive, corrective, and
improvement actions based on the data collected from
monitoring (i.e., dashboard). A development team
needs to be aware of the following maintenance activ-
ities: maintaining the latest software versions for mi-
croservices, monitoring and fixing bugs that affect mi-
croservice behavior or functionality, identifying and
resolving performance issues in microservices, as-
sessing and adjusting microservice capacity to han-
dle traffic spikes and increased demand, and finally,
maintaining constant monitoring to proactively iden-
tify problems and anomalies (Colanzi et al., 2021b).

6.4.Rollback. This step suggests that development
teams can rollback microservices (or system versions)
in case of failure. This enables the system to revert
to the legacy and stable environment, thus facilitating
the performance of effective maintenance. Therefore,
it can be said that enabling rollback is an important
practice during the microservice life cycle because
it provides a way to undo changes that have caused
problems or introduced regressions in the system. By
incorporating rollback strategies as a maintenance ap-
proach, teams can reduce the risk of system failures
and outages, and ensure a more reliable and consis-
tent user experience (Colanzi et al., 2021b).

4 CASE STUDY

This section presents a case study conducted to eval-
uate the applicability, strengths, and weaknesses of
Micro4Delphi. The subject of the empirical analysis
is a legacy system developed in Delphi that addresses
scholar evaluation, referenced from this point on for-
ward as Avance. Next, an overview of the subject
application and the empirical strategies adopted for
conducting this case study will be provided.

Subject Application. The Avance system was de-
veloped in Delphi 10.4 with a Firebird database ver-
sion 2.5. The system was organized in layers and
modules, with distinct layers separating the user in-

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

335



terface components (i.e., forms), the business logic
of the system (i.e., units), and the database connec-
tion (i.e., data module). In terms of size, this sys-
tem has 15 forms, six reports, 11 data modules, 10
database tables, and 19 components of connectivity
to the database, including data sources, tables, and
queries (see Figure 2 – Side A).

In terms of functionality, the Avance system en-
ables users (i.e. students and teachers) to register with
personal data so that they can authenticate and per-
form operations according to each profile. The system
was designed to distinguish between different classes
and the students enrolled in each one. In the teacher’s
profile, the system enables each one to prepare lessons
for each class based on the content that must be regis-
tered in the system. Moreover, teachers can also pre-
pare exercises for each lesson, which must be com-
pleted by the students during the class period. Re-
garding the student’s profile, the Avance system en-
ables each student to monitor the content they have
learned and the exercises they have completed, aim-
ing to facilitate the learning process. To do so, the
system enables the viewing of the number of correct
and incorrect answers in each exercise, as well as the
recommended solution for each exercise.

Empirical Strategy. Figure 2 shows the mod-
ernization of the Avance system to MSA, which was
based on the analysis of the system source code and its
database. The illustration on the left side (A) shows
the organization of the Avance system in three lay-
ers: user interface, business logic, and data access
layer. The illustration on the right side (B) shows the
microservices that emerged from the modernization
process, namely: MSClass, MsSchool, MsLesson,
and MsUser. Moreover, the illustration on side (B)
presents the organizational structure of the MsUser
microservice and the MSA elements in the bottom
part (i.e., Log, Config, and Catalog services).

In order to demonstrate the behavior of Mi-
cro4Delphi, only the tasks related to the transition
from the legacy system to the MsUser microservice
will be presented in this section due to space lim-
itations. Therefore, it can be stated that after the
planning activity (Step 1.1), the system was compre-
hended and a layered model was designed, as illus-
trated on the left side (A) of Figure 2. The remaining
steps of this activity were not carried out because of
the limitations in the size of the team responsible for
conducting this case study.

In the analysis activity, each of the prescribed
steps was visited. Initially, the analysis involved the
construction of an understanding regarding the legacy
system and its database, besides the business model
associated with such a system (Steps 2.1 to 2.3).

In this sense, some user-related functionalities were
identified, including, for instance, user authentication.
Additionally, database tables, such as User_Access
and User, were identified as potential sources of sup-
port for the MsUser microservice. Since the purpose
is to transform the legacy system into microservices,
it was decided that the user interface should be main-
tained and the native language of the system should
be preserved (Steps 2.3 and 2.4).

In the decomposition activity, the legacy code
must be analyzed to identify candidates for mi-
croservices (Step 3.1). As illustrated in Figure 2,
Side A, four microservices candidates were identi-
fied: MsClass, MsSchool, MsLesson, and MsUser.
Since the Avance source code has proven to be of
high value, it is recommended that the system be
refactored so that its source code and data schema
can be reused in the microservices development stage
(Steps 3.2 to 3.4). Next, the equivalent APIs are
modeled for the identified microservices, which focus
on defining how these microservices will communi-
cate with one another and/or components external to
the system (Step 3.5). Finally, the documentation of
these microservices via Swagger must be completed
(Step 3.7), as it aims to provide interested parties with
information on how to use them.

During the development phase, microservices
were implemented, as illustrated in Figure 2. As
illustrated, each microservice incorporates its own
database and necessitates a dedicated database con-
nection unit, as detailed in Listing 1. With microser-
vice decoupling from the user interface, the database
connection components were implemented on the
command line. In Line 3, the name of the database
connection is defined, which is then used by the
cnxDef connection component instantiated in Line 6.
Between Lines 10 and 12, the database connection pa-
rameters (i.e., user, password, and database) are
defined for each microservice. Finally, it is important
to note that the comments in Lines 2, 4, 8, 13, and
16 represent omitted code sections that do not require
configuration details.

From this point forward, only an overview of
the organization of the MsUser microservice is pro-
vided because of the space limitations of this paper.
The model package contains a class designated User
(Model.User.pas). The dao package contains the
DAO.User.pas class, the purpose of which is to deal
with data persistence. To do so, this class implements
the getUser method to query users and the postUser
method to include users in the database. The util
package contains a set of utility classes for the MsUser
microservice to function. A comprehensive examina-
tion of the classes in the aforementioned packages is

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

336



Database

Data access layer

Business logic

User

Lessons

Classes

Schools

User Interface

Data
Module

Unit (.pas)

Form

Avance System

DB

MsClass

DB

MsSchool

DB

MsLesson

DB

MsUser

Microservices

DB = Database
DM = Data Module

Legend
Ms = Microservice

(A) Legacy System Modernized System (B)

DM

util

model

dao

controller

connection

Log Config Catalog

Microservice
Architecture

Elements

Figure 2: Legacy System Modernization for MSA.

Listing 1: Connection unit.

1 unit udmUser;
2 //...
3 const CON_NAME = ’User_runtime’;
4 //...
5 procedure TdmFiredac.FDManagerBS(Sender:

↪→ TObject);
6 var cnxDef: IFDStanConnectionDef;
7 begin
8 //...
9 cnxDef.Name := CON_NAME;

10 cnxDef.Params.UserName := ’sysdba’;
11 cnxDef.Params.Password := ’masterkey’;
12 cnxDef.Params.Database :=

↪→ ’C:\Avance\User.fdb’;
13 //...
14 cnxDef.Apply;
15 end;
16 end.

outside the purpose of this paper.
The controller package contains the

Controller.User.pas class in the code frag-
ment shown in Listing 2. In short, the purpose of
this class is to facilitate interactions between the user
interface and the dao layer for data persistence. To
illustrate such interactions, this controller imple-
ments two procedures as GET (Line 17) and POST
(Line 26) methods. In both methods, it is possible
to observe the creation of the DAOUser object from
the dao layer in Lines 20 and 30, respectively.
In Lines 22 and 32, the calls to the getUser and
setUser methods of DAOUser are presented, both of
which have been previously described (dao package).

It should be highlighted that the MsUser microser-
vice development activity was concluded with the
documentation of the APIs via Swagger between
Lines 7 and 10 (Listing 2). Specifically, Line 7 de-
lineates the method that has been documented (i.e.,

Listing 2: Controller User.

1 unit Controller.User;
2 //...
3 type
4 //...
5 public
6 //...
7 [SwagPOST(’’, ’Post’, true)]
8 [SwagResponse(200, TModelUser,

↪→ ’Success’)]
9 [SwagResponse(400, TModelResponse,

↪→ ’Bad Request’)]
10 procedure post;
11 //...
12 constructor Create(Req: THorseRequest;

↪→ Res: THorseResponse);
13 end;
14
15 implementation
16
17 procedure TControllerUser.get;
18 //..
19 begin
20 DAOUser := TDAOUser.Create;
21 //...
22 FResponse.Status(200).Send<TJSONArray>

↪→ (DAOUser.getUser);
23 //...
24 end;
25
26 procedure TControllerUser.post;
27 //...
28 begin
29 User := getBody;
30 DAOUser := TDAOUser.Create;
31 //...
32 FResponse.Status(200).Send<TJSONObject>

↪→ (DAOUser.setUser(User));
33 //...
34 end;
35 end.

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

337



POST), with the response messages associated with the
respective codes (e.g., 200 and ‘Success’) detailed in
Lines 8 and 9. The documentation for the get method
follows a similar structure; however, it has been omit-
ted because of space limitations.

Therefore, it can be stated that, upon conclusion
of the development activity, Steps 4.1 to 4.5 were
executed in full in this case study, as the microser-
vice is now prepared for deployment in its execution
environment. Concerning the other activities of the
Micro4Delphi process, it should be noted that the in-
tegration and monitoring activities were partially
conducted. Of particular note are the development
of tests (Step 5.3) through the Swagger API and the
monitoring of microservices in the execution environ-
ment (Step 6.1). Although these activities are relevant
to the modernization process, they do not address the
transition from legacy systems to microservices and,
therefore, will not be detailed in this section.

5 CONCLUSIONS

This paper presented the Micro4Delphi, a process de-
signed to support the modernization of legacy systems
developed in Delphi to MSA. To do so, each activ-
ity has a set of steps targeted to the legacy system
and organization of development teams or company
structure. Given the scenario described, the principal
contributions of this paper are outlined as follows.

The process proposed in this paper may prove ad-
vantageous for the development and software engi-
neering areas. To the best of our knowledge, it rep-
resents the first initiative that can effectively support
the modernization of legacy systems to MSA (Fávero
and Affonso, 2024). This process has the potential to
serve as a theoretical framework that can contribute to
the formulation of new initiatives or improvements to
existing ones.

The case study presented in Section 4 provides an
overview of the modernization of legacy systems in
Delphi, emphasizing the organization of the modern-
ized system based on microservice organization. In
this sense, it is notable that this case study can serve as
a reference for others interested in transforming their
systems for the current computing scenario.

Regarding future work on Micro4Delphi, at least
three activities are planned: (i) the conduction of ad-
ditional case studies, which will enable a more com-
prehensive evaluation of this process across a range of
software domains, including web, mobile, and enter-
prise; (ii) the instantiation of Micro4Delphi for other
programming languages, which will facilitate an eval-
uation of its behavior when a new development envi-

ronment is used; and (iii) the use of this process in an
industrial setting, which will allow for an evaluation
of its behavior when applied in a larger, real-world
development and execution environment.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES).

REFERENCES

Almeida, N. R., Campos, G. N., Moraes, F. R., and Af-
fonso, F. J. (2024). Modernization of legacy systems
to microservice architecture: A tertiary study. In The
23rd International Conference on Enterprise Informa-
tion Systems., pages 1–12. INSTICC, SciTePress.

Auer, F., Lenarduzzi, V., Felderer, M., and Taibi, D. (2021).
From monolithic systems to microservices: An as-
sessment framework. Information and Software Tech-
nology, 137.

Bandara, C. and Perera, I. (2020). Transforming mono-
lithic systems to microservices - an analysis toolkit for
legacy code evaluation. In 20th International Confer-
ence on Advances in ICT for Emerging Regions, ICTer
2020 - Proceedings, page 95 – 100. Institute of Elec-
trical and Electronics Engineers Inc.

Colanzi, T., Amaral, A., Assunção, W., Zavadski, A.,
Tanno, D., Garcia, A., and Lucena, C. (2021a). Are we
speaking the industry language? The practice and lit-
erature of modernizing legacy systems with microser-
vices. In The 15th Brazilian Symposium on Software
Components, Architectures, and Reuse, pages 61–70,
New York, NY, USA. Association for Computing Ma-
chinery.

Colanzi, T., Amaral, A., Assunção, W., Zavadski, A.,
Tanno, D., Garcia, A., and Lucena, C. (2021b). Are
we speaking the industry language? the practice and
literature of modernizing legacy systems with mi-
croservices. In ACM International Conference Pro-
ceeding Series, page 61 – 70. Association for Com-
puting Machinery.

Dehghani, M., Kolahdouz-Rahimi, S., Tisi, M., and Tamza-
lit, D. (2022). Facilitating the migration to the mi-
croservice architecture via model-driven reverse en-
gineering and reinforcement learning. Software and
Systems Modeling, 21(3):1115 – 1133.

Dragoni, Nicola, Giallorenzo, S., and Lafuente, A. L.
(2017). Present and ulterior software engineering.
In Microservices: Yesterday, Today, and Tomorrow.,
pages 195–216. Springer.

Embarcadero (2024). Native apps for any device from one
codebase with delphi! on-line. Avaliable in: https://
www.embarcadero.com/products/delphi, accessed on
March 20, 2025.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

338



Erl, T., Balasubramanian, R., Pautasso, C., Wilhelmsen, H.,
Carlyle, B., and Booth, D. R. (2012). SOA with REST.
Prentice Hall, Philadelphia, PA.

Freire, A. F. A. A., Sampaio, A. F., Carvalho, L. H. L.,
Medeiros, O., and Mendonça, N. C. (2021). Migrating
production monolithic systems to microservices using
aspect oriented programming. Software - Practice and
Experience, 51(6):1280 – 1307.

Fávero, L. F. and Affonso, F. J. (2024). A systematic
mapping study of legacy system modernization
to msa. on-line. https://drive.google.com/file/d/
1-sKo1mU54Q6QQY1l7slfuyxx0PwtxdmA/view?
usp=sharing, acessed on March 20, 2025.

Krause, A., Zirkelbach, C., Hasselbring, W., Lenga, S., and
Kroger, D. (2020). Microservice decomposition via
static and dynamic analysis of the monolith. In The
IEEE International Conference on Software Architec-
ture Companion, ICSA-C 2020, page 9 – 16. Institute
of Electrical and Electronics Engineers Inc.

Kyryk, M., Tymchenko, O., Pleskanka, N., and Pleskanka,
M. (2022). Methods and process of service migra-
tion from monolithic architecture to microservices. In
16th International Conference on Advanced Trends in
Radioelectronics, Telecommunications and Computer
Engineering, TCSET 2022, page 553 – 558. Institute
of Electrical and Electronics Engineers Inc.

Lewis, J. and Fowler, M. (2019). Microservices guide.
on-line. Avaliable in: https://martinfowler.com/
microservices, accessed on March 20, 2025.

Li, C.-Y., Ma, S.-P., and Lu, T.-W. (2020). Microservice
migration using strangler fig pattern: A case study on
the green button system. In Proceedings - 2020 Inter-
national Computer Symposium, ICS 2020, page 519 –
524. Institute of Electrical and Electronics Engineers
Inc.

Ma, S.-P., Li, C.-Y., Lee, W.-T., and Lee, S.-J. (2022a).
Microservice migration using strangler fig pattern and
domain-driven design. Journal of Information Science
and Engineering, 38(6):1285 – 1303.

Ma, S.-P., Lu, T.-W., and Li, C.-C. (2022b). Migrat-
ing monoliths to microservices based on the analy-
sis of database access requests. In IEEE International
Conference on Service-Oriented System Engineering,
SOSE 2022, page 11 – 18. Institute of Electrical and
Electronics Engineers Inc.

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A.,
Larsen, S. T., and Dustdar, S. (2021). Microservices:
Migration of a mission critical system. IEEE Trans-
actions on Services Computing, 14(5):1464 – 1477.

Michael Ayas, H., Leitner, P., and Hebig, R. (2021). The mi-
gration journey towards microservices. Lecture Notes
in Computer Science, 13126 LNCS:20 – 35.

Newman, S. (2021). Building microservices. O’Reilly Me-
dia, Sebastopol, CA, 2 edition.

Osman, M. H., Saadbouh, C., Sharif, K. Y., Admodisastro,
N., and Basri, M. H. (2022). From monolith to mi-
croservices: A semi-automated approach for legacy
to modern architecture transition using static analysis.
International Journal of Advanced Computer Science
and Applications, 13(10):907 – 916.

Parikh, A., Kumar, P., Gandhi, P., and Sisodia, J. (2022).
Monolithic to microservices architecture - a frame-
work for design and implementation. In Interna-
tional Conference on Computer, Power and Commu-
nications, ICCPC 2022 - Proceedings, page 90 – 96.
Institute of Electrical and Electronics Engineers Inc.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Information
and Software Technology, 64:1–18.

Prasandy, T., Titan, Murad, D. F., and Darwis, T. (2020).
Migrating application from monolith to microser-
vices. In Proceedings of 2020 International Con-
ference on Information Management and Technology,
ICIMTech 2020, page 726 – 731. Institute of Electrical
and Electronics Engineers Inc.

Pressman, R. and Maxim, B. (2019). Software Engineering:
A Practitioner’s Approach. McGraw-Hill Education.
9th Edition.

Richardson, C. (2018). Microservices patterns. Manning
Publications Company.

Sellami, K., Ouni, A., Saied, M. A., Bouktif, S., and
Mkaouer, M. W. (2022). Improving microservices ex-
traction using evolutionary search. Information and
Software Technology, 151.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215–232.

TIOBE (2024). Tiobe index for november 2024. on-line.
Avaliable in: https://www.tiobe.com/tiobe-index, ac-
cessed on March 20, 2025.

Tozzi, C. (2022). The 3 pillars of observabil-
ity: Logs, metrics and traces. Available:
https://www.techtarget.com/searchitoperations/tip/
The-3-pillars-of-observability-Logs-metrics-and-
traces, Accessed on March 20, 2025.

Trabelsi, I., Abdellatif, M., Abubaker, A., Moha, N.,
Mosser, S., Ebrahimi-Kahou, S., and Guéhéneuc, Y.-
G. (2022). From legacy to microservices: A type-
based approach for microservices identification using
machine learning and semantic analysis. Journal of
Software: Evolution and Process.

Micro4Delphi: A Process for the Modernization of Legacy Systems in Delphi to Microservice Architecture

339


