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Abstract: Addressing climate change requires timely and accurate biomass and carbon stocks information. Traditional 
biomass estimation techniques rely on infrequent ground surveys and manual processing, limiting their 
scalability. This study proposes a novel framework that advances land cover classification to estimate biomass 
and carbon stocks using machine learning algorithms in Google Earth Engine. By integrating remote sensing 
data, machine learning algorithms, and allometric models, the framework automates above-ground biomass 
(ABG) and below-ground biomass (BGB) calculations, facilitating large-scale carbon stock assessments. The 
methodology leverages Landsat imagery, alongside derived Normalized Difference Vegetation Indices, to 
classify seven land cover types and estimate biomass. Equations are applied to derive AGB, with BGB 
calculated as a fraction of AGB. Carbon stock is estimated using a standard conversion factor of 0.47. Real-
time processing capabilities of GEE ensure continuous monitoring and updates, enhancing accuracy and 
scalability. Findings demonstrate the potential for real-time biomass mapping and the identification of carbon-
dense regions. The proposed approach is vital for sustainable land practices, carbon accounting, and forest 
conservation initiatives, to provide policymakers with accurate, real-time data, that supports climate 
mitigation efforts and contribute to realizing the Sustainable Development Goals 13 and 15. 

1 INTRODUCTION 

Forests and other vegetated landscapes are natural 
carbon sinks, playing a key role in mitigating climate 
change effects (Ma et al., 2022). Biomass, the total 
mass of living plant material, serves as a critical 
indicator of ecosystem health, carbon sequestration 
and energy potential (Makepa & Chihobo, 2024). 
Real-time biomass and carbon stock assessments are 
essential for meeting local commitments such as 
Nationally Determined Contributions (NDC) and 
international climate agreements, such as REDD+ 
(Reducing Emissions from Deforestation and Forest 
Degradation), which aim to incentivize sustainable 
forest management practices (Nakakaawa et al., 
2011). Such real-time data empowers local authorities 
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and conservation organizations to respond effectively 
to deforestation, and other environmental threats, 
contributing to the attainment of United Nations’ 
Sustainable Development Goals 13 (climate action) 
and 15 (better life on land). 

However, traditional methods of biomass and 
carbon stock estimation such as ground survey and 
manual image interpretation are time-consuming, 
expensive, and mostly constrained to small-scale 
applications (Paneque-Gálvez et al., 2014). 

Recent developments in remote sensing 
technologies have enabled large-areal assessments of 
biomass and carbon stocks (Flores Lanza et al., 2024). 
Satellite imagery from programs such as Landsat, 
Sentinel, and MODIS provides the required localized 
data for monitoring land cover and vegetation 

Abudu, D., Bastin, L., Chong, K. and Röder, M.
Advancing Real-Time Land Cover Classification for Biomass Density and Carbon Stocks Estimation in Google Earth Engine.
DOI: 10.5220/0013434200003935
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2025), pages 203-210
ISBN: 978-989-758-741-2; ISSN: 2184-500X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

203



dynamics. However, data processing limitations, 
inconsistent temporal updates, and complex 
modelling requirements hinder the scalability and 
real-time applicability of biomass and carbon 
monitoring systems. This is particularly pronounced 
in low-income countries, where technical and 
financial constraints limit the uptake of high-
computational geospatial modelling (Kilama Luwa et 
al., 2020).  

Google Earth Engine (GEE) provides a 
sustainable solution to these challenges. GEE is a 
cloud-based geospatial analysis platform that 
facilitates ingesting and processing satellite data in 
real-time (Gorelick et al., 2017). GEE’s potential for 
continuous land cover monitoring is demonstrated by 
its ability to ingest large archives of remote sensing 
data, integrated with advanced classification 
algorithms, can be scaled to biomass and carbon 
stocks estimation at flexible scales. 

This study proposes a framework for leveraging 
GEE to perform real-time land cover classification 
and forest biomass density estimation, with the goal 
of enhancing carbon stock assessments and informing 
climate mitigation policies. The proposed framework 
focuses on automating the classification of seven land 
cover classes, and the calculation of Above-Ground 
Biomass (AGB) and Below-Ground Biomass (BGB) 
for the forest land cover class. By applying allometric 
models and vegetation indices, the framework 
enables accurate mapping of forest biomass 
distribution across the landscape. Carbon stock is 
estimated by converting biomass values using 
established carbon fractions, providing insights into 
the role of forest land cover in carbon sequestration. 

The study’s contributions include (1) a framework 
for real-time biomass and carbon stocks estimation, 
(2) custom JavaScript code for real-time pre-
processing of Landsat, Sentinel-2 A/B and Sentinel-1 
SAR imagery in GEE, and (3) custom Python code 
for estimating forest biomass and carbon stocks for 
climate planning. 

2 METHODOLOGIES 

2.1 Study Area and Datasets 

The developed land cover classification, biomass 
density, and carbon stock estimation framework was 
tested in Uganda, an East African country (Figure 1). 
Uganda experiences high rates of deforestation and 
forest degradation. However, the country holds 
significant potential for sustainable forest landscape 
restoration due to relatively low restoration costs and 

large socio-economic benefits compared to other 
countries (Brancalion et al., 2019). Several forest 
restoration hotspots have been identified (Figure 1). 

 
Figure 1: Map of the study area. 

Uganda’s diverse environmental and socio-economic 
conditions, driven by varying levels of forest 
degradation, restoration potential, and exposure to 
climate change impacts, presented an ideal setting to 
validate and refine our proposed framework. 

A summary of the datasets used to achieve the 
study objectives is provided in Table 1. These 
datasets have been imported, pre-processed, and 
analyzed within the Google Earth Engine (GEE) 
environment to ensure efficient and scalable data 
handling. 

Table 1: Data and data sources used in the study. 

Data Scale Date Purpose Source
Landsat 7 

ETM+, 
Landsat 8 
OLI/TIRS

30 m 
2000 

- 
2020 

Land cover, 
Biomass, 
Carbon 
stocks 

USGS 
ingested 
in GEE 

Sentinel 
2A/B 10 m 

2019 
- 

2020

Land cover, 
Biomass, 
Carbon 

ESA 
ingested 
in GEE

Sentinel 
1C 10 m 

2019 
- 

2020

Land cover 
classification 

ESA 
ingested 
in GEE

Biomass 
data 30 m 2000, 

2005 

Validation / 
ground 
truthing 

Uganda’s 
Forest 

Authority

2.2 Development of Land Cover 
Classification Framework 

Figure 2 illustrates the real-time land cover 
classification framework developed in GEE. The 
framework is applicable to satellite imagery with 
scalable temporal resolutions, such as the 16- and 10-
day repeat cycles of Landsat 8/9 and Sentinel-2 A/B 
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respectively. This allows for the selection and 
matching of imagery that aligns with specific 
temporal requirements, ensuring consistency and 
accuracy in land cover assessments. 

2.2.1 Pre-Processing the Satellite Imagery 

Pre-processing of satellite imagery followed the 
developed GEE JavaScript code (Abudu et al., 2024). 
to automatically select Blue, Green, Red and Near-
infrared (RGBN) optical bands from available 
Landsat 7 ETM+, Landsat 8 OLI/TIRS, Landsat 9 
archives and Sentinel 2A/B. The script calculates the 
Normalized Difference Vegetation Index (NDVI) 
using Equation 1 and applies GEE’s quality mosaic 
algorithm (Gorelick et al., 2017) for each study 
period. This process ensures that the final mosaic 
imagery comprises pixels with the highest NDVI 
values. The ratioing approach, effectively reducing 
the impact of cloud cover and mixed-pixel effects, 
which are common in tropical regions. By prioritizing 
pixels associated with high biomass (high NDVI 
values), the approach enhances the accuracy of land 
cover classification. 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝑒𝑑)(𝑁𝐼𝑅 ൅ 𝑅𝑒𝑑) (1)

Given that forest biophysical properties change 
gradually, we pre-processed optical imagery into 
annual composites. To align with Uganda’s National 
Biomass Survey (NBS) periods (NFI, 2016), imagery 
for 2000, 2005, 2015, and 2020 were selected. The 
2015 NBS period, being the most recent, served as the 

validation reference for biomass and carbon stock 
estimation, as detailed in Section 2.3. 

To maintain spatial and geometric consistency 
during analysis, all datasets were reprojected to a 
spatial resolution of 30 meters (matching Landsat’s 
resolution) and transformed to the WGS84-UTM 
Zone 36N projection, localized for the study area.  

2.2.2 Land Cover Classification 

We prioritized Landsat imagery for both land cover 
classification and estimation of biomass and carbon 
stocks due to rich temporal archives. Additionally, the 
focus on forest biomass estimation detailed in Section 
2.3 meant that the 30-meter spatial resolution of 
Landsat imagery was sufficient for forest areal 
extents. Land cover classification was performed 
using a supervised Random Forest (RF) algorithm. 
Previous studies have explored different 
classification techniques, including Maximum 
Likelihood Classification (Abudu et al., 2019), 
Support Vector Machines (Opedes et al., 2022), and 
RF-based methods (Coker et al., 2021). RF 
demonstrated superior performance over other pixel-
based methods in Uganda. 

The choice of RF was influenced by its proven 
advantages, such as the ability to handle high-
dimensional datasets and resilience to noise and 
outliers, owing to its ensemble approach of multiple 
decision trees (Coker et al., 2021). These attributes 
are particularly valuable for accurate characterization 
of Uganda’s complex and heterogeneous landscapes. 

The RF model was configured with 50 decision 
trees (n=50) and trained on 70% of the dataset, while 

 
Figure 2: Land cover classification framework. 
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the remaining 30% reserved for validation. 
Classification targeted seven land cover classes, 
informed by local expertise, and previous study 
(Opedes et al., 2022). Table 2 summarizes the land 
cover classes. To work within GEE’s memory limits, 
we utilized GEE Python API to develop custom code 
for land cover classification and estimation of 
biomass density and carbon stocks (Abudu et al., 
2024). 

Table 2: Land cover classification classes. 

Class 
No. 

Class name Description 

1 Forests Natural and artificial tree 
covers, and woodlands. 

2 Bushlands Closed, open or very open 
shrubs 

3 Grasslands Graminoids and herbaceous 
areas for grazing, sports,etc 

4 Agriculture Small- and large-scale 
farmlands 

5 Wetlands Wet graminoids and 
herbaceous areas 

6 Built up Buildings, weathered roads, 
human settlements, and 
other artificial surfaces. 

7 Open 
water 

Standing and flowing water 
and water dams 

2.2.3 Accuracy Assessment of the Land 
Cover Classification 

The accuracy of the classification was assessed in two 
stages. The first stage involved testing the trained RF 
model on the reserved 30% of unseen data. In the 
second stage, accuracy was assessed on the final 
classified image. For this assessment, 300 random 
pixels were stratified by each land cover class, 
resulting in a total of 2,100 sampled pixels per year.  

A confusion matrix; an accuracy assessment 
method previously utilized in this study area (Abudu 
et al., 2019; Kuule et al., 2022), was developed to 
summarize the counts of correct and incorrect 
predictions for each of the seven land cover classes 
(Table A1 in Appendix). Computed accuracy metrics 
included the Overall Accuracy (OA) which measures 
the proportion of correctly classified pixels across all 
classes, User Accuracy (UA) which is a classification 
precision indicator per class from user’s perspective, 
Producer’s Accuracy (PA) which is the model’s recall 
classification and the Kappa Coefficient (K); a 
statistic measure with values toward one representing 
stronger agreement between predicted and true labels 

while accounting for chance agreement with values 
between zero and one. 

Although, stratified sampling approach is a robust 
method, in practice biases still arise. In our case, 
while sampling 300 points per land cover class 
(N=300), we assumed equal distribution across all 
classes (𝑛=7). However, within class distributions 
may vary, resulting into stratum variances (𝑆௉஺௏   and 𝑆௎஺௏ ). We applied Card’s correction (Card, 1982), 
following the steps outlined in Olofsson et al., (2013), 
to check and correct any stratum variances, and 
correct the producer’s  (𝑃𝐴௡ ) and user’s  (𝑈𝐴௡ ) 
accuracies per class and overall accuracy (𝑂𝐴௖). The 
classified LULC sample size (𝑁௡)varies per class.  
Equations 2, 3 and 4 were applied on results of the 
confusion matrix to correct PA, UA and OA. 

𝑆௉஺௏ = ෍ ቆ(1 − 𝑃𝐴௡) ∗ 𝑃𝐴௡𝑁 ቇ௡ୀ଻
௡ୀଵ  (2)

𝑆௎஺௏ = ෍ ቆ(1 − 𝑈𝐴௡) ∗ 𝑈𝐴௡𝑁௡ ቇ௡ୀ଻
௡ୀଵ  (3)

𝑂𝐴௖ = 𝑂𝐴 − ൬ௌುಲೇ ା ௌೆಲೇଶ∗௡ ൰  (4)

2.3 Biomass Density and Carbon Stock 
Estimation 

We formulated a workflow for biomass density 
calculation in tons per hectare (t/ha). Biomass density 
is directly correlated with carbon stock, making it a 
critical parameter for estimating carbon reserves and 
evaluating the role of vegetation in sequestering 
atmospheric carbon and informing climate change 
mitigation strategies (UNFCCC, 2015).  

Egeru et al., (2014) affirms that Normalized 
Difference Vegetation Index (NDVI) is an effective 
indicator of vegetation and biomass presence in 
north-eastern Uganda. NDVI values near +1 reflect 
dense vegetation, while values approaching zero 
indicating sparse or absent cover. The strong 
correlation between NDVI and biomass highlights its 
value for monitoring vegetation health and coverage. 

We calculated NDVI from optical Landsat 
imagery using Equation 1. To establish the 
relationship between biomass and vegetation indices, 
we utilized classified forest land cover data, with 
field-measured biomass serving as the dependent 
variable and vegetation indices as independent 
variables. We applied linear regression models to 
determine the empirical constants (a and b) in 
Equation 5, using existing biomass data of 2000 and 
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2005, and calculated the above-ground biomass 
(AGB) from NDVI. Equation 6 was applied 
determine the below-ground biomass (BGB) as a 
fraction of the AGB according to the root-to-shoot 
ratio (r) for each land cover class. In Uganda, the 
default Intergovernmental Panel on Climate Change 
(IPCC) root-to-shoot ratio of 0.24 is commonly 
applied for such conversions (MWE-IPCC, 2014), 
which was adopted by study. Biomass density was 
calculated per hectare by reprojecting the Landsat’s 
30m pixel size to 100m and then calculating biomass 
per 100 x 100F m2 pixel area. 

Carbon stock in Uganda’s forests is determined to 
be 47% of the total biomass stocks (NFA, 2009). 
Consequently, we focused on forest land cover for 
estimating biomass and carbon stocks. However, in 
cases where biomass conversion factors for other land 
covers exist, the model can be tested for other land 
cover types. Equations 7 and 8 were used to calculate 
the total forest biomass and carbon stocks 
respectively. 𝐴𝐺𝐵 =  𝑎 𝑥 𝑒௕ ௫ ே஽௏ூ (5)𝐵𝐺𝐵 = 𝑟 𝑥 𝐴𝐺𝐵 (6)𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝐴𝐺𝐵 ൅ 𝐵𝐺𝐵 (7)𝐶𝑎𝑟𝑏𝑜𝑛 𝑆𝑡𝑜𝑐𝑘𝑠 = 0.47 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (8)

3 RESULTS AND DISCUSSIONS 

3.1 Characterization of Land Cover 
Changes in Uganda 

Classification achieved an overall accuracy of 89% 
(Table A1 in Appendix). Over the past decade, 
agriculture had the largest expanded from 51% to 
60% while open water remained stable at 11% of the 
total land area. In contrast, forests have experienced 
the worst instability, declining by over 3% (3.1 – 2.4 
million hectares) respectively, as they are converted 
to agricultural land and grasslands. 

Figure 3 highlights the scale of deforestation in 
Uganda, with the northern and eastern regions most 
affected. Deforestation also intensified in the western 
and central regions from 2015 onwards, where forest 
losses were previously minimal. 

 
Figure 3: Uganda’s Land use land cover (LULC) changes. 

3.1.1 Temporal Transition of Land Cover 
Classes 

Using Markov Chain transition matrix calculations 
(Abudu et al., 2019; Kuule et al., 2022), we analyzed 
the shifts between various land cover classes to 
understand the dynamics and extent of land cover 
changes over the study period. The results, illustrated 
in Figures 4 and 5, reveal significant patterns of 
change, with key transitions highlighting the 
widespread conversion of forest land into grasslands 
and agricultural areas. These transitions suggest 
increasing pressure from human activities such as 
agricultural expansion, settlement growth, and 
resource extraction, which are driving the reduction 
of natural vegetation cover. Notably, bushlands and 
forests are the most affected by land cover changes, 
experiencing significant losses with transition rates of 
approximately 80% and 75%, respectively, as they 
are increasingly converted to other land cover classes.  

 
Figure 4: Markov transition matrix of land cover classes. 
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Figure 5: Land cover transitions from 2000 to 2020. 

From Figure 5, forests primarily transition to 
agriculture, bushlands and grasslands. In Uganda, 
bushlands often represent secondary recovery stages 
of previously deforested areas. The transition patterns 
suggest that as forests are cleared, the land typically 
shifts to agricultural use or remains within the forest-
bushland cycle. Agricultural expansion is the primary 
driver of deforestation in Uganda as initially cleared 
bushlands becomes grassland and is later cultivated 
for farming. 

3.2 Biomass Density and Carbon Stock in 
Uganda 

Biomass density is a strong indicator for carbon 
stocks potential and is also a key indicator of energy 
potential of an area because biomass is a primary 
resource for renewable energy. Since the energy 
potential is directly proportional to the biomass 
quantity and its calorific value (Barasa et al., 2022), 
areas with higher biomass densities represent more 
energy potential per unit area. 

Figure 6 shows the baseline biomass density in the 
year 2000, and Figure 7 shows the results modelling 
biomass density from 2000 – 2040. We present a 
normalized data to show the trend of biomass density 
and carbon stocks, to inform future modelling, 
management, and policy decisions. In the trend 
analysis, biomass and carbon stocks are directly 
proportional following similar trends. To add context, 

we plotted the energy demand based on data from 
Ritchie et al., (2022) indicating a strong inverse 
relationship and suggesting Uganda’s biomass loss is 
greatly influenced by the country’s energy demand.   

Uganda’s biomass density is concentrated around 
the western and eastern hilly plains with highest 
biomass densities of 343 t/ha with most areas in the 
northern parts exhibiting the lowest densities. Other 
parts of the country exhibit low biomass density and 
consequently low carbon stocks (Figure 6). 

 
Figure 6: Biomass density in tons per hectare (t/ha) for 
2000. 
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Figure 7 presents the projected trends in Uganda’s 
biomass, carbon stocks, and energy landscape, 
reflecting the country's Vision 2040. The results show 
that Uganda’s goal of reducing greenhouse gas 
emissions by 24.7% below the current 148.80 Mt 
CO2e by 2030 (MWE, 2022) can only be feasible 
under targeted interventions. However, under a 
business-as-usual scenario, reducing carbon 
emissions and attaining sustainable biomass for 
energy consumption remains unattainable. 

 
Figure 7: Projecting Uganda’s carbon, energy, and biomass 
from 2000 - 2040. 

4 CONCLUSIONS 

Uganda’s key forest and climate policy challenges are 
weak institutional capacity, limited coordination and 
insufficient financing (Renner, 2020). These 
challenges are exacerbated by a lack of up-to-date 
monitoring information and limited data-centric 
decision-making routines. Our results (data and 
analyses) are vital for policymakers to prioritize 
conservation efforts and design strategies that 
enhance carbon sequestration. Results such as trend 
analysis in Figure 7 indicate the need for urgent 
change from business-as-usual scenario to abate the 
dwindling biomass and carbon stocks in the future 
and meet the increasing energy demands. The results 
also underscore the significance of protecting diverse 
land cover classes as part of Uganda’s strategy to 
meet climate goals, enhance biodiversity, and 
promote sustainable development. 

This geospatial modelling approach offers a cost-
effective and scalable method for carbon stocks 
assessment, particularly in low-resource settings. 
Future work will refine the model’s accuracy, 
addressing uncertainties around biomass density and 
carbon stock estimation and improving confidence 
levels. This will be achieved through improved 
ground-truthing, model fit and confidence interval 

analyses and exploring its adaptability to related 
areas, such as energy demand forecasting.  
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APPENDIX 

Table 3: Confusion matrix for accuracy assessment of land cover classification. 
 Reference data 

C
la

ss
ifi

ed
 la

nd
 co

ve
r 

M
ap

 

Class Number 1 2 3 4 5 6 7 Total User 
accuracy 

Commiss
ion Error 

Variance 
(Card's)

1 262 10 14 20 5 1 0 312 0.8397 0.1603 0.0004
2 16 265 10 6 5 3 2 307 0.8632 0.1368 0.0004
3 6 8 261 23 8 2 4 312 0.8365 0.1635 0.0004
4 9 5 4 238 6 4 2 268 0.8881 0.1119 0.0004
5 2 4 5 4 267 4 4 290 0.9207 0.0793 0.0003
6 3 6 2 4 5 286 0 306 0.9346 0.0654 0.0002
7 2 2 4 5 4 0 288 305 0.9443 0.0557 0.0002
Total 300 300 300 300 300 300 300 1867    
Producer accuracy 0.8733 0.8833 0.8700 0.7933 0.8900 0.9533 0.9600 Overall accuracy (standard): 88.90476 Omission Error 0.1267 0.1167 0.1300 0.2067 0.1100 0.0467 0.0400

Variance strata (Card's) 0.0004 0.0003 0.0004 0.0005 0.0003 0.0001 0.0001 Overall accuracy (Card 
corrected): 88.90444 

Row x Column totals 93600 92100 93600 80400 87000 91800 91500 Kappa coefficient (K): 0.87
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