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Abstract: This paper proposes methods of making AI-Generated Text Detectors more computationally efficient 
without paying a high price in prediction accuracy. Most AI-Detectors use transformer-based architectures 
with high-dimensional text embedding vectors involved in the pipelines. Applying dimension reduction 
algorithms to these vectors is a simple idea for making the whole process more efficient. Our experimental 
results reveal that this may lead from 5 up to 500 times improvements in the training and inference times, 
with only marginal performance degradation. These findings suggest that integrating such methods in large-
scale systems could be an excellent way to enhance the processing speed (and also reduce the electric 
energy consumption). In particular, real-time applications might benefit from such enhancements. 

1 INTRODUCTION 

In parallel with the recent advances in artificial 
intelligence, texts generated by computers have 
become increasingly indistinguishable from human 
writing (see Casal & Kessler, 2023; Jakesch et al., 
2023). Even AI-generated reviews are challenging to 
distinguish (Ignat et al., 2024). Large Language 
Models (LLM’s) can write extremely coherent (and 
sometimes relevant) texts, and that, to some, might 
signal serious future problems (Bender et al., 2021).  

While AI-generated texts have many uses in 
fields such as marketing (generating content, 
thumbnails, video edits, and so on), or customer 
service, as with anything, LLM’s are a double-edged 
sword – potential misuses of such tools include the 
possibility of impersonation, public opinion 
manipulation, and disinformation in general.  

Therefore, it's becoming more and more 
important to be able to recognize AI-generated text 
in order to preserve confidence in digital information 
and communication. Robust and efficient detection 
systems are essential for ensuring this. 

Methods for detecting AI-generated texts have 
been proposed by several authors as can be seen in 
Section 2 of this paper. All these techniques are 
computationally very expensive since the models 

take a long time to train and the sizes of the datasets 
can grow out of control. This may result in 
significant costs for the hardware, for the electric 
energy used and might even impact the environment. 
There is interest for making such computations more 
efficient (Patel et al., 2024).  

By adding dimension reduction algorithms to the 
AI-detection pipelines we may improve training and 
inference times and at the same time significantly 
lower the computational costs. While high-
dimensional text embeddings capture nuanced 
semantic features, the dimensionality reduction 
algorithms maintain the essential features with 
minimal information loss, while at the same time 
making models smaller, faster, and more efficient.  

Therefore, the contributions in this paper are the 
following: 
 We have prepared a new dataset, which may 

be useful also for other experiments;     
 We are studying how dimensionality reduction 

techniques like Principal Component Analysis 
(PCA), Truncated Singular Value 
Decomposition (TSVD) and FastICA can be 
used to minimize the size of a host of different 
text embedding vectors generated by SBERT, 
SimCSE and the more traditional TF-IDF with 
a minimal reduction in prediction accuracy.  
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The newly prepared dataset, together with the 
implementation used for experiments, is available on 
demand from the authors. 

2 RELATED WORK 

Researchers have recognized the valuable role of 
dimensionality reduction in the detection of AI-
generated text. For example, as shown in (Rojas-
Simón et al., 2024), feature reduction on ASCII-
based lexical representations improves classification 
accuracy while reducing overheads. Our 
experiments complement this type of work. While 
embedding-based methods are capable of capturing 
more semantic information, character-based 
vectorization may serve as a viable and less 
computationally expensive alternative. Hybrid 
methods seem to be a very promising idea. 

In (Singh et al., 2022) the authors proposed a 
semantic feature selection process based on GloVe 
word embeddings for eliminating redundant 
features. Their method is called redundant feature 
removal (rRF) and it provided a considerable 
improvement in classification accuracy, beyond 
reducing dimensionality. Besides that, they 
introduced a novel performance metric (NPM) for 
balancing between evaluation of feature-reduction 
effectiveness and classification accuracy, which 
could serve as a benchmark for improvements in 
efficiency in AI text detection.  

PCA and Autoencoders are proven to be good 
dimensionality reduction techniques for increasing 
classification accuracy and computational efficiency 
of classic machine learning models (Khan et al., 
2022). This approach showed that PCA-based 
preprocessing yielded significant improvements in 
training and inference times, while also showing that 
AutoEncoders (AE) could provide a viable 
alternative for unsupervised data compression. 
Indeed, their findings reveal that preprocessing is 
essential to speeding up model convergence, 
improving feature interpretability, and ensuring 
robustness on various text datasets. The application 
of AE’s alongside techniques like PCA, TSVD or 
FastICA could achieve greater efficiency gains, 
particularly in real-time AI text classification tasks.  

In order to identify the optimal number of 
features to use (Moulik et al., 2023) performed a 
systematic analysis of feature dimensionality 
reduction through PCA and decision-tree-based 
classifiers (AdaBoost). Their results show that 
reducing the feature space to 3-6 dimensions can 
greatly speed up training time without sacrificing 
classification performance - an insight directly 
applicable to AI-generated text detection. Also, the 

use of Kernel PCA (KPCA) with an RBF kernel 
gives a valuable alternative to using regular PCA, 
particularly in domains where modelling non-linear 
relationships is crucial – in our case, preserving 
semantic integrity is of utmost importance.   

For the task of detecting AI-generated texts 
supervised learning is the main technique used by 
many authors. In a nutshell, various machine 
learning classifiers are trained on labelled datasets 
(comprising both human-written and AI-produced 
texts) and used for predicting the class of unlabelled 
data.  For example,  CamemBERT, CamemBERTa 
and  XLM-R are used in (Antoun et al., 2023); 
ChatGPT was put up to this task in (Bhattacharjee & 
Liu, 2023); a logistic regression model and two deep 
classifiers based on RoBERTa are tested by (Guo et 
al., 2023); Bag-of-Words with a logistic regression 
classifier and a fine-tuned BERT model are used in 
(Ippolito et al., 2020). Building up in complexity, 
the RADAR framework is proposed by (Hu et al., 
2023), then in a recent concurrent work the 
OUTFOX framework is introduced by (Koike et al., 
2024). Also, human-assisted detection methods were 
proposed in (Dou et al., 2022).  

Commonly, such classifiers use sentence 
embeddings for the role of (text-extracted) features. 
Those multi-dimensional vectors supposedly 
describe the text's semantic content and can easily be 
fed into the classifiers. 

Fine-tuned transformers, as for example 
RoBERTa (Liu et al., 2019), turned out to be very 
successful at detection when trained on appropriate 
datasets. Another possible approach is using 
stylometric features for detecting AI-generated text 
– the authors use differences and inconsistencies in 
the writing style as markers of generated text 
(Kumarage et al., 2023). 

Finally, we also note that two recent surveys on 
detecting of AI-generated texts are also available, 
that is (Jawahar et al., 2020) and (Tang et al., 2024). 

3 METHODOLOGY 

3.1 Problem Statement 

Assume we are presented with a two-column 
dataset, the first column contains a “text” and the 
second column contains a “label” which is 0 or 1 (in 
our case 0 is the label for human-generated text and 
1 is the label for AI-generated text). For the 
associated binary classification problem the problem 
is to find an efficient algorithm, that it we would like 
to trade a little from the classification performance 
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in order to obtain a significant reduction in the 
computational effort involved. In order to investigate 
this problem we experiment with three text 
embeddings algorithms, four machine learning 
binary classification algorithms, as well as with 
three dimensionality reduction algorithms.  

3.2 Dataset 

We have created a new dataset by merging several 
publicly available labelled sets (from GitHub, 
HuggingFace, and Kaggle). We ensured consistent 
labelling schemes using Pandas. In our approach to 
merging we also took care to remove the duplicate 
entries. Next, we manually scanned samples that 
were flagged by first-order heuristics: repeated 
words, odd punctuation patterns, or really awkward 
semantic structures. Simple examples of "unnatural" 
samples include placeholder-like tokens (like 
"XXXXXXXX"), repeated nonsensical phrases, or 
alignment issues seen in pairs of text and labels. 
Although subjective, this split was consistent in its 
rule: if the text was obviously incomplete, silly, or 
contained placeholder tokens, it was removed. Then, 
spelling errors were rectified across the corpus with 
the use of specialized libraries (SymSpell and 
Neuspell). We found this step justified because 
typos can introduce a large set of near-duplicate 
terms in the TF-IDF vectors – diluting its power. 
Also, LLMs rarely generate typos, so leaving such 
mistakes in our dataset could introduce an 
(exploitable) classifier bias. Typographical variance 
should not be a good feature in this case. 

 
Figure 1. The balance between human and AI-generated 
text classes. 

As can be seen in Figure 1, the resulting new 
prepared dataset is quite balanced between the 
human and AI-generated text classes. It contains 

598441 samples that were further split as 80% train 
dataset and 20% test dataset. 

3.3 Technical Implementation 

We have used three approaches in order to generate 
text embeddings: 

 TF-IDF representations (TfidfVectorizer); 
 SBERT embeddings; 
 SimCSE embeddings.  

As output we get matrices of sizes (598441, 
1000) for TF-IDF and (598441, 768) for SBERT and 
SimCSE. (In fact this CUDA-accelerated process 
yielded gigabytes of data.) The reason we included 
TF-IDF representations was that we wanted to see 
how relatively easily calculable embeddings can 
stack up against transformer-based embeddings. We 
note that TF-IDF representations took significantly 
less time to generate – they were finished in a few 
minutes, compared to a few hours for SBERT and 
SimCSE. And to our surprise – in several 
experiments, they deliver quite similar performance.  

Term Frequency-Inverse Document Frequency 
representations (TF-IDF) is a statistical method that 
is frequently used in natural language processing 
tasks for representing sentences. It was introduced as 
a response to the traditional Bag-of-Words 
approaches in order to account for the importance of 
a word in a document relative to a corpus. As a 
refresher, the TF-IDF value is the product of two 
values – the term frequency and the inverse 
document frequency. Term frequency reflects the 
number of times a word appears in a document from 
a collection (which can be interpreted as the 
relevance of the word within the document itself), 
while inverse document frequency expresses how 
common or rare a word is across all documents in 
the collection (the assumption here is that less 
frequent words are of higher importance). By 
combining these two metrics through multiplication, 
the TF-IDF value effectively highlights words that 
are significant in a specific document similar to a 
Bag-of-Words approach, but the key difference lies 
in downplaying common words that appear across 
many documents.  

Sentence-BERT (SBERT) embeddings – were 
derived from BERT embeddings and are a way of 
extracting text features at the sentence-level, 
essentially creating embeddings for whole sentences. 
While BERT alone excels at producing 
contextualized word embeddings, it cannot create 
fixed-sized vectors for entire sentences, which is a 
crucial requirement for tasks like semantic similarity 
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and clustering. SBERT approaches this issue by 
fine-tuning BERT on sentence pairs (via a siamese 
network). During inference, SBERT encodes each 
sentence independently into a fixed-dimensional 
vector (768 in this case), preserving the semantic 
relationships between sentences. As a result, we can 
use these vectors to do things like semantic search 
and question answering with a significantly reduced 
computational cost when compared to traditional 
models.  

Our last type of text embeddings, Simple 
Contrastive Sentence Embeddings (SimCSE), is a 
recent and more sophisticated approach to 
generating sentence embeddings. It enhances the 
semantic content of the sentences through 
contrastive learning. The main point is training the 
model to distinguish between similar and dissimilar 
pairs of sentences. During training, the model is 
provided with sentences and their slightly perturbed 
versions (with the help of data augmentation 
techniques) as positive pairs, and unrelated 
sentences as negative pairs. Of course, the model 
builds upon pre-trained transformers like BERT or 
RoBERTa and is fine-tuned to bring the embeddings 
of positive pairs closer together while pushing apart 
the embeddings of negative pairs in the vector space. 
This supposedly helps capture fine-grained semantic 
nuances. There are many possible variants of loss 
functions for this task – for example, TripletLoss, 
MultipleNegativesSymmetricalLoss, and Softmax to 
name a few – all of them perform well for various 
use-cases. 

For the binary classification task, the following 
well-known machine learning algorithms were used: 

 Logistic Regression; 
 K-Nearest-Neighbors (KNN); 
 Naïve Bayes; 
 Neural Network. 

These classification algorithms were chosen 
almost arbitrarily for our experiments, therefore we 
do not further elaborate on how each algorithm 
works. 

The dimensionality-reduction algorithms chosen 
were 

 PCA; 
 TSVD; 
 FastICA. 

All these algorithms are available in Python from 
scikit-learn (Pedregosa et al., 2011).  

Principal Component Analysis (PCA) is a well-
known linear dimensionality reduction technique. In 
fact, the principal components are just the 

eigenvectors of the input data covariance matrix 
ordered by the size of the associated eigenvalues. By 
selecting the top k principal components we can 
effectively reduce the data dimension – while 
simultaneously maintaining most of the data 
variance. The implicit assumption is that the 
variance captures the most significant information in 
the data. 

Truncated Singular Value Decomposition 
(TSVD) is a variant of Singular Value 
Decomposition (SVD) and another popular 
technique. It is most commonly used when we want 
to reduce the dimensionality of sparse matrices (as 
for example CSR matrices).  

Finally, Fast Independent Component Analysis 
(FastICA) is a faster way of doing Independent 
Component Analysis (ICA). In short, it is a 
computational way of separating multivariate signals 
into additive, independent components. In other 
words, its scope is to transform multivariate data 
points into statistically independent components. 
The first step in FastICA is to center the data 
(subtract the mean) and whiten it, that is alter the 
data points to become uncorrelated and have unitary 
variance. Whitening is typically achieved through 
Principal Component Analysis or Singular Value 
Decomposition – in a sense up to this point this 
technique it is a combination of the previous two 
methods. After this pre-processing step, the 
algorithm iteratively adjusts a set of weights in order 
to maximize the statistical independence of the 
rotated components. This is a very strong condition 
requiring infinite data to check; therefore a proxy 
called “maximal non-Gaussianity” is used. The 
algorithm stops when certain convergence criteria 
are met (for example, the difference from the 
changed weights to the initial is smaller than an 
epsilon).   

4 EXPERIMENTS 

The experiments were performed using Jupyter 
Notebook (The Jupyter Development Team, 2015), 
scikit-learn (Pedregosa et al., 2011) and PyTorch 
(Paszke et al., 2019). 

4.1 Performance Metrics 

Since our dataset is balanced and we are interested 
in a binary classification task, we considered (test) 
accuracy to be good as a base metric for evaluating 
the performance.  

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

734



𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  

 
The accuracy takes values between 0 and 1 and 

the bigger the accuracy, the better the model at the 
classification task.  

4.2 Tuning Model Parameters 

For hyperparameter tuning (see Table 1), we have 
chosen to use Optuna (Akiba et al., 2019). This is a 
Bayesian hyperparameter optimizer that is very 
popular in machine learning competitions (for 
example the Kaggle competitions). Optuna basically 
is an open-source framework for hyperparameter 
optimization designed to automate and streamline 
the process of finding the best hyperparameters for 
various machine learning models. In a nutshell, the 
user needs to define the hyperparameter space and 
then Optuna repeats the process of suggesting 
hyperparameters by evaluating model performance 
and learning from the results. It dynamically adjusts 
its search strategy based on past trials to find better 
configurations more efficiently. Its algorithms 
intelligently navigate the hyperparameter space, 
reducing the time and resources required for manual 
tuning – it also helps that it is framework-agnostic, 
meaning it works with any possible algorithm – the 
user just needs to specify the value to be maximized 
(which is in our case accuracy). 

4.3 Performance Results 

The results obtained in our experiments for the 
performance of the machine learning models are 
contained in Table 2, in which we use the 
abbreviations TF for TF-IDF, SB for SBERT and SC 
for SimCSE. Is easy to see that the neural network 
classifier delivers the best accuracy with all 
embedding types and dimensionality-reduction 
algorithms. This came as expected. It’s worth 
mentioning that TF-IDF representations performed 
even better than the transformers in some cases on 
some reduced datasets. Naïve Bayes was clearly the  
worst performing by far – it had the best accuracy of 
only 79% and the worst one of 67%. In all 
experiments done KNN showed an edge over 
Logistic Regression. 

Regarding the performance of the text 
embeddings, while SimCSE embeddings are clearly 
delivering the best overall performance, we note that 
TF-IDF and SimCSE are delivering quite similar 
performance after the dimensionality-reducing 
algorithms are applied to the datasets – the 
performance difference between them is not 
significant. This is a quite surprising result and great 
news since it is much easier computationally to 
compute TF-IDF embeddings. SBERT embeddings 
were systematically the worst-performing 
embeddings. 

 

Table 1: Hyperparameter Tuning Summary. 

Model Hyperparameters tuned with Optuna 

Logistic 
Regression 

C (Inverse of regularization strength), penalty ('l1', 'l2', 'elasticnet'),  
solver ('newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga') 

K-Nearest 
Neighbors 

number of neighbors, weights ('uniform', 'distance'),  
algorithm ('ball_tree', 'kd_tree', 'brute'), leaf_size 

Naïve 
Bayes 

var_smoothing (represents the portion of the largest variance  
of all features that is added to variances for calculation stability) 

 Neural 
Network 

number of hidden layers, number of neurons per layer, activation functions ('relu', 'sigmoid', 
'tanh'), optimizer ('adam', 'sgd'), learning rate, batch size, dropout rate 

Table 2: Experimental Results – Test Accuracies (% of correct predictions on test). 

Dimension 
Reduction 

Logistic Regression K-Nearest Neighbors Naïve Bayes Neural Network 

TF SB SC TF SB SC TF SB SC TF SB SC 
None  89% 86% 91% 92% 91% 93% 79% 67% 76% 95% 93% 97% 
PCA 84% 74% 82% 92% 90% 93% 75% 68% 72% 94% 91% 94% 

TSVD 83% 74% 82% 91% 90% 93% 74% 67% 72% 93% 91% 94% 
FastICA 84% 74% 82% 91% 90% 93% 74% 70% 74% 93% 92% 95% 
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Table 3: Computational costs – Time to finish training (minutes). 

 
Logistic Regression K-Nearest Neighbors Naïve Bayes Deep Neural Network 

TF SB SC TF SB SC TF SB SC TF SB SC 
None  6.75 100 10 0.16 0.12 0.1 4.75 1 1.25 197 210 110 
PCA 0.21 0.25 0.12 0.01 <.01 0.01 0.06 0.06 0.06 62 27 20 

TSVD 1 0.41 0.25 0.01 <.01 <.01 0.06 0.07 0.06 20 73 19 
FastICA 0.06 0.06 0.19 0.01 <.01 0.01 0.06 0.06 0.06 48 50 19 

Table 4: Computational costs – Inference on test set (seconds). 

 
Logistic Regression K-Nearest Neighbors Naïve Bayes Deep Neural Network 

TF SB SC TF SB SC TF SB SC TF SB SC 
None  0.92 0.25 0.11 <.01 0.01 0.03 5.54 5 4.74 5.47 6.78 5.81 
PCA 0.01 0.01 0.01 <.01 <.01 <.01 0.30 0.26 0.28 4.90 0.85 0.36 

TSVD 0.01 <.01 0.01 <.01 <.01 <.01 0.28 0.32 0.28 1.29 0.33 2.42 
FastICA 0.01 <.01 <.01 <.01 <.01 <.01 0.29 0.30 0.29 1.85 1.26 2.52 

 
Finally, we note that applying the dimension 
reduction techniques in order to significantly 
decrease the computational effort seems only to lead 
to a relatively minor decrease in the performance of 
the classification task. 

4.4 Computational Effort 

The text encodings and the training of the machine 
learning models were accelerated with CUDA – we 
have used an RTX 4060 Mobile graphics chip made 
by NVIDIA for this. Generating the full-text 
encodings took around 4 hours in total. Then 
performing the dimensionality reduction took around 
20 minutes for each of the three algorithms – 
FastICA was (ironically) the slowest to finish – this 
makes sense since at the processing step FastICA 
includes the previous two. All processes, even the 
CPU-bound ones (like, for example, PCA and KNN) 
benefited from parallelization. The maximum 
amount of RAM memory needed was 10 GB. We 
completed a total of 720 training cycles (that is 48 
Optuna runs with 15 trials each).  

The training and inference times are presented in 
Tables 3 and 4, in which we use the abbreviations 
TF for TF-IDF, SB for SBERT and SC for SimCSE.   

The reader should note that training the models 
after a dimensionality reduction algorithm was 
applied is 5 to 500 times faster than on the full 
dataset. In Table 4 we can see a similar trend for 
inference time as well. (The times presented in Table 
4 are for the test dataset inference). 

 
 

4.5 Threats to Validity 

Internal Validity: The preparation procedure for the 
dataset relies on subjective decisions about what 
counts as "unnatural" texts. While we attempted to 
systematically codify guidelines, there may remain 
some bias regarding which texts were filtered out. 
Although hyperparameter tuning with Optuna is 
robust, it can still overfit to the training split if not 
carefully cross-validated. 

External Validity: The data were sourced from 
publicly available sources (GitHub, HuggingFace, 
Kaggle), which harbour potential biases with respect 
to domain coverage. Therefore, caution must be 
exercised  in  generalizing  to  highly professional or 

 
domain-specific texts, for example, in the case of 
legal or medical texts. The dimension-reduction 
methods could perform differently when analysing 
extremely large corpora or new languages. 

Construct Validity: The metric chosen for 
performance evaluation was classification accuracy. 
While it covers much ground in terms of statistical 
performance, other metrics such as F1, precision, 
recall could prove useful for a more complete 
analysis. Future studies could measure robustness to 
adversarial attacks, interpretability, or real-time 
adaptiveness, but this is beyond the scope of analysis 
in this work. 

Robustness: There was no systematic analysis on 
how dimension-reduced embeddings stand up to 
adversarial examples specifically engineered to fool 
AI detectors. The preliminary findings imply that, 
due to a domain shift or the introduction of synthetic 
perturbations, the detection accuracy drops. 
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Therefore future works should explore the 
intricacies of the vulnerabilities in detail. 

5 CONCLUSIONS 

In this study we tackled the idea of applying 
dimensionality reduction techniques (PCA, TSVD, 
and FastICA) to multidimensional text embeddings 
vectors generated via different approaches. Our 
experiments show that across the board, irrespective 
of the type of text embeddings or dimension 
reduction technique, applying such methods to text 
embeddings vectors may lead to an important 
reduction in the computational effort without a 
corresponding significant reduction in performance.  

In particular, applying dimensionality reduction 
techniques can drastically improve the running times 
and overall efficiency of AI text detectors. Through 
all experiments, such techniques not only 
accelerated training and inference times but also 
preserved performance. By using dimension 
reduction techniques on can successfully manage the 
trade-off between reducing model complexity and 
maintaining the accuracy of the predictions made. 
This makes them perfectly suitable for deployment, 
especially in resource-constrained environments. 

Regarding the text embeddings we also note that 
SimCSE consistently delivered the best accuracy, 
with the lightweight TF-IDF proving to be a fierce 
competitor beating the SBERT on multiple trials. 

We think that incorporating these methods 
provides a viable pathway towards optimizing large-
scale AI detectors, contributing to both their 
scalability and efficiency. Other important practical 
implications might be speeding up real-time systems 
like social-media and content monitoring which 
proves to be an increasingly important problem. 
Also, applying dimensionality reduction in resource-
constrained environments can reduce the memory 
and energy requirements enough to make detection 
significantly cheaper, but also feasible on smaller 
devices. There also are potential industrial 
applications – dimension reduction enables the 
handling of high-throughput demands, from 
massive-scale news verification to customer-service 
chat filtering, without necessarily losing serious 
performance. 

Future research could look into the integration of 
these techniques in advanced language models while 
investigating their capacity to stand against potential 
attacks – which a key point in this field. Having the 
capacity to detect generated text in a context in 
which some user included adversarial tactics in order 
to fool potential detectors (e.g. including subtle 

changes and aiming for the text to sound more 
human) is a very important aspect that should be 
further investigated. Another future direction may 
examine adversarial robustness to check whether 
reduced embeddings are easier or harder to fool. 
Finally, hybrid methods integrating statistical 
dimensionality reduction techniques with semantic 
feature pruning could prove useful in order to further 
improve the results.   
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