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Abstract: Virtual Reality (VR) product requires expertise from diverse set of stakeholders. Moving from requirements to
design mock-up(s) while building a VR product is an iterative process and requires manual effort. Due to lack
of tool support, creating design templates and managing the respective versions turns out to be laborious and
difficult. In this paper, we describe VReqDV, a model-driven VR design generation and versioning tool that
can address this gap. The tool uses VR meta-model template as a foundation to facilitate a design pipeline.
VReqDV can potentially facilitate design generation, design viewing, design versioning, design to require-
ments conformity, traceability, and maintenance. It is a step forward in creating a Model-Driven Development
pipeline for VR scene design generation. We demonstrate the capabilities of VReqDV using a simple game
scene and share our insights for wider adoption by the VR community.

1 MOTIVATION

The development of Virtual Reality (VR) products
is inherently complex and time consuming, requir-
ing collaboration among stakeholders with expertise
in diverse aspects. Minor design changes can cascade
into significant development delays (Mattioli et al.,
2015). Research has indicated that the design phase
is critical in the VR product development lifecycle,
requiring prompt sign-off to mitigate the risk of de-
livery delays (Karre et al., 2019). Current VR design
pipelines employ manual, iterative methods and lack
robust version control, thereby hindering collabora-
tive efficiency.

Some of the key challenges in VR design include
(1) managing complex scene layouts, (2) positioning
of articles, (3) coordinating object interactions and
behaviors, and (4) accommodating diverse user in-
puts. Each of these challenges is further enhanced by
the unique attributes of VR technology, such as spa-
tial dynamics and the necessity for heightened user
immersion, which collectively necessitate responsive
design strategies. The reliance on manual design it-
erations often results in inefficiencies and inconsis-

a https://orcid.org/0009-0004-3372-6438
b https://orcid.org/0000-0001-7751-6070
c https://orcid.org/0000-0003-2280-5400

tencies that complicate version control and traceabil-
ity (Troyer et al., 2009). As projects transition from
two-dimensional (2D) to three-dimensional (3D) en-
vironments, the complexity of user interactions esca-
lates substantially, necessitating a comprehensive set
of properties to accurately describe virtual objects.
Consequently, incomplete or under-specified require-
ments may lead to numerous design variations that are
susceptible to different interpretations (Geiger et al.,
2000a). This phenomenon creates a cycle of con-
formance challenges between requirements and de-
sign. Such observations are particularly relevant to
VR technology, as it possesses a unique product de-
velopment cycle (Balzerkiewitz and Stechert, 2021)
and the VR domain itself is characterized by multi-
modal use cases, distinct stakeholders roles, subpar
tool support, and volatile hardware requirements. As
a result, alignment between requirements and design
is crucial to avert unexpected development costs.

Current industry practices of VR design remain
largely manual and semi-automated (Cao et al.,
2023)(Wu et al., 2021). Development teams typically
rely on iterative manual play-throughs of VR scenes
to finalize control flows(Ali et al., 2023). Given that
VR product requirements are usually articulated in
natural language (English), it can result in design re-
visions and necessitate multiple iterations for a sin-
gle use case. Ultimately, developers select a design
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Figure 1: VR Requirements to Design Workflow.

template for further development after extensive mod-
ifications (Krauß et al., 2021). This iterative pro-
cess generates design waste, with unacknowledged
effort and creativity from designers going unrecog-
nized. These observations clearly raise the following
question: Is it possible to automatically generate de-
sign templates for VR products and maintain design
versioning at the same time?.

Given these observations, it is evident that an end-
to-end automated design pipeline that supports au-
tomatic generation of design templates is a poten-
tial need. In this paper, we introduce VReqDV, a
novel tool aimed at automating design template gen-
eration and supports version control. The tool lever-
ages structured requirements specified in a prescribed
format using our existing VR requirement specifica-
tion tool called VReqST (Karre and Reddy, 2024),
which is developed on the basis of a bare minimum
meta-model of VR technology domain (Karre et al.,
2023). By leveraging VReqST-based specifications,
VReqDV aims to streamline design template genera-
tion and improve design versioning practices in VR
product development.

The rest of the paper is structured as follows: In
section 2, we present related work. In section 3, we
provide the rationale for using VR meta-model, steps
to specify requirements using VReqST, the proposed
VR design workflow, and the complete model-driven
VR designing pipeline. We illustrate the details of
VR design generation and design versioning pipeline
through VReqDV in sections 4 and 5. We detail some
of the limitations and future work in our work in sec-
tion 6.

2 RELATED WORK

Virtual Reality (VR) design generation has evolved in
the past decade. Early studies on design generation
focused on ontology-based approaches (De Troyer
et al., 2003) (Geiger et al., 2000b), utilizing cus-

tomized domain-specific semantics (De Troyer et al.,
2007a) . These initial efforts were largely confined
to specific domains such as e-commerce and recre-
ational VR content. In the recent past, researchers de-
veloped visual semantic approaches for virtual scene
generation (Zeng, 2011), which were later extended to
text-to-3D scene generation using game-based learn-
ing content (Gradinaru et al., 2023). Most of these
methods are now obsolete due to the advent of new
game engines that are more robust and extensible for
code generation. Baiqiang et al. (Gan and Xia, 2020)
used VR as an intervention for conducting user ex-
perience evaluation through automation. Mengyu et
al.(Chen et al., 2021) introduced a visual program-
ming interface for VR scene generation, focusing on
creating entanglement-based virtual objects. While
both methods offer novel tools for designers, they pri-
marily facilitate the foundational stages of VR en-
vironment setup and lack features for implementing
custom behaviors and do not support design version-
ing. Recent work on Text-to-Metaverse (Elhagry,
2023) and Text2Scene (Tan et al., 2019) employ Gen-
erative Adversarial Networks (GAN) and Non-GAN
based techniques to create VR environment. How-
ever, these methods do not provide mechanisms for
designers to manipulate the generated scenes, nor do
they incorporate essential design versioning features.
VRGit (Zhang et al., 2023) is a step forward in VR
design version control. It allows VR content creators
to engage in real-time collaboration with design visu-
alization and version tracking. However, VRGit does
not offer automatic scene generation nor facilitate re-
quirement conformance, limiting its application scope
primarily to design versioning. Our work introduces
a model-driven approach designed to integrate auto-
matic scene generation, custom behavior implemen-
tation, and design versioning.
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3 REQUIREMENTS TO DESIGN

A design pipeline represents a structured process
intended to enhance design efficiency, ensure
consistency, facilitate collaboration and increase
productivity within the product development cycle.
In case of VR product development, the design
pipelines are limited to a few domain-centered appli-
cations and not well defined for overall VR product
development (Ali et al., 2023). In this section, we
outline the workflow for moving from requirements
to design for VR products, one that incorporates a
design pipeline consisting of design generation and
design versioning.

VR Meta-Model: Researchers have used con-
ceptual models to describe VR as a technology
domain (De Troyer et al., 2007b)(Trescak et al.,
2010). Karre et al. introduced a bare minimum
meta-model template to illustrate the VR technology
domain using a role-based modeling approach (Karre
et al., 2023). This template captures the essential
attributes required for building a VR software system
and is extensible to domain-specific and application-
specific VR elements. VReqDV uses this meta-model
as a foundation to understand the requirements and
convert them to design artifacts.

VReqST - Requirement Specification: VReqST can
be used to specify requirements using an underly-
ing meta-model of the VR technology domain (Karre
et al., 2023). The meta-model contains bare minimum
properties of a VR scene organized in model template
files. It has five parts and each part is separately spec-
ified to complete the total specification of the VR ap-
plication.

1. Scene: Defines the environment’s spatial layout,
terrain, and contextual settings.

2. Asset: Specifies objects within the scene, includ-
ing their attributes and functionalities.

3. Action-Responses: Details user interactions and
object behaviors within the VR environment.

4. Custom Behavior: Enables definition of non-
standard interactions for enhanced flexibility.

5. Timeline: Organizes and synchronizes events,
animations, and user interactions in sequence.

The model template files are represented in
JavaScript Object Notation (JSON) format, which
provides a flexible, text-based representation of the
VR environment.

VReqDV Requirements to Design Workflow: A re-
quirements to design workflow (as illustrated in Fig-

ure 1) can be established to programmatically gener-
ate VR design templates using requirements specified
using VReqST. The key steps in the workflow are:

• Requirements Elicitation: The Requirements An-
alyst elicits requirements from the respective
stakeholders to author the specifications using the
VReqST tool.

• Model Template Specifications: Detailed speci-
fications of the scene, assets (or) objects in the
scene, action-responses associated with the ob-
jects in the scene, custom behaviors, and time-
line of synchronous/asynchronous are published
as specification model template files.

• Design Generation: The VR Scene Designer uti-
lizes the specification model template files as in-
put to the Model Parser component of VReqDV.
The Parser extracts scene properties, object at-
tributes, action-responses, custom behaviors, and
timeline data from these JSON-format templates,
converting them into UNITY-compatible specifi-
cations. This parsed output is then used to pop-
ulate and generate an editable VR scene design
template.

• Editing Designs: The VR Scene Designer can al-
ter the generated design templates with desired
changes and can save, revise, and publish new ver-
sions of the design templates.

• Design to Specifications: The saved design
template version generates a corresponding re-
quirement specification model template, ensuring
traceability and synchronization between design
iterations and their underlying specifications.

• Finalising Design: Finally, the VR Scene Devel-
oper uses the finalized design template to build the
VR scene prototype.

4 VReqDV DESIGN GENERATION
PIPELINE

Figure 3 illustrates the proposed design pipeline using
our VR design generation and versioning tool called
VReqDV. Following are the two major contributions
of the proposed VR design pipeline:

1. Generate VR mock-up design templates using
VReqST-based requirement model template spec-
ifications as input.

2. Support design versioning by provisioning VR
Scene Designers to update & save the design tem-
plates with backward compatibility to propagate
the saved changes to the requirement specifica-
tions.
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Figure 2: VReqDV Editor as Custom Window within the UNITY Game Engine.

As proof of concept, VReqDV has been imple-
mented as a plugin to UNITY Game Engine 1. Fig-
ure 2 illustrates the VReqDV editor in UNITY as a
custom window. In the figure, the block 1 (top cen-
ter) is the asset pane is the asset pane, which lists
the available assets (or objects) in the VReqDV edi-
tor. Block 2 (right most) is the inspector window, dis-
playing the properties of the selected object. Block
3 (bottom center) is the developer pane, listing the
script files used to convert specifications into design
templates. Block 4 (bottom left) is the specification
pane, presenting detailed requirement specifications
with comparison options. Block 5 (top left) is the de-
sign template pane, which shows designs for different
specification versions; any revisions made will reflect
in this pane. The highlighted boxes in red are buttons
for generating design templates and for comparing de-
sign versions.

The VReqDV design generation pipeline consists
of the sequence of scripts implemented in the Model
Parser. We elaborate each stage of the pipeline
(shown in Figure 3) and demonstrate an example us-
ing the VReqDV editor.

4.1 Scene Generation

The model parser processes scene specific aspects
from the requirements specification to generate the
initial virtual environment (shown in Figure 3). The
scene model template includes essential elements

1https://unity.com/

such as scene identifiers, labels, play area dimensions,
camera and viewport settings, clipping planes, and
user interaction parameters. The parser generates a
foundational scene template that supports subsequent
attribute modifications.

4.2 Object Generation

After generating the initial layout from the scene
specifications, the next phase involves adding objects
to the virtual reality (VR) scene, as depicted in Fig-
ure 3. Each object specification includes various at-
tributes, such as initial position, rotation, scale, light
emission properties, shadow characteristics, gravity
constants, and audio specifications.

The parser sequentially processes each object, ini-
tiating the creation of a basic geometric shape that
corresponds to its designated primitive (e.g., cube,
sphere, cuboid). The basic shape can then be modi-
fied based on the defined attributes. The refined ob-
jects are then instantiated in the scene, positioned and
oriented according to their specifications. The current
version of our work supports basic geometric shapes
like cubes, spheres, and cuboids. To implement more
complex geometries, multi-point polygons can be de-
signed externally using software such as Blender2 and
then imported as part of the specifications.

To illustrate the concept, we present a simple ex-
ample of a Bowling Alley VR scene, which includes
three basic elements: a rectangular bowling lane, a

2https://www.blender.org/
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Figure 3: VReqDV Design Pipeline.

ball, and a single pin. Initially, all objects are static.
Each object has specific properties; for instance, the
ball is a ”sphere,” and the requirements analyst can set
the IsIlluminate property to ”true” within the specifi-
cations. Listing 1 shows a partial excerpt of the speci-
fications used to establish the initial state of these ob-
jects.

Figure 4(a) displays the generated scene with the
static objects described above. The complete specifi-
cations for these objects are available in the resource
files (VReqDV, 2024).

4.3 Action-Response Generation

In this section, we discuss the development of dy-
namic properties for the generated objects. We define
an action-response as a dual-event interaction involv-
ing a trigger event and a corresponding response event
occurring between objects. Multiple objects can ini-
tiate known response events, regardless of their sim-
ilarities. Within the VReqDV framework, we utilize
UNITY’s scriptable object feature to create modular
and reusable components for triggers and responses,
based on the foundational action-response specifica-
tion model template.

To achieve this, we create a base class for each
trigger and response type, along with specific prede-

1 "articles": [
2 {
3 "_objectname": "Ball",
4 "shape": "sphere",
5 "IsIlluminate": true,
6 "Transform_initialpos": {
7 "x": "0",
8 "y": "0.5",
9 "z": "0"

10 },
11 "Transform_initialrotation"

: {
12 "x": "0",
13 "y": "0",
14 "z": "0"
15 },
16 "Transform_objectscale": {
17 "x": "1",
18 "y": "1",
19 "z": "1"
20 },
21 ...

Listing 1: Object specification: Ball

fined behavior templates. Possible trigger events in-
clude property changes, collisions, user inputs, tem-
poral events, and audio alterations. Response events
may involve actions such as movement, disappear-
ance, user stimuli, and object instantiation. This list
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will evolve over time. When setting up scene in-
teractions, we instantiate trigger and response events
from these templates, adjusting them based on input
specifications. The algorithm for generating action-
response behaviors is described in Algorithm 1.

Algorithm 1: Adding Behavior to an Object.

Input: Specifications: (trigger, response)
Output: Behavior added to the source object
begin

Step 1: Identify predefined trigger
template for the trigger event given.

Step 2: Initialize instance of trigger
template.

Step 3: Configure the parameters based
on input specifications.

Step 4: Repeat steps 1–3 for response
event.

Step 5: Initialize an instance of Action
Component and set its variables with the
configured trigger and response.

Step 6: Add Action Component as
behavior of the source object.

end

Figure 4 illustrates the action-response generated
for the bowling alley game scene where the Pin falls
(Figure 4(c)) upon collision with the Ball (Figure
4(b)). Alternatively, we can define an action-response
for the Pin, so it disappears upon falling. The trig-
ger event is the tilting, and the response is the Pin’s
disappearance.

Here, the trigger corresponding to change in ob-
ject rotation will be instantiated. The input directs the
trigger to set a threshold of 10 degrees for change in
rotation of the Pin. Consider Figure 4(e), where upon
falling, the response is initiated from the template cor-
responding to object visibility, and set to disappearing
as shown in Figure 4 (f). The actioncomponent here
is assembled with these behaviors to generate the ac-
tion flow in Figure 4 (e) and Figure 4 (f). Overall,
VReqDV will associate these action-responses tem-
plates as components of the source object, that links
triggers to responses and when executed. As part of
current implementation for the provided example, the
dynamic behavior using its custom specification (Fig-
ure 3: Custom Behavior Generation) doesn’t apply.
Thus we excluded it as part of the overall illustration.

4.4 Scene Timeline

The timeline feature expands upon the action-
response concept by providing VR scene design-
ers with the ability to order response events as
required and define both synchronous and asyn-
chronous events. This adds flexibility for design and
allows more complex and nuanced scene interactions,
enhancing the overall user experience and creative po-
tential of the system. In the current edition of VRe-
qDV, the underlying timeline can be modelled ex-
haustively as an input structure by effectively describ-
ing action-response sequences. There is scope for
improvement for implementing the timeline onto the
scene design in the UNITY editor without the depen-
dency on an action-response sequence.

5 DESIGN VERSIONING

VReqDV’s version control system uses VReqST
specification files as the base to create a repository
of VR scene versions. Scene properties, objects, their
properties, and dynamic behaviors are captured from
the scene and converted to textual representation in
model template files (JSON). This eliminates the need
to store multiple specification files associated with
large VR scenes files. VReqDV utilizes a version-
ing mechanism through a reverse-engineered Model
Parser, allowing the conversion of UNITY scenes into
model template specification files based on the VRe-
qST framework. When scene templates are modi-
fied, they can be saved as new versions, enabling
version tracking and change management. This fa-
cilitates scene differencing, verification against ini-
tial requirements, and analysis, similar to function-
alities of version control systems like Git. Figure
5 shows a side-by-side comparison of two versions
of action-response specifications for a bowling alley
scene, where the pin disappears upon falling.

VReqDV can also convert model template spec-
ifications back into scene representations, providing
intuitive visual differentiation between versions. This
ensures that properties and state information related
to objects are stored in new model template version
files.

To compare scene versions, designers select ver-
sion numbers in the ’compare versions window,’ al-
lowing VReqDV to load both versions side-by-side
for easy identification of changes, as shown in Figure
2. This versioning system enables continuous require-
ments validation, simplifies version comparison, and
accelerates the iterative design process.
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Figure 4: Two versions of Action Response - (a)-(c) Ball collides with the Pin, Pin falls of the ground, (d)-(f) Ball collides
with the Pin, Pin falls and disappears.

Figure 5: Action responses compared between versions: Pin falling behavior.

6 LIMITATIONS & FUTURE
WORK

VReqDV is designed to standardize the VR product
development pipeline, accepting only requirements
authored with VReqST, a specification tool backed
by a VR technology meta-model. It utilizes prede-
fined scriptable objects to generate dynamic proper-
ties for virtual objects, differing from traditional man-
ual programming, which can limit flexibility and han-
dle complex interactions. This reliance on predefined
actions may oversimplify behaviors and requires de-
velopers to create customized behaviors, potentially
increasing development time.

The lack of automated code generation compli-
cates unit testing and debugging, making it harder to
trace behavior errors. This could be improved if VRe-

qDV generates code from design templates, enhanc-
ing the reliability of VR environments.

As VR design scenarios grow, the number of pre-
defined scriptable objects may increase, necessitat-
ing optimized design strategies to prevent confusion.
Currently, VReqDV is tailored for the UNITY Game
Engine but can adapt to other VR SDKs like Unreal
Engine and Blender.

While demonstrated through a simple bowling al-
ley example, extensive validation studies and open-
source plugins for various SDKs are planned for the
future. Future efforts will focus on extending VRe-
qDV with comprehensive version control, advanced
visualization tools, and strategies for integrating code
generation and automated testing, aiming to stream-
line VR development and enable more complex ap-
plications.
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