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Abstract: This paper examines the challenges and preliminary findings in developing a dependable, interoperable, and
evolvable PHDS within the EHDS. The proposed architecture consolidates personal health data, including lab-
oratory results, medical history, imaging, omic data, patient-reported outcomes, and wearable device data into
an integrated master copy under individual control. It ensures seamless interoperability for primary use cases
such as diagnosis and treatment and de-identified secondary uses such as research and AI, adhering to strict
consent requirements. Dependability ensures data integrity, interoperability enables smooth data exchange,
and evolvability allows adaptation to regulatory and technological changes. This framework enhances health
data management, supports sustainable healthcare, and addresses key issues in ownership, security, and us-
ability.

1 INTRODUCTION

The EHDS (European Commission, Directorate-
General for Health and Food Safety, 2022) aims to
harmonise health data management across Europe
by enabling cross-border sharing, enhancing patient
care, and driving innovation. However, achieving
dependable, interoperable, and evolvable health data
management remains difficult due to fragmentation,
privacy concerns, and technological diversity. To clar-
ify these challenges, we identify three key dilemmas
in health data management (Klementi et al., 2024):
a) Accessibility: Balancing broad health data access
for societal benefits (e.g., research, AI, policymak-
ing) with privacy protection remains challenging. So-
lutions must address these competing demands; b)
Comprehensiveness: Fragmented health data across
systems and devices leads to incomplete datasets, af-
fecting decision-making and research. A unified, in-
teroperable master copy is essential; c) Ownership:
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Health data control is mainly institutional rather than
individual. Personal ownership can enhance data
sharing, continuity of care, and sustainable health-
care.

Despite EHDS ambitions, challenges remain in
achieving a unified health data ecosystem. Data frag-
mentation, restricted individual control, and balanc-
ing access with privacy hinder progress. Overcoming
these issues is key to dependable, interoperable, and
sustainable health data management that enhances
care continuity and societal well-being.

Figure 1: PHDS Architecture (Klementi et al., 2024).

This preliminary report proposes a PHDS archi-
tecture (Figure 1) aligned with EHDS objectives. By
integrating semantic interoperability, secure decen-
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tralized storage (Swarm, 2022), and user-centric gov-
ernance, we hypothesise that this approach ensures
data dependability, interoperability, and evolvability
while empowering individuals with ownership and
control over their health data, complementing and in-
novatively enhancing existing healthcare IT infras-
tructure without replacing it.

The rest of the paper is structured as follows.
The Methods section defines the PHDS concept, de-
scribes the tools used, and explains the Design Sci-
ence methodology. The Results section presents the
reference architecture, health data structure, and man-
agement principles. The Discussion section exam-
ines interoperability, dependability, and evolvability,
analysing the architecture within the EHDS ecosys-
tem and its impact on data quality, security, and stake-
holder engagement. The paper concludes with future
research.

2 METHODS

Our approach combines the principles of design sci-
ence methodology with a case study analysis. A ref-
erence architecture for a PHDS was developed by
leveraging semantic interoperability frameworks such
as HL7 FHIR and archetype-based domain models
(Piho, 2011). The proposed architecture ensures com-
pliance with the GDPR and facilitates seamless inte-
gration into the EHDS ecosystem. Three key dimen-
sions—dependability, interoperability, and evolvabil-
ity (Piho et al., 2014)—were examined through real-
world scenarios, including medical emergencies and
cross-border healthcare provision.

Figure 2: European Health Data Space (EHDS) (Klementi
et al., 2024).

A Personal Health Data Space (PHDS) is a user-
centric system allowing individuals to manage and
control access to their health data from sources such
as EHRs, wearable devices, and omic data. It aims to

enhance personal data ownership while improving in-
teroperability, dependability, and evolvability within
healthcare systems.

The following key attributes of a PHDS can be
specified: a) Data Aggregation: A PHDS consoli-
dates health data from multiple sources, ensuring ac-
cessibility for care continuity; b) User Empowerment
and Control: Individuals own and manage access,
complying with GDPR and HIPAA; c) Interoperabil-
ity: Standardized formats such as FHIR enable seam-
less data exchange across healthcare systems; d) Data
Security and Privacy: Encryption, access controls,
and de-identification reduce breach risks while ensur-
ing compliance; e) Evolvability: A PHDS adapts dy-
namically to new technologies, standards and regula-
tory changes.

The following expected outcomes specify the ben-
efits of implementing a PHDS in DCAS networks
such as (Swarm, 2022): a) Enhanced Patient En-
gagement: A PHDS grants individuals full own-
ership and control of their health data, promot-
ing active participation in health management, ill-
ness prevention, and continuity of care. It en-
ables informed decision-making and better coordina-
tion across healthcare providers; b) Improved Health-
care Coordination: By consolidating a person’s
health data under their control within a decentralized
content-addressable storage (DCAS) network, health-
care providers can always access complete informa-
tion. This reduces reliance on centralized reposito-
ries, minimises breach risks, enhances treatment, and
supports secure, consent-driven data reuse; c) Facil-
itation of Research and Innovation: With user con-
sent, de-identified PHDS data in DCAS networks can
support research, policymaking, and healthcare inno-
vation, advancing medical science while ensuring pri-
vacy and ethical compliance.

However, there are no free lunches. The following
challenges must be considered when implementing
PHDS systems in DCAS networks: a) Data Standard-
ization: Ensuring federated and evolvable interoper-
ability is challenging due to inconsistent data entry,
legacy systems, and evolving technologies; b) User
Engagement: Motivating individuals to manage their
health data requires intuitive interfaces, support sys-
tems, and incentives such as token rewards or reduced
healthcare costs; c) Regulatory Compliance: PHDS
implementations must align with regional and inter-
national data protection laws to safeguard user privacy
and rights. In the EHDS context (Figure 2), PHDS
integration enables seamless health data flow across
borders, improving healthcare and fostering innova-
tion. By tackling data fragmentation, accessibility,
and ownership, a PHDS in a DCAS network advances
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a more efficient, patient-centred healthcare system.
A Decentralized Content-Addressable Storage

(DCAS) network, such as (Swarm, 2022), distributes
data across multiple nodes, ensuring redundancy, se-
curity, and accessibility. Unlike centralized systems,
it uses content-based addressing, enhancing integrity
and reducing tampering risks. As electronic shred-
ders, DCAS networks break documents into tiny,
meaningless fragments (Figure 3), distributing them
across nodes. This prevents reconstruction without
the proper permissions, significantly improving secu-
rity and reducing unauthorized access risks.

Figure 3: DCAS Network (Klementi et al., 2024).

The key features of DCAS are as follows (Trón,
2021): Content Addressing: Data is identified by
a cryptographic hash, ensuring integrity and ver-
sion control; Decentralisation: Data is spread across
nodes, eliminating single points of failure; Data Re-
dundancy: Multiple copies ensure availability even if
70% of nodes go offline; Scalability: The distributed
system efficiently handles large data volumes.

We may specify the following advantages of
DCAS in the context of PHDS (Klementi et al., 2024):
Security and Privacy: DCAS ensures strong security
through cryptographic hashing and decentralization,
reducing the risk of centralized attacks; Data Owner-
ship: Patients control access to their health data and
define usage terms; Interoperability: Aligning with
HL7 FHIR, DCAS enables seamless data exchange
while preserving integrity and eliminating duplication
(Piho et al., 2012). Decentralized access reduces stor-
age needs and operational costs, enhancing efficiency.

The Design Science Methodology (DSM) is a
problem-solving approach for developing and evalu-
ating innovative artefacts (Wieringa, 2014). We ap-
ply DSM to design the PHDS framework aligned
with EHDS objectives: a) Problem Identification and
Analysis: Using the Estonian Health Information Sys-
tem, we identified key challenges such as data frag-
mentation, limited individual control, and privacy-
accessibility balance (Ross et al., 2023; Bertl et al.,

2023a); b) Defining Objectives: Based on these chal-
lenges, we established goals for PHDS, focusing on
dependability, interoperability, and evolvability (Kle-
menti et al., 2022); c) Design and Development:
The PHDS architecture integrates semantic interop-
erability, decentralized storage, and patient-centric
governance (Klementi et al., 2024); d) Demonstra-
tion and Evaluation: Two research grants, ’Digital
Health for a Whole and Healthy Society’ (Estonian
Research Council, 2028) and ’Medication Adherence
and Treatment Efficacy’ (Estonian Research Council,
2029), support five years of clinical evaluation, target-
ing TRL 6 and expanding our research team. By ap-
plying DSM principles, we aim to develop a scalable
and adaptable PHDS architecture, addressing health
data challenges while advancing EHDS goals.

3 RESULTS

3.1 Reference Architecture

The planned system adopts a decentralized, user-
centric approach, giving individuals full control over
their health records. Using a DCAS network, it en-
sures security, scalability, and privacy while comply-
ing with the GDPR and HIPAA. Its modular design
enables interoperability, secure storage, and support
for both primary (treatment, emergency care) and sec-
ondary (research, public health) use cases, prioritizing
privacy and sustainability.

The Core Application (Figure 4) is central to man-
aging personal health records (PHRs) in a DCAS
network (Klementi et al., 2024; Klementi and Piho,
2024). Operating on the user’s device, it ensures pri-
vacy, dependability, interoperability, and evolvability
(Piho et al., 2014). The application presents health
data through a user-friendly interface with annotation,
search, and filtering features. Its abstraction layer
enables independent communication with the DCAS
network, ensuring adaptability without reliance on a
single solution. Root Hash Management: The root
hash uniquely identifies the user’s health data, secured
to prevent unauthorized access or loss. A mutable ad-
dress space within the DCAS network encrypts and
stores the hash, with recovery ensured using Shamir’s
Secret Sharing (Shamir, 2023; Klementi et al., 2024).
Storage Abstraction Layer (SAL): SAL enables seam-
less data storage and retrieval, shielding the appli-
cation from underlying storage protocols. Content
Handlers: Modular handlers support various health
data formats, ensuring compatibility with standards
such as HL7 CDA, FHIR, ISO 13606, openEHR, and
DICOM. Interoperability Layers: These layers en-
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Figure 4: Core Application (Klementi et al., 2024).

able secure data exchange with healthcare systems us-
ing federated interoperability and standardized APIs
(Sõerd et al., 2023; Randmaa et al., 2022). Exten-
sion Modules: Downloadable plug-ins enhance func-
tionality, integrating wearable devices and advanced
health analytics.

This architecture gives users full control over
PHRs while ensuring secure, efficient data sharing for
primary and secondary use. Its modular design adapts
to evolving healthcare and technology needs.

3.2 Domain Model

A key aspect of ensuring sustainable semantic inter-
operability and second-order data evolvability is us-
ing a suitable healthcare domain model (Piho, 2011).
This model standardises data meaning across systems,
allowing adaptation to new standards and use cases. It
supports primary uses such as treatment and diagnos-
tics while enabling de-identified data for secondary
purposes, including research, public health, and AI.

The internal healthcare domain model (Figure 5)
follows the Zachman Framework (ZF), covering key
healthcare architecture aspects and aligning with ZF’s
six interrogatives (Piho et al., 2010b). It includes
sub-models for products, services, involved parties,
roles, processes, events, money, and rules. Using Pe-

Figure 5: Zachman Framework-based domain model.

ter Coad’s item-description model (Coad, 1992), each
entity (e.g., ‘product’, ‘service’, ‘organisation’) has a
corresponding type, ensuring consistency and adapt-
ability over time (Oei et al., 1994).
Products and Services: The ’What’ dimension in-
cludes all healthcare assets, such as medical devices,
records, clinical documents, services, and samples.
Entities are modelled with relationships, classifica-
tions, and properties for comprehensive representa-
tion.
Persons, Organizations and Roles: The ’Who’ dimen-
sion defines key stakeholders—patients, providers,
payers, regulators, and staff—along with their roles,
rights, and responsibilities. Roles refine this fur-
ther, e.g., ’provider’ includes physicians, nurses, and
lab technicians, enabling role-based access control
(RBAC) and precise task allocation.
Processes: The ’How’ dimension defines health-
care workflows, including admissions, diagnostics,
treatments, and billing, ensuring efficiency, compli-
ance, and interoperability. Each process consists of
threads, tasks, and activities, with outcomes recorded
in system registries. Following Peter Coad’s item-
description pattern, every element (process, thread,
task, activity, outcome) has a corresponding type.
Plans are modelled as anticipated processes and out-
comes, aligning with healthcare ontology standards
such as ISO 13940 (ContSys) (Sõerd et al., 2023).
Locations: The ’Where’ dimension models locations
as organisations and organization units rather than
states, cities, streets and houses, linking events to
specific hospital departments (e.g., admissions, emer-
gency). This domain-driven approach improves re-
source tracking, staff responsibilities, and data de-
identification by referencing departments instead of
exact locations. It enhances patient flow management,
compliance, and resource allocation while ensuring
interoperability across healthcare networks.
Events: The ’When’ dimension tracks healthcare
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Figure 6: Peter Coad’s item-description pattern example.

events through structured registries. Inventory ledgers
record acquisitions and disposals, general ledgers log
financial transactions, and personnel records track
employment periods. Clinical outcomes are doc-
umented in EHRs, EMRs, PHRs, or Patient Sum-
maries. This approach ensures precise event tracking,
accountability, and semantic interoperability across
healthcare systems.
Rules: The ’Why’ dimension defines healthcare rules,
distinguishing rule types (Rule) from applicable data
(Rule Context) using Peter Coad’s item-description
pattern. Rules consist of logical operations (AND,
NOT, OR, XOR) and relations (Equals, IsGreater, Is-
Less). They define role requirements and process se-
quences or interpret clinical results, ensuring precise
and flexible rule implementation across scenarios.
Money and Quantities: These models define mon-
etary values and measurements with units, ensuring
consistency across the healthcare domain. Standard-
ized units enable calculations, comparisons, and ag-
gregations, enhancing accuracy in financial transac-
tions, resource allocation, and data analysis. Inte-
grating these patterns supports data integrity and the
seamless handling of complex financial and quantita-
tive requirements.

First-order evolvability (Oei et al., 1994) allows
CRUD operations on a database. By adding fields
such as RecordId, DomainId, ValidFrom, and Record-
edBy (Piho et al., 2010a; Piho, 2011), changes can
be logged and audit-trailed. Each entity has a unique
DomainId, while every transaction is tracked with a
unique RecordId (Piho et al., 2014).

To achieve second-order evolvability (Oei et al.,
1994), we apply Peter Coad’s item-description pattern
(Coad, 1992), reducing second-order to first-order
evolvability for entity type records. By adding prop-
erty types to entity types and properties to entities
(Figure 6), we enable dynamic modifications of ’ta-

bles and columns’ or ’classes and properties’. This
ensures adaptability, where items represent core en-
tities (e.g., medical devices, patient records) and de-
scriptions store metadata for flexible model updates.

The proposed domain model aligns with the Ob-
ject Management Group’s (OMG) Meta-Object Fa-
cility (MOF) standard, supporting hierarchical ab-
straction: a) M3 Level: A universal domain model
(Single Underlying Model (Meier et al., 2019)) with
archetypes guiding system architecture and defining
M2 Level concepts; b) M2 Level: Domain ontolo-
gies such as ContSys (ISO 13940) define standard-
ized healthcare concepts, serving as an interoperabil-
ity layer (Sõerd et al., 2023); c) M1 Level: Standards
and terminologies (HL7 CDA, FHIR, openEHR,
SNOMED, LOINC, ICD, DICOM) specified by M2
Level; d) M0 Level: Practical implementations of M1
Level standards.

This hierarchical alignment ensures the domain
model remains extensible, interoperable, and com-
patible with evolving healthcare standards, support-
ing backward and forward interoperability (Bossenko
et al., 2022). Structured with the item-description
pattern and based on the ZF, the model provides
a robust foundation for healthcare data, informa-
tion and knowledge management. Integration with
OMG MOF enhances interoperability, scalability, and
adaptability, enabling efficient healthcare delivery
and secure personal health data management a within
DCAS-based PHDS.

3.3 Big Health Picture

To unify an individual’s health data under personal
ownership and control, we introduce the Big Health
Picture, inspired by the Big Blood Picture in lab-
oratory informatics. It securely stores all health-
related data, including EHRs, EMRs, lab results,
omics data, medical images, and user-collected data
from wearables and home devices. This approach
enhances privacy, interoperability, and integration
across healthcare platforms. By adopting the Big
Health Picture, individuals gain greater control over
their data while healthcare providers access accu-
rate, up-to-date information. Integrating AI and ML
ensures well-reasoned, evidence-based recommenda-
tions while preserving human decision-making (Bertl
et al., 2023c; Bertl et al., 2023b).

Developing a comprehensive Big Health Picture
requires integrating a robust domain model, such as
the one based on the ZF, with practical serializa-
tion formats for storing PHRs in PHDS within a
DCAS network. HL7 FHIR supports suitable for-
mats: a) JSON: Lightweight, human-readable, and
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Figure 7: FHIR Observation (Klementi et al., 2024).

Figure 8: One possible representation of records in Big
Health Picture.

widely used for web-based data exchange; b) Tur-
tle: RDF-based syntax (Figure 7) enabling rich se-
mantic relationships and knowledge graphs; c) FHIR
Shorthand (FSH): A domain-specific language for ef-
ficiently defining FHIR artefacts and extensions; Bal-
ancing Semantics with Syntax: The domain model de-
fines semantics, while serialization must effectively
capture data types, including text, images, and omics,
ensuring provenance and modification history.

Constructing the Big Health Picture: Represent-
ing health data as an interconnected knowledge graph
enhances analytics, clinical decision-making, and per-
sonalized medicine. The structured approach of the
ZF ensures systematic organization beyond simple
RDF triples, advocating for richer data structures
(Vinay K. Chaudhri, 2021). While RDF triples of-
fer flexibility, they may lack the efficiency needed for
dependability, interoperability, and evolvability. As
shown in Figure 8, a more advanced internal structure
provides a more precise and functional representation
of personal health data in a PHDS. Integrating a se-
mantically robust domain model with a suitable seri-
alization format is pivotal in constructing a compre-
hensive Big Health Picture. By adhering to the ZF-
based domain model and selecting appropriate data
representation methods, we try to ensure that PHRs
are stored, managed, and utilized to support interoper-
ability, scalability, and comprehensive personal health
data management.

3.4 On-the-Fly Data Transformation

The practical implementation of a Big Health Picture
requires a flexible approach to transforming health
data across formats, enabling seamless integration
with its domain model while ensuring usability for
primary and secondary purposes. Federated Semantic
Interoperability: This approach (Sõerd et al., 2023;
Randmaa et al., 2022) enables collaboration with ex-
isting healthcare IT without uniform formats or cen-
tral repositories. It supports transitioning from legacy
standards such as HL7 CDA to modern ones such as
HL7 FHIR, preserving historical data integrity while
ensuring real-time usability through dynamic conver-
sions.

Tools such as TermX (Bossenko et al., 2024a) use
visual editors and declarative languages such as FHIR
Mapping Language (FML) to enable low-code/no-
code transformations, allowing domain experts to cre-
ate rules without technical expertise. This simplifies
data transformation, improving accuracy and speed.
Bossenko et al. (Bossenko et al., 2024b) highlight
the value of reusable transformation components, or-
ganizing them hierarchically from data types to doc-
ument structures. Modular libraries streamline de-
velopment, enhance consistency, and reduce mainte-
nance effort.

Integration into DCAS Networks: In a PHDS
within a DCAS network, transformation engines must
enable on-the-fly data conversion, dynamically trans-
forming data upon access rather than storing pre-
converted copies. This approach supports federated
interoperability, reducing extensive migrations and
duplications while ensuring cost-effectiveness and ef-
ficiency. By leveraging reusable components and
tools such as TermX, real-time transformations bridge
legacy and modern health data formats. Integrat-
ing these capabilities within DCAS networks ensures
interoperability, preserves historical data, and sup-
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ports both primary care and research, making the Big
Health Picture vision achievable and sustainable.

4 DISCUSSIONS

The proposed PHDS architecture embodies the crit-
ical attributes of dependability, interoperability, and
evolvability, which are vital for addressing the com-
plexities of modern health data management.

Dependability in a PHDS is ensured through
DCAS networks, blockchain audit trails, and en-
cryption. Content-addressable storage maintains in-
tegrity, preventing unauthorized changes. Decentral-
ized Storage: DCAS distributes health data across
nodes, reducing failures and enhancing availability.
Data Integrity: Blockchain audit trails (Kask et al.,
2023b; Kask et al., 2023a) ensure transparency and
traceable transactions. Security and Privacy: Encryp-
tion, user governance, and data de-identification pro-
tect information. Explicit consent ensures GDPR and
HIPAA compliance.

The architecture’s interoperability bridges frag-
mented healthcare systems, supporting global mobil-
ity. Using semantic interoperability frameworks (Sec-
tion 3), the PHDS model enables seamless data ex-
change across formats such as HL7 FHIR, HL7 CDA,
and openEHR. Standardized Data Exchange: TermX
ensures compatibility with various formats, including
HL7 FHIR, HL7 CDA, openEHR, and OMOP CDA.
Federated Interoperability: A PHDS allows providers
and third parties to access data in the preferred for-
mats while maintaining semantic integrity. Unified
Health Data Management: A single, interoperable
master copy eliminates redundancies and improves
efficiency. The solution’s validation for primary med-
ical use is detailed in (Klementi et al., 2024) and the
Methods section.

The evolvability of the PHDS domain model en-
sures adaptability to regulatory and technological
changes. Modular Design: Its modularity enables the
seamless integration of new functionalities and data
types, such as genomic data and advanced analytics.
Regulatory Alignment: Compliance with GDPR and
HIPAA allows adaptation to evolving privacy, secu-
rity, and data governance policies. Long-Term Via-
bility: The item-description pattern ensures second-
order evolvability, supporting both immediate and fu-
ture healthcare and research needs.

The PHDS in DCAS network architecture tack-
les key challenges, including privacy, accessibility,
data fragmentation, and ownership. Privacy vs. Ac-
cessibility: The system balances research and public
health benefits with strict privacy controls (Klementi

et al., 2024). A secure DCAS network enforces en-
crypted access and requires explicit user consent for
data sharing. Resolving Data Fragmentation: By uni-
fying diverse data sources under individual control,
PHDS eliminates silos and enhances healthcare de-
livery. Semantic interoperability ensures meaningful
data use across systems. Empowering Ownership: A
PHDS places individuals at the centre of health data
governance, fostering trust and transparency in data
sharing.

With dependability, interoperability, and evolv-
ability, a PHDS offers a transformative solution for
modern health data challenges, paving the way for a
secure, efficient, and adaptable healthcare ecosystem.

5 CONCLUSIONS

A PHDS offers a transformative approach to health
data management, addressing critical dependability,
interoperability, and evolvability challenges. By em-
powering individuals with ownership and control, a
PHDS, based on Decentralized Content-Addressable
Storage (DCAS) networks, aligns with the EHDS ob-
jectives and supports societal benefits through en-
hanced healthcare delivery and advanced research op-
portunities. Currently at approximately Technology
Readiness Level 3, the system has received two re-
search grants (Estonian Research Council, 2028; Es-
tonian Research Council, 2029) to validate its appli-
cability in relevant clinical settings within the Esto-
nian e-health ecosystem.

ACKNOWLEDGEMENTS

This research has been supported by the ’ICT Pro-
gramme’ of the European Union through the Eu-
ropean Social Fund and the IT Academy research
measures (Information Technology Foundation for
Education, 2023) and by the ’Digital health for a
whole and healthy society’ (Estonian Research Coun-
cil, 2028) and ’Medication Adherence and Treat-
ment Efficacy in Patients with Dyslipidaemia and
Achievement-oriented Novel Patient Digital Support’
(Estonian Research Council, 2029) research grants.

REFERENCES

Bertl, M., Kankainen, K. J. I., Piho, G., Draheim, D., and
Ross, P. (2023a). Evaluation of data quality in the
estonian national health information system for digital
decision support. In HEDA@ STAF.

ICT4AWE 2025 - 11th International Conference on Information and Communication Technologies for Ageing Well and e-Health

336



Bertl, M., Lamo, Y., Leucker, M., Margaria, T., Moham-
madi, E., Mukhiya, S. K., Pechmann, L., Piho, G.,
and Rabbi, F. (2023b). Challenges for ai in healthcare
systems. In International Conference on Bridging the
Gap between AI and Reality, pages 165–186. Springer
Nature Switzerland Cham.

Bertl, M., Piho, G., Draheim, D., Ross, P., Pechmann,
L., Bucciarelli, N., and Sharma, R. (2023c). Future
opportunities for systematic ai support in healthcare.
In International Conference on Bridging the Gap be-
tween AI and Reality, pages 203–224. Springer.

Bossenko, I., Piho, G., Ivanova, M., and Ross, P.
(2024a). Termx: The semantic interoperability,
knowledge management and sharing platform. Soft-
wareX, 27:101839.

Bossenko, I., Piho, G., and Ross, P. (2022). Forward and
backward compatibility deign techniques applying the
hl7 fhir standard. In HEDA@ Petri Nets.

Bossenko, I., Randmaa, R., Piho, G., and Ross, P. (2024b).
Interoperability of health data using fhir mapping lan-
guage: transforming hl7 cda to fhir with reusable
visual components. Frontiers in Digital Health,
6:1480600.

Coad, P. (1992). Object-oriented patterns. Communications
of the ACM, 35(9):152–159.

Estonian Research Council (2024-2028). Digital health for
a whole and healthy society. Accessed: 2025-02-01.

Estonian Research Council (2025-2029). Medication Ad-
herence and Treatment Efficacy in Patients with Dys-
lipidaemia and Achievement-oriented Novel Patient
Digital Support.

European Commission, Directorate-General for Health and
Food Safety (2022). Proposal for a Regulation on the
European Health Data Space. Accessed: 2024-12-20.

Information Technology Foundation for Education (2018-
2023). IT Academy research support measures pro-
gramme for 2018-2022: Artificial Intelligence & Ma-
chine Learning; Data Science and Big Data; Robots-
People collaboration and the Internet of Things in In-
dustry processes. Accessed: 2024-05-23.

Kask, M., Klementi, T., Piho, G., and Ross, P. (2023a).
Maintaining data integrity in electronic health records
with hyperledger fabric. In HEDA@ STAF.

Kask, M., Klementi, T., Piho, G., and Ross, P. (2023b).
Preserving decentralized ehr-s integrity. In Telehealth
Ecosystems in Practice, pages 296–297. IOS Press.

Klementi, T., Kankainen, K. J. I., Piho, G., and Ross, P.
(2022). Prospective research topics towards preserv-
ing electronic health records in decentralised content-
addressable storage networks. In HEDA@ Petri Nets,
page 14.

Klementi, T. and Piho, G. (2024). Method and sys-
tem for managing data using decentralized content-
addressable storage networks. European patent Office,
priority number EP24166173.5. Submitted pattent.

Klementi, T., Piho, G., and Ross, P. (2024). A reference ar-
chitecture for personal health data spaces using decen-
tralized content-addressable storage networks. Fron-
tiers in Medicine, 11:1411013.

Meier, J., Klare, H., Tunjic, C., Atkinson, C., Burger, E.,
Reussner, R. H., and Winter, A. (2019). Single un-
derlying models for projectional, multi-view environ-
ments. In Hammoudi, S., Pires, L. F., and Selić, B.,
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