
PacketZapper: A Scalable and Automated Platform for IoT Traffic
Collection and Analysis

Mathias Fredrik Hedberg, Jia-Chun Lin a and Ming-Chang Lee b

Department of Information Security and Communication Technology, Norwegian University of Science and
Technology (NTNU), Gjøvik, Norway

Keywords: IoT Traffic Analysis, Automated Traffic Collection, Scalable Data Processing, Smart Homes, IoT.

Abstract: The increasing adoption of IoT devices in home environments has raised significant concerns about security
and privacy. Analyzing real IoT traffic is essential for understanding these implications, yet the process poses
challenges for researchers, requiring expertise in hardware selection, data collection, storage, and analysis.
To address these challenges, we introduce PacketZapper, an automated and scalable platform for IoT traffic
collection, processing, and analysis. PacketZapper combines existing open-source tools with custom compo-
nents to streamline research workflows. It follows a four-stage solution structure—collect, parse, store, and
process—ensuring modularity and future extensibility. The platform supports the collection of Zigbee and
433MHz traffic using commercial USB dongles, with the potential to integrate additional IoT protocols. Data
is stored in Elasticsearch, enabling efficient querying and exploration, while Apache Airflow automates task
orchestration through Directed Acyclic Graphs (DAGs). A case study evaluation demonstrated PacketZapper’s
capability to infer devices in a smart home and to facilitate effective data exploration. The platform provides a
robust foundation for reproducible IoT traffic research, addressing critical gaps in IoT traffic analysis. It offers
researchers an extensible, automated, and scalable solution for conducting diverse experiments.

1 INTRODUCTION

Smart devices have become an integral part of mod-
ern life, both in our homes and in urban environ-
ments. Common household amenities, such as light-
ing and climate control systems, have increasingly
transitioned to the Internet of Things (IoT) ecosys-
tem, offering benefits such as reduced energy con-
sumption, improved productivity, and improved over-
all health (Karlicek, 2012; Hye Oh et al., 2014).

As IoT devices continue to proliferate, significant
research has been conducted to understand potential
privacy and security risks (Apthorpe et al., 2017; Lee
et al., 2019; Ren et al., 2019; Acar et al., 2020; Gu
et al., 2020b; He et al., 2021). For instance, some
studies demonstrate that passive analysis of IoT sen-
sor data can enable high-level activity inference, al-
lowing researchers to gain insights into user interac-
tions within a home (Lee et al., 2019). Furthermore,
poor implementation of IoT systems can introduce
substantial risks to users, including threats such as
stalking and harassment (Lopez-Neira et al., 2019).

a https://orcid.org/0000-0003-3374-8536
b https://orcid.org/0000-0003-2484-4366

To address these concerns, researchers have ex-
tensively studied the security implications of IoT sys-
tems. Many of these studies rely on real-world IoT
device traffic, which can be obtained from existing
datasets (Cook et al., 2009) or captured directly in
controlled laboratory environments (Ren et al., 2019;
Hafeez et al., 2020). Existing datasets often lack
the specific details needed for research, forcing re-
searchers to capture and process their own IoT traffic.

When researchers attempt to collect their own traf-
fic data, they often face significant challenges. Cap-
turing IoT traffic requires substantial technical knowl-
edge, including expertise in networking protocols,
packet analysis, data handling, and familiarity with
tools such as Wireshark or specialized IoT monitor-
ing platforms. Moreover, current research practices
often lack detailed documentation on how packet data
is collected. Many existing research papers provide
only a broad overview of their data collection process,
leaving out critical details such as the specific tools
or configurations used, the environment in which the
data were captured and the criteria for selecting de-
vices or networks.(Lee et al., 2019; Acar et al., 2020).

Although the components necessary for a compre-

370
Hedberg, M. F., Lin, J.-C. and Lee, M.-C.
PacketZapper: A Scalable and Automated Platform for IoT Traffic Collection and Analysis.
DOI: 10.5220/0013426400003944
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Internet of Things, Big Data and Security (IoTBDS 2025), pages 370-377
ISBN: 978-989-758-750-4; ISSN: 2184-4976
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

hensive platform to analyze IoT traffic are available,
they are rarely integrated into a cohesive, automated
system. Consequently, researchers often rely on man-
ual data collection methods, which are not only error-
prone but also inefficient—particularly when using
multiple tools and systems. This gap underscores the
pressing need for an automated and versatile platform
to streamline and enhance the IoT research process.

In this paper, we introduce PacketZapper, an au-
tomated platform designed to simplify the collection
and processing of IoT device traffic and enable re-
searchers to address the above-mentioned gaps. Built
using a combination of off-the-shelf software compo-
nents and custom tools, PacketZapper offers a scal-
able solution to accelerate IoT traffic-based research.

The platform is designed to primarily target traf-
fic from IoT devices and sensors commonly found in
smart home environments, with a focus on consumer
products like smart light bulbs, motion sensors, and
other low-bandwidth devices. Scalability is a key as-
pect of its design, ensuring it can effectively address
potential constraints and bottlenecks in data capture,
storage, and processing. The primary contributions of
PacketZapper are threefold:

• Proposing a scalable, automated platform for IoT
traffic analysis.

• Releasing the platform as open-source1 for adapt-
ability and extension.

• Facilitating reproducible and efficient IoT re-
search.

The remainder of the paper is structured as follows:
Section 2 provides the background, and Section 3 re-
views related work. Section 4 introduces the design
of PacketZapper, while Sections 5 and 6 present the
implementation details and case study analysis, re-
spectively. Finally, Section 7 concludes the paper and
suggests directions for future research.

2 BACKGROUND

Since PacketZapper is designed to collect IoT traffic,
it is important to have a baseline understanding of the
protocols commonly used by IoT devices for commu-
nication. While many protocols are available, we fo-
cus specifically on the Zigbee protocol and the 433
MHz ISM band due to their widespread adoption in
home environments and their critical role in enabling
communication for a diverse range of IoT devices.

1PacketZapper, https://github.com/PacketZapper/
PacketZapper

2.1 Zigbee Protocol

Zigbee is a wireless communication protocol de-
signed to enable low-cost, low-power, and low-
data-rate communication between devices (Farahani,
2011). Built on the IEEE 802.15.4 Low-Rate Wire-
less Personal Area Network (LR-WPAN) standard,
Zigbee provides a reliable and efficient way to con-
nect, control, and monitor devices such as light bulbs,
smart sockets, and environmental sensors. Zigbee is
a key component of popular smart home ecosystems,
including Philips Hue and IKEA Trådfri. Its standard-
ized protocol ensures interoperability between de-
vices from different manufacturers.

A Zigbee network must have one coordinator and
at least one other device, either a router or an end de-
vice. While routers are optional, networks can include
multiple end devices. The coordinator is responsible
for selecting a PAN ID (both 64-bit and 16-bit) and
a communication channel to establish the network.
Once the network is formed, the coordinator func-
tions similarly to a router. Both the coordinator and
routers can allow other devices to join the network
and facilitate data routing. When an end device joins
a network through a router or coordinator, it becomes
dependent on its ”parent” (the router or coordinator
that allowed it to join) for communication. End de-
vices can transmit or receive RF data via their par-
ent. Since end devices often enter low-power sleep
modes, the parent must buffer incoming data packets
destined for the end device until it wakes up to retrieve
the data. This mechanism ensures efficient communi-
cation while optimizing power usage for end devices.
Zigbee networks can also operate in distributed archi-
tectures without a coordinator.

The Zigbee protocol supports 128-bit AES en-
cryption for message authentication and payload con-
fidentiality. However, its implementation has faced
criticism. For example, the default link key used for
device authentication was publicly leaked, introduc-
ing significant security risks (Shafqat et al., 2022).
Research also shows that encrypted traffic can still
leak substantial information (Acar et al., 2020; Gu
et al., 2020a).

Zigbee packets can be captured using inexpensive
USB dongles designed for Zigbee networks, such as
the TI CC2531. Alternatively, Software Defined Ra-
dios (SDRs) paired with GNU Radio modules can de-
code Zigbee packets (Akestoridis et al., 2020). While
SDR-based setups require more expensive hardware
and expertise, they provide greater flexibility. No-
tably, Zigbee traffic can be sniffed without network
authentication, as only the data payload is encrypted.
Programs like Wireshark can decrypt Zigbee pay-

PacketZapper: A Scalable and Automated Platform for IoT Traffic Collection and Analysis

371

loads if the necessary encryption keys are provided
(Akestoridis et al., 2020).

2.2 The 433MHz ISM Band

The 433 MHz ISM (Industrial, Scientific, and Medi-
cal) band2 is a segment of the radio frequency spec-
trum, specifically from 433.05 MHz to 434.79 MHz,
designated for unlicensed use in industrial, scientific,
and medical applications. This allocation is recog-
nized in ITU Region 1, including Europe, Africa, and
parts of the Middle East. Devices operating within
this band are typically low-power and are used for
short-range communications, such as remote controls,
wireless sensors, and certain types of RFID systems.

Smart home ecosystems like Telldus and Nexa use
the 433MHz ISM band for devices such as weather
sensors, smoke detectors, and light bulbs. However,
these systems often use proprietary communication
protocols, limiting interoperability between brands.

Capturing traffic on the 433MHz band is straight-
forward due to the simplicity of its modulation tech-
niques. Tools like the Flipper Zero3 or an SDR paired
with rtl 433 software4 can decode messages. For ex-
ample, rtl 433 can identify signals from weather sta-
tions or TPMS devices, decoding attributes like wind
speed or tire pressure. SDR devices based on the Re-
altek RTL2832U chipset, typically priced around $20,
are widely supported by rtl 433 and provide an effi-
cient solution for decoding 433 MHz traffic.

3 RELATED WORK

Numerous projects rely on real IoT traffic for infer-
ence and analysis. However, most existing platforms
are designed to focus on specific IoT protocols, such
as Zigbee, Bluetooth, or TCP/IP, and do not provide
a unified approach to traffic collection and processing
across multiple protocols.

The authors in (Ren et al., 2019) developed a
test infrastructure to automate device testing in con-
trolled IoT labs. Their system remotely controls
Android devices and collects TCP/IP traffic passing
through the router. However, their work is limited to
analyzing network-layer traffic using tools like tcp-
dump and Wireshark, without addressing wireless
protocols. The IoTSpy project (Gu et al., 2020b)
takes a different approach, using dongle-based snif-

2ISM radio band, https://en.wikipedia.org/wiki/ISM
radio band?

3Flipper Zero, https://flipperzero.one/
4rtl 433, https://github.com/merbanan/rtl 433/

fers to capture Zigbee traffic via CC2531 USB don-
gles. Their focus is on eavesdropping to infer user ac-
tivities, with Z-Wave mentioned as a potential attack
vector but left untested. Both collection and analysis
of traffic in this work were performed manually.

The authors of Zigator (Akestoridis et al., 2020)
propose a Zigbee-focused platform for analyzing
wireless traffic, utilizing SDRs for both passive sniff-
ing and active attacks. The platform is open-source
and has been used in subsequent Zigbee security stud-
ies (Akestoridis et al., 2022; Akestoridis and Tague,
2021). However, Zigator is limited to Zigbee net-
works and requires expertise in SDR tools like GNU-
Radio. Building on Zigator, Zleaks (Shafqat et al.,
2022) uses a CC2531 dongle to passively collect Zig-
bee traffic and infer user activity but does not employ
SDRs. Peek-a-Boo (Acar et al., 2020) collects traffic
from multiple IoT sources, including Zigbee, WiFi,
and Bluetooth. Although its traffic analysis contri-
butions are significant, the work lacks details about
the capture process, and the data processing seems to
have been performed manually.

While notable progress have been made in IoT
traffic collection and analysis, many platforms rely
heavily on manual processes or provide limited au-
tomation. PacketZapper distinguishes itself by in-
tegrating automated collection and processing capa-
bilities, while also being designed with scalability in
mind. Although it currently focuses on specific pro-
tocols, its modular design enables future expansion to
support IoT network protocols.

4 PacketZapper

This section introduces PacketZapper and its main ar-
chitecture. PacketZapper follows a four-stage solu-
tion structure, as shown in Figure 1. It begins with
the Collect stage, where IoT traffic is captured us-
ing protocol-specific hardware and software. Next,
the Parse stage filters and organizes raw traffic into
structured formats. The Store phase then saves the
parsed data in a scalable, searchable database for easy
retrieval. Finally, the Process stage automates work-
flows for data analysis, experiment execution, and dy-
namic adjustment of collection parameters. The se-
quential flow of data between these stages ensures a
streamlined process, while a loop from the Process
stage to the Collect stage enables automation. This
loop dynamically refines data collection based on the
results of ongoing experiments, improving the plat-
form’s efficiency and adaptability.

PacketZapper consists of three main components:
remote nodes, a centralized backend, and a user en-

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

372

Figure 1: The four-stage solution structure of PacketZapper.

vironment, as illustrated in Figure 2. Remote nodes,
located in the target IoT environment, host the Col-
lection Agent, which is a lightweight software mod-
ule responsible for capturing IoT traffic and perform-
ing basic parsing. Remote nodes use protocol-specific
hardware, such as a CC2531 USB dongle for collect-
ing Zigbee data, to capture raw IoT traffic. After ini-
tial filtering and parsing, the processed data is trans-
mitted to the backend for storage and further analysis.

The backend, hosted on a centralized server, con-
sists of four components:

• Elasticsearch5: A highly scalable, distributed
search and analytics engine built on top of Apache
Lucene, designed to handle large volumes of data.
It enables fast and efficient storage, search, and
retrieval of IoT traffic data with low latency.

• Kibana6: A powerful visualization tool that in-
tegrates seamlessly with Elasticsearch, allowing
users to explore and analyze stored data through
interactive dashboards and visualizations.

• Apache Airflow7: An open-source platform for
managing batch-oriented workflows and automat-
ing complex experimental pipelines. Built on a
flexible Python framework, Airflow enables users
to define workflows as Directed Acyclic Graphs
(DAGs), which outline the sequence of operations
for data collection and processing. Airflow’s ca-
pacity to manage large-scale data workflows plays
a central role in enabling PacketZapper’s automa-
tion capabilities.

• Jupyter Lab8: An interactive environment for
testing Python code snippets, modifying Airflow
DAGs, and prototyping experimental workflows.
It provides flexibility for tailoring workflows to
specific research needs and allows for iterative ex-
perimentation.

The user environment of PacketZapper offers in-
tuitive interfaces for managing and experimenting
with the platform. Users interact with PacketZapper
through tools like Jupyter Lab and the Airflow UI.
The Airflow UI provides a user-friendly interface for
managing workflows and monitoring their execution.

5Elasticsearch, https://www.elastic.co/elasticsearch
6Kibana, https://www.elastic.co/kibana
7Apache Airflow, https://airflow.apache.org/
8Jupyter Lab, https://jupyter.org/

Figure 2: The deployment overview of PacketZapper.

A key strength of PacketZapper lies in its integra-
tion of automation and scalability. Airflow orches-
trates workflows, allowing users to define experimen-
tal pipelines that can trigger specific actions, such
as adjusting traffic collection parameters or integrat-
ing external systems. PacketZapper’s modular design
supports horizontal scaling by deploying additional
remote nodes, making it adaptable to both small-scale
lab setups and large-scale IoT environments.

The combination of Kibana and Jupyter Lab
enhances PacketZapper’s flexibility and usability.
Kibana provides users with an intuitive graphical in-
terface for analyzing IoT traffic, while Jupyter Lab
supports customization and iterative experimentation,
ensuring PacketZapper remains versatile and aligned
with evolving research needs.

By combining a well-defined solution structure,
robust architectural design, and industry-standard
tools like Elasticsearch, Airflow, Kibana, and Jupyter
Lab, PacketZapper effectively addresses the complex-
ities of IoT traffic collection and analysis.

5 IMPLEMENTATION

PacketZapper is packaged by default to run within a
Docker runtime environment9, simplifying the setup
process. This environment uses individual Docker-
files to manage the installation of dependencies re-
quired for each component of the platform. Addi-
tionally, docker-compose files orchestrate the overall
setup by handling networking, storage, and basic sys-
tem configurations. This approach enables quick and
straightforward installation of the platform while of-
fering users the flexibility to customize their deploy-
ment. For example, users can scale specific compo-
nents or integrate new ones as needed.

The use of Docker also makes it transparent how
PacketZapper can be installed on bare-metal environ-
ments. Users with DevOps experience can adapt the
code to run on a variety of hardware configurations,
or outsource specific components, such as the Elas-
ticsearch instance, to third-party cloud providers. In

9docker, https://www.docker.com/products/
container-runtime/

PacketZapper: A Scalable and Automated Platform for IoT Traffic Collection and Analysis

373

this section, we describe the implementation of each
component of PacketZapper.

5.1 Collection Agent

The Collection Agent is responsible for collecting
and parsing IoT traffic, using physical hardware like
CC2531 USB dongles for Zigbee traffic (via whsniff)
and RTL-SDR dongles for 433MHz data (via rtl 433).
The agent formats the collected data as JSON strings
and sends it to an Elasticsearch database. It runs a
lightweight REST API built with the Python FastAPI
framework, enabling full remote control and scalabil-
ity across multiple instances.

The agent is implemented in Python 3.9 and is
packaged to run within a Docker environment for easy
deployment on various hardware, from Raspberry Pi
(ARM-based) to x86 servers. While the default setup
runs in Docker, the agent can also be executed directly
on the host system. The code is modular and designed
for extensibility, making it straightforward to add sup-
port for additional dongles or protocols. However,
due to reliance on UNIX pipes, Windows-only pars-
ing software is currently unsupported.

The Collection Agent runs in Docker, isolating it
from the host system, including USB devices. While
USB passthrough works on Linux systems by run-
ning the container in privileged mode and exposing
the USB bus, it is not fully supported on macOS due
to Docker’s virtualization limitations. macOS users
must run the agent directly on the host.

To function, the agent requires the Elasticsearch
endpoint and connectivity to the Airflow service. The
default Docker configuration handles this out of the
box, but remote deployments may require additional
network setup, such as creating an encrypted tunnel.

Data is sent to Elasticsearch in batches of 10–50
items to avoid overloading the server with HTTP re-
quests. While currently hard-coded for each protocol,
dynamically adjusting the batch size would improve
performance, particularly in low-traffic scenarios.

The agent exposes a REST API on port 8000, with
endpoints for starting, stopping, and checking the sta-
tus of sniffing processes. HTTP POST handles state-
changing (start/stop), while GET retrieves status info.
The API also includes auto-generated OpenAPI doc-
umentation for easy testing and debugging.

5.1.1 Zigbee Support

Zigbee support was implemented using TI CC2531
USB dongles, an inexpensive and widely available
hardware option. The dongle requires flashing with
alternate sniffing firmware, available from TI, using

external hardware like a CC-debugger10. Projects
such as Zigbee2MQTT11 provide detailed flashing in-
structions for various operating systems. The open-
source whsniff software12 is used with the CC2531
dongle to sniff and decode Zigbee traffic into PCAP
format. The output is piped through tshark to con-
vert the data into JSON format for ingestion into
Elasticsearch. While the encrypted Zigbee payload
remains undeciphered, the headers across the OSI
packet structure are preserved and readable.

5.1.2 433MHz Support

433MHz message decoding was implemented using
the Nooelec NESDR SMART dongle and the open-
source rtl 433 software, which utilizes generic SDR
receivers (e.g., Realtek RTL2832U chipset) to de-
code signals from devices such as temperature sen-
sors, garage door openers, and remote controls.

During testing, rtl 433 detected nearby environ-
mental sensors transmitting temperature and humid-
ity data. Adding the -F json flag enables live
JSON export to STDOUT for Elasticsearch ingestion.
The software supports various command-line options
for filtering signals, and users can pass extra argu-
ments via the Collection Agent API using the EX-
TRA ARGS variable in a POST request.

5.2 Elasticsearch

PacketZapper uses Elasticsearch as the primary stor-
age for traffic data, chosen for its dynamic data map-
ping and advanced query capabilities. It enables com-
plex searches, such as calculating average Zigbee
packet size over 10-minute intervals or grouping data
by source/destination. No fixed JSON structure is en-
forced, allowing flexibility to add new protocols as
long as Elasticsearch can process them. An index
template ensures proper data interpretation, storing all
traffic in the ”packetzapper” index. Users can filter by
the sniffer key to distinguish protocols, e.g., Zigbee
traffic labeled as whsniff.

5.3 Kibana for Data Visualizations

PacketZapper includes Kibana to simplify the ex-
ploration and visualization of data stored in Elastic-
search. Kibana offers a user-friendly interface for cre-
ating powerful visualizations, combining them into
dashboards, and enabling users to identify trends and

10CC-debugger, https://www.ti.com/tool/
CC-DEBUGGER

11Zigbee2MQTT, https://www.zigbee2mqtt.io/
12whsniff, https://github.com/homewsn/whsniff

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

374

gain insights through advanced filtering and aggre-
gation. Its built-in search functionality supports in-
tricate queries, such as fuzzy matching and range
searches. Users can export filters or visualizations
as DSL queries and run them directly against Elas-
ticsearch via scripts for task automation.

5.4 Airflow for Task Automation

PacketZapper uses Apache Airflow to automate
pipelines, from data collection to inference calcula-
tion, via DAG files defining task sequences. It runs
Airflow in Docker, based on the official image, al-
lowing users to add dependencies like Python Elas-
ticsearch packages. The setup, deployed with docker-
compose.yml, includes an internal bridge network for
seamless communication between Airflow, Jupyter,
the Collection Agent, and Elasticsearch. It also in-
tegrates internal services like PostgreSQL and Redis.
The DAGs folder is bind-mounted, enabling modifi-
cations from both the host OS and Jupyter.

5.5 JupyterLab

PacketZapper includes a JupyterLab instance for re-
mote system management and prototyping collec-
tion pipelines before integrating them into Airflow
DAGs. JupyterLab has access to all configured ser-
vices and supports collaboration, allowing multiple
users to connect. It also provides a command line for
installing Python packages and dependencies.

The Airflow /dags folder is mounted in Jupyter-
Lab, and installing the apache-airflow package via
pip enables IDE code completion for DAG develop-
ment. While JupyterLab is useful for prototyping,
full system management (e.g., managing Docker con-
tainers) must be done on the host. On Linux, pass-
ing the Docker socket could allow such commands
from JupyterLab, but this was avoided to maintain
platform-agnostic compatibility.

6 CASE STUDY ANALYSIS

To evaluate PacketZapper’s capabilities in automating
IoT traffic collection and inference tasks, a lab envi-
ronment was set up in a residential apartment, and a
case study was conducted using commonly used IoT
devices. The environment was designed to simulate
a smart home installation while remaining non-RF-
isolated, meaning it also captured signals from neigh-
boring smart devices like power meters, weather sta-
tions, and other Zigbee networks. This setup reflects

realistic conditions where wireless signals overlap, in-
troducing challenges similar to those faced in real-
world environments. An overview of the lab setup
is shown in Figure 3.

Figure 3: The lab environment for evaluating PacketZapper.

The lab environment included a VyOS virtual
router connected to an isolated subnet, configured
with NAT, DHCP, DNS, and basic firewall rules. A
Raspberry Pi 3B running Raspberry Pi OS Lite was
connected via Ethernet, equipped with a ConBee II
Zigbee dongle and running the Phoscon and deCONZ
applications. The Zigbee network included a mix of
devices: one smart socket, two environment sensors,
and one smart light (see Table 1). The deCONZ appli-
cations provided detailed insight into the Zigbee net-
work, such as MAC addresses, device types, and link
quality, which were used to confirm the device con-
figurations.

Table 1: List of devices connected to the Zigbee network.
Device Function MAC Address
ConBee II Zigbee gateway node

(Zigbee coordinator)
00:21:2e:ff:ff:06:0b:e4

Hue Bloom Desk lamp (Zigbee
router)

00:17:88:01:0c:67:e6:27

Hue Smart Plug Smart socket relay
switch (Zigbee router)

00:17:88:01:0b:e1:19:53

Hue Motion sensor Environment sensor
(end device)

00:17:88:01:0b:d0:aa:cf

Aquara temperature Environment sensor
(end device)

00:15:8d:00:05:44:ee:f6

The lab setup also ensured that a potential threat
actor would have no physical access to devices or
equipment, forcing all inference tasks to rely on wire-
less signals alone. This aligns with realistic smart
home threat models.

For this case study, Apache Airflow was exten-
sively used to automate all tasks, while JupyterLab fa-
cilitated the creation of Airflow DAGs and debugging
of the code used within them. A simple DAG was cre-
ated to automate the inference pipeline (as shown in
Figure 4), consisting of the following tasks:

1. pz online: Verifies that the Collection Agent is
online and responsive.

2. pz start: Starts Zigbee sniffing.

3. pz sleep: Waits for 5 minutes to collect sufficient
data.

PacketZapper: A Scalable and Automated Platform for IoT Traffic Collection and Analysis

375

4. pz stop: Stops Zigbee packet capture.

5. zleaks infer: Runs inference tasks and posts re-
sults back to Elasticsearch.

Figure 4: Screenshot of the DAG graph view for the infer-
ence pipeline.

This pipeline is simple yet fully automated and
can be extended to perform additional tasks. In this
case study, we configured it to run only when manu-
ally triggered. The Collection Agent Python client li-
brary was used to interact with the API in a Pythonic
manner. The zleaks infer task contains the logic for
performing inference operations, including identify-
ing the number of devices on the network, such as
the Zigbee coordinator, routers, and end devices. The
task executes these inferences and posts the results to
Elasticsearch, where users can view them.

To identify the number of Zigbee routers, denoted
by ZR, we applied the formula described in (Shafqat
et al., 2022) on broadcast packets with a Zigbee radius
value of 1, as shown in Equation 1:

ZR =
packet payload length−2

3
(1)

To implement this in Airflow, we first validated
the approach in Kibana by filtering packets with a
destination address of 0xffff and a network radius of
1. After verifying the Zigbee payload length formula,
we implemented the logic in Python and integrated it
into the zleaks infer task in Airflow.

Implementing functionality to identify the number
of active Zigbee end devices on the network proved
challenging, as the methodologies described in pre-
vious works (Akestoridis et al., 2020; Shafqat et al.,
2022) were vague. To address this, we created a
Kibana dashboard to explore the collected data and
identify potential methods for implementation in Air-
flow. Figure 5 shows a screenshot of this workflow,
where the dashboard presents graphical representa-
tions of traffic grouped by different source addresses
and message types.

Through the process of analyzing data in Kibana
and referencing the Zigbee and LR-WPAN specifi-
cations (ZigBee, 2015; LR-WPANs, 2011), we dis-
covered that end devices that do not perform routing
could be identified by searching for data requests con-
taining the WPAN long address instead of the short
address, as suggested in (Akestoridis et al., 2020;
Shafqat et al., 2022). However, we also observed that
certain devices, like the Hue Motion Sensor, despite
being battery-powered, behaved as Zigbee routers by

Figure 5: Example usage of PacketZapper for capturing and
analyzing Zigbee traffic.

relaying messages. Consequently, it did not appear
as an end device using our newly developed tech-
nique. Ultimately, we were only able to identify the
Aqara temperature sensor as an end device, indicat-
ing that the methodology described in (Shafqat et al.,
2022) may be inaccurate, though our process brought
us close to the correct value.

To identify the Zigbee coordinator by its MAC ad-
dress, we filtered for packets with the Zigbee source
address of 0x0000 and retrieved the most recent 64-
bit source MAC address. We integrated all this func-
tionality into the zleaks infer task and triggered the
Airflow DAG using the web interface. The progress
was monitored, and results were viewed in Kibana.
The inference results are summarized in Table 2.

Table 2: Inference results compared to true values.

Inferred item True value Inference Result
Device count 5 5
Zigbee routers 2 2
End devices 2 1
Coordinator MAC 00:21:2e:ff:ff:06:0b:e4 00:21:2e:ff:ff:06:0b:e4

As shown in the table, we successfully inferred
several network attributes using passive methods.
However, we were unable to determine the correct
number of end devices, either using the technique de-
scribed in (Shafqat et al., 2022) or through our own
developed methods. This discrepancy stems from
the limitations of the inference techniques rather than
any shortcomings of the platform itself. Overall, this
case study demonstrates that the platform is a suitable
choice for conducting inference experiments. It effec-
tively showcased its capabilities for task automation,
as well as for developing and debugging methods.

7 CONCLUSIONS AND FUTURE
WORKS

In this paper, we introduced PacketZapper, an auto-
mated and scalable platform for IoT traffic collec-

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

376

tion, processing, and analysis, streamlining research
workflows from traffic capture to inference tasks. Its
design is based on a four-stage solution structure,
combining reusable software components with future
extensibility. Currently, the platform supports Zig-
bee and 433MHz traffic collection through horizon-
tally scalable Collection Agents, with Elasticsearch
managing data storage and Apache Airflow enabling
workflow automation.

The case study demonstrated PacketZapper’s ef-
fectiveness in automating tasks and supporting data
exploration, successfully addressing the challenges
of IoT traffic collection and automation. While the
platform presents a learning curve, particularly with
Python, Elasticsearch, and Airflow, it offers signif-
icant flexibility and advanced functionality for re-
searchers. Future enhancements, such as support for
additional protocols like Bluetooth and Z-Wave, will
further extend its applicability and relevance in IoT
traffic research.

ACKNOWLEDGEMENT

This work received funding from the Research Coun-
cil of Norway through the SFI Norwegian Centre for
Cybersecurity in Critical Sectors (NORCICS), project
no. 310105.

REFERENCES

Acar, A., Fereidooni, H., Abera, T., Sikder, A. K., Miet-
tinen, M., Aksu, H., Conti, M., Sadeghi, A.-R., and
Uluagac, S. (2020). Peek-a-boo: I see your smart
home activities, even encrypted! In Proceedings of
the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 207–218.

Akestoridis, D.-G., Harishankar, M., Weber, M., and Tague,
P. (2020). Zigator: Analyzing the security of zigbee-
enabled smart homes. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, pages 77–88.

Akestoridis, D.-G., Sekar, V., and Tague, P. (2022). On
the Security of Thread Networks: Experimentation
with OpenThread-Enabled Devices. In Proceedings
of the 15th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, pages 233–244.

Akestoridis, D.-G. and Tague, P. (2021). HiveGuard: A
Network Security Monitoring Architecture for Zigbee
Networks. In 2021 IEEE Conference on Communi-
cations and Network Security (CNS), pages 209–217.
IEEE.

Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A.,
and Feamster, N. (2017). Spying on the smart home:
Privacy attacks and defenses on encrypted iot traffic.
arXiv preprint arXiv:1708.05044.

Cook, D., Schmitter-Edgecombe, M., Crandall, A.,
Sanders, C., and Thomas, B. (2009). Collecting and
disseminating smart home sensor data in the CASAS
project. In Proceedings of the CHI workshop on devel-
oping shared home behavior datasets to advance HCI
and ubiquitous computing research, pages 1–7. IEEE.

Farahani, S. (2011). ZigBee wireless networks and
transceivers. newnes.

Gu, T., Fang, Z., Abhishek, A., Fu, H., Hu, P., and Mo-
hapatra, P. (2020a). IoTGaze: IoT security enforce-
ment via wireless context analysis. In IEEE INFO-
COM 2020-IEEE Conference on Computer Commu-
nications, pages 884–893. IEEE.

Gu, T., Fang, Z., Abhishek, A., and Mohapatra, P. (2020b).
Iotspy: Uncovering human privacy leakage in iot net-
works via mining wireless context. In 2020 IEEE 31st
Annual International Symposium on Personal, Indoor
and Mobile Radio Communications, pages 1–7. IEEE.

Hafeez, I., Antikainen, M., Ding, A. Y., and Tarkoma, S.
(2020). IoT-KEEPER: Detecting malicious IoT net-
work activity using online traffic analysis at the edge.
IEEE Transactions on Network and Service Manage-
ment, 17(1):45–59.

He, X., Yang, Y., Zhou, W., Wang, W., Liu, P., and Zhang,
Y. (2021). Fingerprinting mainstream iot platforms
using traffic analysis. IEEE Internet of Things Jour-
nal, 9(3):2083–2093.

Hye Oh, J., Ji Yang, S., and Rag Do, Y. (2014). Healthy,
natural, efficient and tunable lighting: four-package
white leds for optimizing the circadian effect, color
quality and vision performance. Light: Science & Ap-
plications, 3(2):e141–e141.

Karlicek, R. F. (2012). Smart lighting-beyond simple illu-
mination. In 2012 IEEE Photonics Society Summer
Topical Meeting Series, pages 147–148. IEEE.

Lee, M.-C., Lin, J.-C., and Owe, O. (2019). PDS: Deduce
elder privacy from smart homes. Internet of Things,
7:100072.

Lopez-Neira, I., Patel, T., Parkin, S., Danezis, G., and
Tanczer, L. (2019). ‘internet of things’: How abuse
is getting smarter.

LR-WPANs (2011). IEEE Standard for Local and
metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs).
https://ieeexplore.ieee.org/document/6012487. [On-
line; accessed 02-February-2025].

Ren, J., Dubois, D. J., Choffnes, D., Mandalari, A. M.,
Kolcun, R., and Haddadi, H. (2019). Information
exposure from consumer iot devices: A multidimen-
sional, network-informed measurement approach. In
Proceedings of the Internet Measurement Conference,
pages 267–279.

Shafqat, N., Dubois, D. J., Choffnes, D., Schulman, A.,
Bharadia, D., and Ranganathan, A. (2022). Zleaks:
Passive inference attacks on Zigbee based smart
homes. In International Conference on Applied
Cryptography and Network Security, pages 105–125.
Springer.

ZigBee (2015). ZigBee Specification. https:
//zigbeealliance.org/wp-content/uploads/2019/11/
docs-05-3474-21-0csg-zigbee-specification.pdf.
[Online; accessed 02-February-2025].

PacketZapper: A Scalable and Automated Platform for IoT Traffic Collection and Analysis

377

