
Towards Optimizing Cost and Performance for Parallel Workloads in
Cloud Computing

William Maas1, Fábio Diniz Rossi2, Marcelo C. Luizelli3, Philippe O. A. Navaux1 and
Arthur F. Lorenzon1

1Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
2Campus Alegrete, Federal Institute Farroupilha, Brazil
3Campus Alegrete, Federal University of Pampa, Brazil

fabio.rossi@iffarroupilha.edu.br, marceloluizelli@unipampa.edu.br, {wbmaas, navaux, aflorenzon}@inf.ufrgs.br

Keywords: Parallel Computing, Cloud Computing, Cost, Performance.

Abstract: The growing popularity of data-intensive applications in cloud computing necessitates a cost-effective ap-
proach to harnessing distributed processing capabilities. However, the wide variety of instance types and con-
figurations available can lead to substantial costs if not selected based on the parallel workload requirements,
such as CPU and memory usage and thread scalability. This situation underscores the need for scalable and
economical infrastructure that effectively balances parallel workloads’ performance and expenses. To tackle
this issue, this paper comprehensively analyzes performance, costs, and trade-offs across 18 parallel workloads
utilizing 52 high-performance computing (HPC) optimized instances from three leading cloud providers. Our
findings reveal that no single instance type can simultaneously offer the best performance and the lowest costs
across all workloads. Instances that excel in performance do not always provide the best cost efficiency, while
the most affordable options often struggle to deliver adequate performance. Moreover, we demonstrate that
by customizing instance selection to meet the specific needs of each workload, users can achieve up to 81.2%
higher performance and reduce costs by 95.5% compared to using a single instance type for every workload.

1 INTRODUCTION

Applications that handle massive data volumes, such
as machine learning, data mining, and health simula-
tions, are becoming increasingly prominent in cloud
computing (Navaux et al., 2023). These workloads
leverage the distributed processing capabilities of
cloud servers to execute high-performance computing
(HPC) tasks to reduce the execution time of the entire
workload. However, the extensive variety of available
instance types and configurations poses a challenge,
often leading to substantial operational costs. This is-
sue is exacerbated by the slowing efficiency gains in
newer hardware generations resulting from the end of
Dennard scaling (Baccarani et al., 1984). As a result,
cloud servers require a scalable and cost-effective in-
frastructure to efficiently run applications, providing
resources on demand via the Internet. Consequently,
choosing the most suitable instance type for a given
workload is critical for optimizing performance and
cost-efficiency.

However, optimizing the cost-performance bal-
ance for parallel workloads in the cloud is challenging

due to the wide variety of instance types, each with
distinct computational capabilities and pricing mod-
els. AWS, Google Cloud, and Azure offer general-
purpose and compute-optimized instances tailored for
specific workloads (AWS, 2024). However, selecting
the best instance becomes more complex when work-
loads with different characteristics must be matched
to the most suitable option across multiple cloud plat-
forms. Moreover, parallel execution improves perfor-
mance by utilizing available computational resources,
but gains are not always proportional to core count.
Off-chip bus saturation, shared memory contention,
and synchronization overhead (Suleman et al., 2008;
de Lima et al., 2024) can limit scalability, making
higher core counts ineffective for some workloads.
For instance, increasing from 32 to 64 vCPUs may not
accelerate machine learning tasks. Achieving an opti-
mal cost-performance trade-off requires selecting in-
stances based on workload-specific thread-level paral-
lelism (TLP). However, varying workload behaviors
and memory access patterns mean an instance effi-
cient for one task may be suboptimal for another.

Given the scenario discussed above, we present

Maas, W., Rossi, F. D., Luizelli, M. C., Navaux, P. O. A. and Lorenzon, A. F.
Towards Optimizing Cost and Performance for Parallel Workloads in Cloud Computing.
DOI: 10.5220/0013421600003950
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 231-238
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

231



a comprehensive cost-performance evaluation when
running eighteen parallel workloads with varying
memory and CPU usage and TLP degree require-
ments across 52 HPC- and Compute-optimized in-
stances of different types from three major cloud
providers: Google Cloud Platform (GCP), Amazon
Web Services (AWS), and Microsoft Azure. Through
this extensive set of experiments, we show that: (i)
Given the characteristics of each parallel workload re-
garding CPU and memory usage, no single instance
can provide the best performance, the lowest cost,
and the best trade-off between both across all eigh-
teen parallel workloads simultaneously. (ii) Selecting
the most suitable instance for each workload based
on its specific characteristics regarding thread scala-
bility, we show that it is possible to achieve a 35.7%
improvement in performance and a 6.5% reduction in
costs compared to using the same instance type that
delivers the best results for the entire set of workloads.
(iii) The provided Microsoft Copilot tool in Azure to
recommend the best instance for running each parallel
workload cannot find the most suitable instance as it
does not consider the intrinsic characteristics of par-
allel applications, such as thread scalability.

2 BACKGROUND

2.1 Cloud Computing

Cloud computing has become the standard for run-
ning applications, offering on-demand resources (Liu
et al., 2012). Initially, compute-intensive applica-
tions like Big Data faced challenges due to hyper-
visor overhead, despite efforts to ensure elasticity
and availability (Barham et al., 2003). To address
this, lightweight container technologies like Docker
emerged, offering near-native performance. Docker
has become the leading framework for developing
and running containerized applications, encapsulating
necessary components for efficient execution. Docker
is widely used for deploying parallel workloads, pro-
viding isolated environments with all dependencies.
Its lightweight nature minimizes virtualization over-
head, making it ideal for HPC applications. This
enables efficient scaling across multiple nodes, op-
timizing cloud-based HPC infrastructures. As a re-
sult, companies like NVIDIA, AMD, and Intel use
Docker to optimize workloads for cloud execution.
Cloud providers offer instance types tailored to spe-
cific workloads. Compute-optimized instances, such
as AWS’s C-series and Azure’s F-series, prioritize
CPU performance for data processing but come at a
higher cost. HPC-optimized instances, like AWS’s

H-series and Azure’s HBv3-series, feature advanced
architectures and high-speed interconnects, offering
maximum performance for scientific simulations and
large-scale data analysis.

2.2 Thread Scalability

When executing parallel workloads in cloud environ-
ments, developers often maximize resource use, in-
cluding vCPUs and cache memory. However, studies
indicate that this approach may not yield optimal per-
formance (Suleman et al., 2008; Subramanian et al.,
2013). Performance limitations arise from software
and hardware factors such as off-chip bus saturation,
concurrent shared memory accesses, and data syn-
chronization. Off-Chip Bus Saturation: Applica-
tions requiring frequent memory access may experi-
ence scalability issues when memory bandwidth bot-
tlenecks. As more threads are added, the connec-
tion’s bandwidth remains limited by I/O pins (Ham
et al., 2013), leading to increased power consump-
tion without performance gains. Concurrent Shared
Memory Accesses: Performance can degrade when
multiple threads frequently access shared memory lo-
cations. Since these accesses occur in distant mem-
ory areas like last-level cache, they introduce higher
latency than private caches, potentially creating bot-
tlenecks (Subramanian et al., 2013). Data Syn-
chronization: Threads accessing shared variables re-
quire synchronization to maintain correctness. How-
ever, only one thread can access a critical section at
a time, forcing others to wait. As the number of
threads increases, serialization effects become more
pronounced, limiting application scalability (Suleman
et al., 2008).

2.3 Related Work

Recent studies have explored parallel computing in
cloud environments and parallel workload optimiza-
tion. Ekanayake et al. (Ekanayake and Fox, 2010)
examined cloud-based parallel processing for scien-
tific applications, highlighting distributed comput-
ing’s ability to handle intensive workloads. Rak et al.
(Rak et al., 2013) developed a cost-prediction method
combining benchmarking and simulation, aiding in
cloud cost management. Rathnayake et al. (Rath-
nayake et al., 2017) introduced CELIA, an analytical
model optimizing cloud resource allocation by bal-
ancing execution time and costs. Wan et al. (Wan
et al., 2020) proposed a cost-performance model us-
ing queuing systems to enhance workload manage-
ment. Several works focus on parallel workload op-
timization. Zhang et al. (Zhang et al., 2020) de-

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

232



0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.50 1.00

A
v
er

a
g
e 

IP
C

LLC Miss Ratio

ST BFS JA

FFT SP CG

HPCG MG MG

UA LL SC

FT LU HS

BT LBM PO

Figure 1: Characteristics of each parallel workload regard-
ing the average IPC and LLC Miss Ratio on the AWS c6a
32xlarge instance type.

veloped the EPRD algorithm to minimize schedul-
ing durations for precedence-constrained tasks. Li
et al. (Li et al., 2020) introduced AdaptFR, accel-
erating distributed machine learning training through
scalable resource allocation. Ohue et al. (Ohue et al.,
2020) demonstrated cloud computing’s adaptability
for protein-protein docking simulations. Bhardwaj et
al. (Bhardwaj et al., 2020) tackled task scheduling
in parallel cloud jobs, improving efficiency. Hauss-
mann et al. (Haussmann et al., 2019b) evaluated cost-
performance trade-offs using reserved and volatile
processors. Their later work (Haussmann et al.,
2019a) optimized processor counts for irregular par-
allel applications. They also introduced an elasticity
description language to enhance resource allocation
in cloud deployments (Haussmann et al., 2020).

3 METHODOLOGY

3.1 Parallel Workloads

Eighteen parallel workloads from assorted bench-
mark suites already written in C/C++ and paral-
lelized with OpenMP (OpenMulti Processing) API
were selected for evaluation. Seven benchmarks are
from the NAS Parallel Benchmark (Bailey et al.,
1995), used to evaluate the performance of paral-
lel hardware and software: BT (Block Tridiago-
nal), CG (Conjugate Gradient), FT (Fourier Trans-
form), LU (LU Decomposition), MG (Multigrid), SP
(Scalar Pentadiagonal), and UA (Unstructured Adap-
tive). Three applications from the Rodinia bench-
mark suite (Che et al., 2009), used to identify per-
formance bottlenecks and compare different comput-
ing platforms: HS (HotSpot), LUD (LU Decomposi-
tion with Data Redistribution), and SC (Streamclus-
ter). Two workloads from the Parboil suite (Strat-
ton et al., 2012), a set of applications used to study
the performance of throughput computing architec-
tures: BFS (Breadth-First Search) and LBM (Lat-
tice Boltzmann Method). Six from distinct domains:

FFT (Fast Fourier Transform) (Brigham and Mor-
row, 1967), HPCG (High-Performance Conjugate
Gradient)(Heroux et al., 2013), JA (Jacobi iteration),
LULESH (Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics) (Karlin et al., 2013),
PO (Poisson Equation), and ST (Stream).

The applications were executed with the standard
input set defined on each benchmark suite. We com-
piled each application with gcc/g++ 12.0, using the
-O3 optimization flag. The chosen benchmarks cover
a wide range of parallel workloads when considering
the average instructions per cycle (IPC) and last-level
cache (LLC) memory behavior on the target architec-
tures, as shown in Figure 1 for the AWS c6a 32xlarge
instance type. We consider the IPC metric as it re-
flects how CPU- or memory-intensive each applica-
tion is. On the other hand, the amount of LLC misses
represents the number of DRAM memory accesses.
Hence, the higher the LLC miss ratio, the more time
the threads spend accessing data from the main mem-
ory, impacting its IPC.

3.2 Target Instances

We consider a set of fifty-two cloud instances from
the compute- and HPC-optimized domains (Table 1).
The selected instances consider different processors,
including AMD, Intel, and ARM (AWS Graviton). In
addition to choosing various instance types, we se-
lected different configurations (i.e., variations in Ta-
ble 1) within the same instance type, each with vary-
ing numbers of available vCPUs. This setup allows us
to examine how performance and cost efficiency are
impacted by scaling computational resources within
the same instance family. For example, within the
AWS c7g series, we considered instances with 8, 16,
32, 48, and 64 vCPUs to assess the ability of paral-
lel applications to leverage additional cores and mem-
ory bandwidth efficiently. Additionally, all instances
were configured to use the same operating system
(Ubuntu 22.04) and kernel version. Our analysis used
the on-demand pricing model to maintain consistency
and comparability among various instance types and
cloud providers.

3.3 Execution Environment

The process for running each workload on the cloud
instance was as follows: first, the workload binary
was placed within a Docker container to ensure iso-
lated execution, regardless of the architecture. Then,
the container was deployed for execution on the cor-
responding instance. During execution, the number of
cores assigned to the container (and thus to the work-

Towards Optimizing Cost and Performance for Parallel Workloads in Cloud Computing

233



Table 1: Characteristics of the Compute- and HPC-Optimized instances.

Instance
Type

Processor Variations vCPU’s
Cost per Hour

(USD)

gcp-h3
Intel Xeon

Platinum 8481C
std-88 88 4.93

gcp-c2
Intel Xeon

Gold 6253CL
std-8; std-16;
std-30; std-60

8; 16;
30; 60

0.34; 0.67;
1.25; 2.51

gcp-c2d
AMD EPYC

7B13
std-8; std-16;

std-32; std-56; std-112
8; 16;

32; 56; 112
0.36; 0.73;

1,45; 2.54; 5.09

aws-c6a
AMD EPYC

7R13
2xlarge; 4xlarge; 8xlarge;

16xlarge; 32xlarge; 48xlarge
8; 16; 32;

64; 128; 192
0.31; 0.61; 1.22;
2.45; 4.90; 7.94

aws-c7i
Intel Xeon

8488C
2xlarge; 4xlarge; 8xlarge; 12xlarge;

16xlarge; 32xlarge; 48xlarge
8; 16; 32; 48;
64; 96; 192

0.36; 0.71; 1.43; 2.14;
2.86; 4.28; 8.57

aws-c7g AWS Graviton3
2xlarge; 4xlarge; 8xlarge;

12xlarge; 16xlarge
8; 16; 32;

48; 64
0.29; 0.58; 1.16;

1.73; 2.31

aws-hpc7g AWS Graviton3E
4xlarge; 8xlarge;

16xlarge
16; 32;

64
1.69

aws-hpc6a
AMD EPYC

7R13
48xlarge 96 2.88

aws-hpc6id
3rd Gen Intel
Xeon Scalable

32xlarge 64 8.64

aws-hpc7a
AMD EPYC

9R14
12xlarge; 24xlarge;
48xlarge; 96xlarge

24; 48;
96; 192

7.20

azure-fsv2
Intel Xeon

Platinum 8370C
f8s v2; f16s v2; f32s v2;

f64s v2; f72s v2
8; 16; 32;

64; 72
0.34; 0.68; 1.35;

2.71; 3.05

azure-hx176
AMD EPYC

9V33X
24rs; 48rs; 96rs;

144rs; 176
24; 48; 96;
144; 176

8.64

azure-hb176
AMD EPYC

9V33X
24rs v4; 48rs v4; 96rs v4;

144rs v4; 176rs v4
24; 48; 96;
144; 176

7.20

1
2
7
.8

1
3
2
.1

1
3
4
.3

1
3
5
.2

1
3
7
.0

1
3
7
.5

1
4
1
.5

1
4
2
.2

1
4
2
.8

1
4
3
.8

1
5
2
.7

1
5
3
.2

1
6
4
.1

1
6
4
.6

1
6
4
.6

1
6
7
.2

1
7
2
.6

1
7
3
.9

1
7
5
.6

1
7
5
.8

1
7
5
.9

1
7
6
.0

1
8
3
.0

1
8
5
.9

1
9
7
.2

1
9
8
.4

2
0
2
.7

2
0
2
.9

2
0
4
.9

2
0
5
.4

2
1
9
.7

2
3
4
.5

2
4
4
.9

2
4
8
.9

2
5
5
.5

2
6
0
.9

2
6
6
.1

2
6
9
.7

2
7
5
.1

2
8
0
.4

2
8
2
.1

2
8
8
.7

2
9
4
.8

3
2
8
.2

3
9
5
.5

4
1
2
.3

4
1
6
.8

4
6
6
.4

5
1
4
.1

5
1
6
.8 6
5
4
.8

6
7
8
.8

0

200

400

600

800

c7
g
.1
2
x
la
rg
e

H
B
1
7
6
-9
6

h
p
c7
g
.1
6
x
la
rg
e

H
X
1
7
6
-4
8
rs

H
X
1
7
6
-9
6
rs

H
B
1
7
6
-4
8

c7
g
.1
6
x
la
rg
e

h
p
c7
g
.8
x
la
rg
e

c7
g
.8
x
la
rg
e

c7
i.
1
6
x
la
rg
e

c7
i.
2
4
x
la
rg
e

c7
i.
1
2
x
la
rg
e

H
B
1
7
6
-1
7
6

H
X
1
7
6
-1
4
4
rs

H
B
1
7
6
-1
4
4

H
X
1
7
6
-1
7
6

H
B
1
7
6
-2
4

c7
i.
8
x
la
rg
e

h
3
-s
td
-8
8

c2
d
-s
td
-5
6

H
X
1
7
6
-2
4
rs

h
p
c6
id
-3
2
x
la
rg
e

h
p
c6
a-
4
8
x
la
rg
e

h
p
c7
a.
4
8
x
la
rg
e

h
p
c7
a.
2
4
x
la
rg
e

h
p
c7
g
-4
x
la
rg
e

c7
g
.4
x
la
rg
e

c2
d
-s
td
-3
2

c2
d
-s
td
-1
1
2

c6
a.
1
6
x
la
rg
e

h
p
c7
a-
1
2
x
la
rg
e

c6
a.
3
2
x
la
rg
e

c2
-s
td
-6
0

c7
i.
4
8
x
la
rg
e

h
p
c7
a.
9
6
x
la
rg
e

c6
a.
4
8
x
la
rg
e

f7
2
s_
v
2

f6
4
s_
v
2

c7
i.
4
x
la
rg
e

c2
-s
td
-3
0

c6
a.
8
x
la
rg
e

f3
2
s_
v
2

c2
d
-s
td
-1
6

c7
g
.2
x
la
rg
e

c2
-s
td
-1
6

f1
6
s_
v
2

c6
a.
4
x
la
rg
e

c7
i.
2
x
la
rg
e

c2
d
-s
td
-8

c6
a-
2
x
la
rg
e

c2
-s
td
-8

f8
s_
v
2

T
im

e
 (

s)

0
.0
6
2

0
.2
6
4

0
.0
6
3

0
.3
2
4

0
.3
2
9

0
.2
7
5

0
.0
9
1

0
.0
6
6

0
.0
4
6

0
.1
1
4

0
.1
8
2

0
.0
9
1

0
.3
2
8

0
.3
9
5

0
.3
2
9

0
.4
0
1

0
.3
4
5

0
.0
6
9

0
.2
4
0

0
.1
2
4

0
.4
2
2

0
.4
2
2

0
.1
4
6

0
.3
7
2

0
.3
9
4

0
.0
9
3

0
.0
3
3

0
.0
8
2

0
.2
9
0

0
.1
4
0

0
.4
3
9

0
.3
1
9

0
.1
7
1

0
.5
9
2

0
.5
1
1

0
.5
3
2

0
.2
2
5

0
.2
0
3

0
.0
5
5

0
.0
9
7

0
.0
9
6

0
.1
0
8

0
.0
6
0

0
.0
2
6

0
.0
7
4

0
.0
7
8

0
.0
7
1

0
.0
4
6

0
.0
5
1

0
.0
4
4

0
.0
6
2

0
.0
6
4

0.00

0.20

0.40

0.60

0.80

c7
g
.1
2
x
la
rg
e

H
B
1
7
6
-9
6

h
p
c7
g
.1
6
x
la
rg
e

H
X
1
7
6
-4
8
rs

H
X
1
7
6
-9
6
rs

H
B
1
7
6
-4
8

c7
g
.1
6
x
la
rg
e

h
p
c7
g
.8
x
la
rg
e

c7
g
.8
x
la
rg
e

c7
i.
1
6
x
la
rg
e

c7
i.
2
4
x
la
rg
e

c7
i.
1
2
x
la
rg
e

H
B
1
7
6
-1
7
6

H
X
1
7
6
-1
4
4
rs

H
B
1
7
6
-1
4
4

H
X
1
7
6
-1
7
6

H
B
1
7
6
-2
4

c7
i.
8
x
la
rg
e

h
3
-s
td
-8
8

c2
d
-s
td
-5
6

H
X
1
7
6
-2
4
rs

h
p
c6
id
-3
2
x
la
rg
e

h
p
c6
a-
4
8
x
la
rg
e

h
p
c7
a.
4
8
x
la
rg
e

h
p
c7
a.
2
4
x
la
rg
e

h
p
c7
g
-4
x
la
rg
e

c7
g
.4
x
la
rg
e

c2
d
-s
td
-3
2

c2
d
-s
td
-1
1
2

c6
a.
1
6
x
la
rg
e

h
p
c7
a-
1
2
x
la
rg
e

c6
a.
3
2
x
la
rg
e

c2
-s
td
-6
0

c7
i.
4
8
x
la
rg
e

h
p
c7
a.
9
6
x
la
rg
e

c6
a.
4
8
x
la
rg
e

f7
2
s_
v
2

f6
4
s_
v
2

c7
i.
4
x
la
rg
e

c2
-s
td
-3
0

c6
a.
8
x
la
rg
e

f3
2
s_
v
2

c2
d
-s
td
-1
6

c7
g
.2
x
la
rg
e

c2
-s
td
-1
6

f1
6
s_
v
2

c6
a.
4
x
la
rg
e

c7
i.
2
x
la
rg
e

c2
d
-s
td
-8

c6
a-
2
x
la
rg
e

c2
-s
td
-8

f8
s_
v
2

C
o
st

(U
S

D
)

2
.5

1
0
.1

2
.6

1
2
.4

1
2
.5

1
0
.5

3
.6

2
.8

2
.1

4
.5

7
.0

3
.7

1
2
.5 1
5
.0

1
2
.6 1
5
.3

1
3
.2

3
.0

9
.2

4
.9

1
6
.1

1
6
.1

5
.7

1
4
.2

1
5
.0

3
.8

2
.0 3
.5

1
1
.1

5
.5

1
6
.8

1
2
.2

6
.8

2
2
.6

1
9
.5

2
0
.3

8
.8

8
.0

3
.0 4
.3

4
.3 4
.7

3
.2

2
.8 4
.2 4
.4

4
.2

4
.1 4
.5

4
.4 5
.6

5
.8

0

5

10

15

20

25

c7
g
.1
2
x
la
rg
e

H
B
1
7
6
-9
6

h
p
c7
g
.1
6
x
la
rg
e

H
X
1
7
6
-4
8
rs

H
X
1
7
6
-9
6
rs

H
B
1
7
6
-4
8

c7
g
.1
6
x
la
rg
e

h
p
c7
g
.8
x
la
rg
e

c7
g
.8
x
la
rg
e

c7
i.
1
6
x
la
rg
e

c7
i.
2
4
x
la
rg
e

c7
i.
1
2
x
la
rg
e

H
B
1
7
6
-1
7
6

H
X
1
7
6
-1
4
4
rs

H
B
1
7
6
-1
4
4

H
X
1
7
6
-1
7
6

H
B
1
7
6
-2
4

c7
i.
8
x
la
rg
e

h
3
-s
td
-8
8

c2
d
-s
td
-5
6

H
X
1
7
6
-2
4
rs

h
p
c6
id
-3
2
x
la
rg
e

h
p
c6
a-
4
8
x
la
rg
e

h
p
c7
a.
4
8
x
la
rg
e

h
p
c7
a.
2
4
x
la
rg
e

h
p
c7
g
-4
x
la
rg
e

c7
g
.4
x
la
rg
e

c2
d
-s
td
-3
2

c2
d
-s
td
-1
1
2

c6
a.
1
6
x
la
rg
e

h
p
c7
a-
1
2
x
la
rg
e

c6
a.
3
2
x
la
rg
e

c2
-s
td
-6
0

c7
i.
4
8
x
la
rg
e

h
p
c7
a.
9
6
x
la
rg
e

c6
a.
4
8
x
la
rg
e

f7
2
s_
v
2

f6
4
s_
v
2

c7
i.
4
x
la
rg
e

c2
-s
td
-3
0

c6
a.
8
x
la
rg
e

f3
2
s_
v
2

c2
d
-s
td
-1
6

c7
g
.2
x
la
rg
e

c2
-s
td
-1
6

f1
6
s_
v
2

c6
a.
4
x
la
rg
e

c7
i.
2
x
la
rg
e

c2
d
-s
td
-8

c6
a-
2
x
la
rg
e

c2
-s
td
-8

f8
s_
v
2

T
im

e-
C

o
st

T
r
a
d

e
o
ff

Figure 2: Total time (top), cost (middle), and the trade-off between both (bottom) to execute the batch of workloads on each
cloud instance. Each set of bar colors represents a different instance type. The lower the value, the better.

load) was set to the number of system cores (vCPUs
in the instance), which is the standard practice for ex-
ecuting parallel applications. To measure the execu-

tion time of each run, we used the omp get wtime
function from OpenMP. The cost to execute each con-
tainer (and therefore the workload) was calculated by

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

234



dividing the cost per hour (see Table 1) by the amount
of time taken to execute it. Moreover, to calculate
the trade-off between performance and cost, we con-
sidered the Euclidean distance from the pair of execu-
tion time and cost for each instance to the origin point,
representing the ideal scenario of zero cost and zero
execution time. This metric quantitatively measures
how close each instance is to the optimal balance be-
tween cost and performance, enabling a fair compar-
ison across all tested instances. The smaller the dis-
tance, the better the trade-off the instance achieves for
the given workload. The results discussed next are
the average of 30 executions of each container and
instance type, with a standard deviation of less than
0.5%.

4 EXPERIMENTAL EVALUATION

4.1 Performance and Cost Evaluation

In this Section, we discuss the performance and cost
of running the workload set on each target instance.
Figure 2 shows the total execution time (top), cost
(middle), and the balance between them (bottom) for
running the eighteen workloads on every instance, re-
spectively. All the results are sorted by the lowest
execution time. Moreover, for all plots, lower values
indicate a better outcome.

When processing all workloads in batch, the AWS
c7g.12xlarge instance achieves the best performance,
surpassing the Azure hb176-96 by 3.3%. In con-
trast, the Azure f8s v2 is the worst-performing in-
stance, increasing execution time by 81.1% due to its
lower vCPU count (8 vs. 48 in c7g.12xlarge). How-
ever, c7g.12xlarge was not the most cost-effective op-
tion, costing 2.33× more than c7g.2xlarge, while the
c7g.2xlarge was 95.6% cheaper than the c7i.48xlarge.
Although c7g.12xlarge delivered the best perfor-
mance and c7g.2xlarge the lowest cost, neither was
optimal for every workload. Table 2 shows that no
single instance consistently outperformed others. For
instance, BT ran best on hb176-144 with 144 vC-
PUs, FFT on hpc7g.4xlarge with 16 vCPUs, and BFS
on c6a-2xlarge with 8 vCPUs due to thread scalabil-
ity limitations. The BFS workload suffers from syn-
chronization overhead, where adding more threads
increases waiting time instead of improving perfor-
mance (Suleman et al., 2008). Similarly, workloads
like FFT and LL that require frequent memory access
face off-chip bus saturation beyond a certain thread
count. For FFT, optimal performance was achieved
with 16 vCPUs on m7g.4xlarge and hpc7g.4xlarge.
Increasing the number of vCPUs beyond this point led

0

50

100

150

200

250

300

350

0.00 0.10 0.20 0.30 0.40

E
x

e
c
u

ti
o

n
 T

im
e
 (

s)

Cost (USD)

c7g.12xlarge

c7g.2xlarge

c7g.4xlarge

Opt-Perf

Opt-Cost

Opt-Balance

GCP-Copilot

GCP-Opt

Better

B
e
tt
e
r

Figure 3: Performance and cost comparison between the
best results found by the best instances for each metric and
the strategies that optimize for each metric.

to a 5.6% execution time increase on m7g.16xlarge
and 5.01% on hpc7g.16xlarge due to bandwidth limi-
tations.

Furthermore, because threads communicate by ac-
cessing data in shared memory regions, the over-
head imposed by the shared memory accesses may
outweigh the gains achieved by the parallelism ex-
ploitation, as discussed in Section 2. This behavior
was observed for workloads with high communica-
tion demands, including SC and HPCG. In the case
of HPCG, the hx176-48rs with 48 vCPUs performed
better than the hx176 with 176 vCPUs. While we
identified thread communication as the primary rea-
son for this behavior, other factors such as thread
scheduling, data affinity, or the inherent characteris-
tics of the workload may also influence L3 cache per-
formance. For instance, a workload with a high rate
of private access to L1 and L2 caches may also result
in a rise in L3 accesses. There are also scenarios of
workloads that were able to scale by increasing the
number of hardware resources in the instances, such
as JA, LUD, and LBM (refer to Table 2).

4.2 Optimizing the Trade-off Between
Performance and Cost

In the previous section, we evaluated the performance
and cost of each instance when the entire workload
set is executed on the same instance. However, as
shown in Table 1, because no single instance can
deliver the lowest cost and execution time for all
workloads simultaneously, determining the ideal
instance to execute each workload based on its
characteristics is essential to improve performance
and reduce costs. Hence, in this section, we compare
the results of the best instances for the overall per-
formance (c7g.12xlarge), cost (c7g.2xlarge), and the
trade-off between cost and performance (c7g.4xlarge)
to the following strategies: Opt-Perf: considers the
total execution time to execute the batch of work-
loads by running each workload on the instance that
delivers the best performance, as shown in Table 2.

Towards Optimizing Cost and Performance for Parallel Workloads in Cloud Computing

235



Table 2: Ideal compute- and HPC-optimized instances found by an exhaustive search to execute each parallel workload. Each
instance has associated with it the time (in seconds) and cost (in USD) to execute the workload according to the target metric.

Opt-Performance Opt-Cost (USD) Opt-Balance
FFT hpc7g.4xlarge (19.9s) c7g.2xlarge (0.00162) c7g.8xlarge (20.0s - 0.00642)
HPCG hx176-48rs (1.9s) c7g.2xlarge (0.00051) hb176-48 (2.0s - 0.00398)
JA hb176 (0.4s) c7g.2xlarge (0.00051) hb176 (0.4s - 0.00078)
LL c7i.8xlarge (19.0s) c7g.2xlarge (0.00259) c7i.8xlarge (19.0s - 0.00755)
PO c7g.12xlarge (0.18s) c7g.2xlarge (0.00004) c7g.12xlarge (0.18s - 0.00009)
ST hpc7g.16xlarge (0.06s) c7g.8xlarge (0.00003) hpc7g.16xlarge (0.06s - 0.00003)
BT hb176-144 (2.0s) c7g.2xlarge (0.00185) hpc7g.16xlarge (3.9s - 0.00186)
CG hpc7a.96xlarge (0.4s) c7g.2xlarge (0.00029) hpc6a (0.6s - 0.00046)
FT hb176-144 (0.2s) c7g.2xlarge (0.00028) hpc7g.16xlarge (0.7s - 0.00033)
LU hb176-144 (2.1s) c7g.2xlarge (0.00094) hpc7g.16xlarge (2.5s - 0.00117)
MG hb176-144 (0.5s) c7g.2xlarge (0.00016) c7g.8xlarge (1.2s - 0.00037)
SP hx176-144rs (1.5s) c7g.2xlarge (0.00080) hpc6a (2.7s - 0.00215)
UA hx176-96rs (2.1s) c7g.2xlarge (0.00132) hpc7g.16xlarge (3.1s - 0.00145)
HS c7g.16xlarge (3.1s) c7g.2xlarge (0.00101) hpc7g.16xlarge (3.1s - 0.00146)
LUD hb176 (2.2s) c7g.2xlarge (0.00164) c7g.8xlarge (5.3s - 0.00170)
SC hb176 (19.3s) c7g.2xlarge (0.00614) c7g.12xlarge (24.5s - 0.01179)
BFS c6a.2xlarge (2.08s) c6a.2xlarge (0.00018) c6a.2xlarge (2.08s - 0.00018)
LBM hx176-96rs (5.5s) hpc6a (0.00561) hpc6a (7.0s - 0.00561)

Opt-Cost: the same as the previous, but considering
the Cost as the optimization metric. Opt-Balance:
the same as the Opt-Perf, but considering the balance
between cost and performance. GCP-Copilot:
employs the Microsoft Copilot in Azure to find the
best instance type for each workload. The provided
prompt to Copilot was: Which VM size will best
suit for the workload with IPC = XX, LLC
Misses Ratio = XX, and TLP degree = XX?,
where XX was replaced by the values shown in
Figure 1. Table 3 depicts the instances recommended
to execute each workload and compares it to the
ones that deliver the best performance found by an
exhaustive search (GCP-Opt).

It is important to note that we could not com-
pare our results with the recommendation tools pro-
vided by AWS and GCP due to the following reasons:
(i) The AWS Compute Optimizer generates recom-
mendations by analyzing resource specifications and
utilization metrics collected through Amazon Cloud-
Watch over a 14-day period, making it unsuitable
for scenarios lacking historical usage data ((AWS),
2024). (ii) Similarly, the machine-type recommen-
dations from GCP rely on system metrics gathered
by the Cloud Monitoring service during the previous
8 days, which also requires prior resource utilization
data (Cloud, 2024). These constraints made integrat-
ing these tools into our evaluation impractical, as they
depend on prior workload execution history, which
was not the case in our experimental setup.

Figure 3 depicts the results for executing all work-

loads with the discussed instances and strategies.
Each mark in the plot represents the execution time
(y-axis) and cost (x-axis) for a given instance or strat-
egy. The closer the point is to the origin (0, 0), the bet-
ter the balance between performance and cost. When
prioritizing performance, using the best instance to
execute each workload (Opt-Perf ) yields 35.5% of
performance improvements compared to the instance
that delivers the best overall performance for all work-
loads (c7g.12xlarge). When the cost is considered
as the target optimization metric, selecting the ideal
instance to execute each workload (Opt-Cost) leads
the user to save 4% compared to the best single in-
stance (c7g.2xlarge) while also reducing the total ex-
ecution time by 32.5%. When both performance and
cost are equally important for evaluation, choosing
the ideal instance to execute each workload brings
performance improvements and a lower cost to ex-
ecute the entire set of applications: Opt-Balance is
2.06 times faster while it is 1.45% more expensive
than if the application was executed on the single in-
stance that provides the best tradeoff between cost and
performance.

Regarding Microsoft Copilot in Azure Cloud, it
failed to select optimal instances for parallel work-
loads because it does not integrate critical metrics
like TLP Degree, average IPC, and LLC Miss Ra-
tio, which are essential for characterizing inter-thread
communication and memory access patterns. Copilot
relies mainly on historical data and general resource
usage, neglecting detailed microarchitectural features

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

236



Table 3: Instances recommended by the Microsoft Azure
Copilot compared to the instance that delivered the best out-
come, found by an exhaustive search.

Microsoft Azure Copilot GCP-Opt

FFT HB176-144 hb176-24

HPCG HB176-144 hx176-48rs

JA f32s v2 HB176-24

LL hx176-144rs hb176-24

PO hb176-24 NB176-48

ST hx176-48rs HB176-96

BT hx176rs-176 HB176-144

CG hx176-96rs hx176rs-176

FT f32s v2 HB176-144

LU HB176-144 HB176-144

MG hx176-96rs HB176-144

SP HB176-24 hx176-144rs

UA f64s v2 hx176-96rs

HS HB176-96 HB176-96

LUD HB176-144 HB176-176

SC hx176-144rs HB176-176

BFS NB176-48 f8s v2

LBM HB176-96 hx176-96rs

and workload-specific requirements. As a result, it
failed to identify instances that optimize performance,
cost, or both. Comparing GCP-Copilot with selecting
the best GCP instance for each workload (GCP-Opt),
Copilot was 93% more expensive and 96% slower,
emphasizing the need to incorporate thread scalabil-
ity metrics in its recommendation model.

5 CONCLUSION

Optimizing performance and cost for parallel work-
loads in cloud computing is crucial for handling data-
intensive applications efficiently. Cloud providers
like AWS, GCP, and Azure offer various HPC-
optimized instances, each with unique cost and per-
formance characteristics. However, selecting the op-
timal instance type based on CPU utilization, mem-
ory needs, and thread scalability remains challeng-
ing. This study analyzed 18 parallel workloads on
52 HPC instances to evaluate performance-cost trade-
offs. Results show that no single instance type is
universally optimal. High-performance instances ex-
cel in compute-heavy tasks but are not always cost-
efficient, while lower-cost options often fail to meet
performance needs. By matching instances to work-
load requirements, users achieved up to 81.2% better
performance and 95.5% cost savings over a generic
approach. Future work will explore GPU-based
instances and other pricing models to refine cost-

performance optimization strategies in cloud environ-
ments.

ACKNOWLEDGEMENTS

This study was financed in part by the CAPES - Fi-
nance Code 001, FAPERGS - PqG 24/2551-0001388-
1, and CNPq.

REFERENCES

AWS (2024). Amazon ec2. https://aws.amazon.com/ec2/.
[Online; accessed 19-February-2024].

(AWS), A. W. S. (2024). What is aws compute optimizer?
Accessed: 2024-12-24.

Baccarani, G., Wordeman, M. R., and Dennard, R. H.
(1984). Generalized scaling theory and its application
to a 1/4 micrometer mosfet design. IEEE Transac-
tions on Electron Devices, 31(4):452–462.

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R.,
Woo, A., and Yarrow, M. (1995). The nas parallel
benchmarks 2.0. Technical report, Technical Report
NAS-95-020, NASA Ames Research Center.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37(5):164–177.

Bhardwaj, A. K., Gajpal, Y., Surti, C., and Gill, S. S.
(2020). Heart: Unrelated parallel machines prob-
lem with precedence constraints for task schedul-
ing in cloud computing using heuristic and meta-
heuristic algorithms. Software: Practice and Expe-
rience, 50(12):2231–2251.

Brigham, E. O. and Morrow, R. E. (1967). The fast fourier
transform. IEEE Spectrum, 4(12):63–70.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W.,
Lee, S.-H., and Skadron, K. (2009). Rodinia: A
benchmark suite for heterogeneous computing. In
2009 IEEE International Symposium on Workload
Characterization (IISWC), pages 44–54.

Cloud, G. (2024). Apply machine type recommendations
for instances. Accessed: 2024-12-24.

de Lima, E. C., Rossi, F. D., Luizelli, M. C., Calheiros,
R. N., and Lorenzon, A. F. (2024). A neural network
framework for optimizing parallel computing in cloud
servers. Journal of Systems Architecture, 150:103131.

Ekanayake, J. and Fox, G. (2010). High performance par-
allel computing with clouds and cloud technologies.
In Avresky, D. R., Diaz, M., Bode, A., Ciciani, B.,
and Dekel, E., editors, Cloud Computing, pages 20–
38, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ham, T. J., Chelepalli, B. K., Xue, N., and Lee, B. C.
(2013). Disintegrated control for energy-efficient and
heterogeneous memory systems. In IEEE HPCA,
pages 424–435.

Towards Optimizing Cost and Performance for Parallel Workloads in Cloud Computing

237



Haussmann, J., Blochinger, W., and Kuechlin, W. (2019a).
Cost-efficient parallel processing of irregularly struc-
tured problems in cloud computing environments.
Cluster Computing, 22(3):887–909.

Haussmann, J., Blochinger, W., and Kuechlin, W. (2019b).
Cost-optimized parallel computations using volatile
cloud resources. In Djemame, K., Altmann, J.,
Bañares, J. Á., Agmon Ben-Yehuda, O., and Naldi,
M., editors, Economics of Grids, Clouds, Systems, and
Services, pages 45–53, Cham. Springer International
Publishing.

Haussmann, J., Blochinger, W., and Kuechlin, W. (2020).
An elasticity description language for task-parallel
cloud applications. In CLOSER, pages 473–481.

Heroux, M. A., Dongarra, J., and Luszczek, P. (2013). Hpcg
benchmark technical specification.

Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B. L.,
Cohen, J., DeVito, Z., Haque, R., Laney, D., Luke,
E., Wang, F., Richards, D., Schulz, M., and Still,
C. (2013). Exploring traditional and emerging par-
allel programming models using a proxy application.
In 27th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2013), Boston,
USA.

Li, M., Zhang, J., Wan, J., Ren, Y., Zhou, L., Wu, B., Yang,
R., and Wang, J. (2020). Distributed machine learning
load balancing strategy in cloud computing services.
Wireless Networks, 26:5517–5533.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.,
and Leaf, D. (2012). NIST Cloud Computing Refer-
ence Architecture: Recommendations of the National
Institute of Standards and Technology. CreateSpace
Independent Publishing Platform, USA.

Navaux, P. O. A., Lorenzon, A. F., and da Silva Serpa, M.
(2023). Challenges in high-performance computing.
Journal of the Brazilian Computer Society, 29(1):51–
62.

Ohue, M., Aoyama, K., and Akiyama, Y. (2020). High-
performance cloud computing for exhaustive protein-
protein docking.

Rak, M., Cuomo, A., and Villano, U. (2013).
Cost/performance evaluation for cloud applications
using simulation. In 2013 Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, pages 152–157.

Rathnayake, S., Loghin, D., and Teo, Y. M. (2017).
Celia: Cost-time performance of elastic applications
on cloud. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 342–351.

Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang,
L.-W., Anssari, N., Liu, G. D., and Hwu, W.-m. W.
(2012). Parboil: A revised benchmark suite for sci-
entific and commercial throughput computing. Cen-
ter for Reliable and High-Performance Computing,
127:27.

Subramanian, L., Seshadri, V., Kim, Y., Jaiyen, B., and
Mutlu, O. (2013). MISE: Providing performance
predictability and improving fairness in shared main
memory systems. In IEEE HPCA, pages 639–650.

Suleman, M. A., Qureshi, M. K., and Patt, Y. N.
(2008). Feedback-driven Threading: Power-efficient
and High-performance Execution of Multi-threaded
Workloads on CMPs. SIGARCH Computer Architec-
ture News, 36(1):277–286.

Wan, B., Dang, J., Li, Z., Gong, H., Zhang, F., and Oh, S.
(2020). Modeling analysis and cost-performance ratio
optimization of virtual machine scheduling in cloud
computing. IEEE Transactions on Parallel and Dis-
tributed Systems, 31(7):1518–1532.

Zhang, L., Zhou, L., and Salah, A. (2020). Efficient sci-
entific workflow scheduling for deadline-constrained
parallel tasks in cloud computing environments. In-
formation Sciences, 531:31–46.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

238


