Keywords:

Abstract:

L2C: Learn to Clean Time Series Data

Mayuresh Hooli®®? and Rabi Mahapatra

Texas A&M University, College Station, U.S.A.
{mayurhooli, rabi} @tamu.edu

Data Cleaning, Machine Learning, Time Series Analysis, Outlier Detection, Data Imputation, Internet of
Things (I0T), Support Vector Regression (SVR).

In today’s data-driven economy, where decisions hinge on vast amounts of data from diverse sources such as
social media and government agencies, the accuracy of this data is paramount. However, data complexities
including errors from missing information and outliers challenge its integrity. To address this, we introduce a
novel machine learning framework, L2C (Learn to Clean), specifically designed to enhance the cleanliness of
time series data. Unlike existing methods like SVR and ARIMA that are limited to handling one or two types
of outliers, L2C integrates techniques from SVR, ARIMA, and Loess to robustly identify and correct for all
three major types of outliers—global, contextual, and collective. This paper marks the first implementation of
a framework capable of detecting collective outliers in time series data. We demonstrate L2C’s effectiveness
by applying it to air quality sensor data sampled every 120 seconds from wireless sensors, showcasing superior
performance in outlier detection and data integrity enhancement compared to traditional methods like ARIMA

and Loess.

1 INTRODUCTION

L2C, or ‘Learn to Clean, revolutionizes time series
data integrity by using advanced machine learning
techniques like SVR (Muller et al., 1999), ARIMA
(Box and Jenkins, 1976), and Loess (Deng et al.,
2005) to handle global, contextual, and collective out-
liers. This framework operates on both edge devices
and the cloud, processing data streams from sources
such as air quality sensors at 120-second intervals.
The use of serverless analytics platforms, particularly
in edge computing, significantly reduces the compu-
tational burden when managing large datasets across
distributed networks (Nastic and Rausch, 2017). By
improving data reliability at the source, L2C enables
cleaner, more accurate datasets, supporting informed
decision-making in today’s data-driven economy.
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Figure 1: Stages of the Machine Learning Process: Data is
cleaned and prepared for analytics, the model is trained on
this data, and then tested for potential improvements.
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1.1 Types of Challenges for Data
Cleaning

In this research, we address two principal challenges
in data cleaning: NULL values and outliers. While
NULL values are straightforward to identify as miss-
ing or blank entries, outliers are more complex and
can be categorized into three distinct types:

1. Global Outliers: Data points that deviate signifi-
cantly from the majority of the dataset. These can
be identified through visual analysis and are dis-
tant from other observations. They can often be
removed with minimal computational effort.

2. Contextual Outliers: Data points that appear
anomalous only within a specific context. In time-
series data, for example, a value might be con-
sidered normal in one period but an outlier in an-
other. These outliers depend heavily on temporal
or other contextual factors.

3. Collective Outliers: Groups of data points that,
while individually normal, collectively deviate
from expected patterns. These do not conform to
the typical classification of global or contextual
outliers but can still disrupt data analysis due to
their group behavior.

Each type of outlier presents unique challenges
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for identification and remediation, demonstrating the
intricacies involved in cleaning data beyond simple
NULL value handling.

1.2 Current Techniques

Several established techniques are widely used for
outlier removal in data cleaning. These methods are
designed to detect and handle different aspects of
anomaly detection:

* Interquartile Range (IQR): This method uses
the interquartile range, the difference between the
25th percentile (Q1) and the 75th percentile (Q3).
Outliers are defined as data points falling below
01 —1.5xIQR or above Q3+ 1.5 X IQR.

* ARIMA: A time-series forecasting model that
identifies outliers by detecting deviations from
expected trends. However, it has limitations in
real-time processing due to its high computational
costs.

* Loess: A non-parametric method that fits multi-
ple regressions in localized regions of the data. It
is highly effective for detecting outliers in scatter-
plot data by identifying points that deviate from
predicted trends based on local smoothing.

1.3 Motivation and Contribution: L2C

Despite the effectiveness of these established tech-
niques in handling global and contextual outliers indi-
vidually, they lack the capability to manage both types
simultaneously and fall short in effectively addressing
collective outliers (Aggarwal, 2015). Furthermore,
existing methods offer no comprehensive solution for
imputing NULL values, exposing a significant gap in
current data cleaning approaches. These limitations
become particularly problematic in large-scale IoT
datasets, where traditional models like ARIMA are
inefficient for real-time processing due to their high
computational demands (Salman and Jain, 2019).

To bridge this gap, we have developed Learn to
Clean (L2C), a machine learning-based solution de-
signed to handle real-time data streams in IoT envi-
ronments. L2C addresses the limitations of existing
methods by providing a comprehensive data clean-
ing framework capable of managing global, contex-
tual, and collective outliers, as well as NULL values.
Our approach integrates advanced techniques such as
ARIMA, Loess, and Interquartile Relationships, en-
suring the system can adapt to various types of out-
liers.

In addition, Support Vector Regression (SVR) is
incorporated to enhance L2C’s ability to handle non-
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linear data, significantly improving its performance
in time-series predictions (Muller et al., 1999). De-
signed for use in edge computing environments, L2C
processes real-time data streams with reduced latency,
improving both efficiency and accuracy (Nastic and
Rausch, 2017). By automating the detection and re-
moval of outliers, as well as the imputation of NULL
values, L2C sets new standards for accuracy and scal-
ability in data preprocessing, making it particularly
well-suited for large-scale IoT applications.

Our work on L2C has contributed to the field by
offering a scalable, real-time data cleaning solution
that addresses challenges previously unmet by exist-
ing methods. Through L2C, we have advanced the
capability of data cleaning systems to efficiently pro-
cess complex, high-volume datasets in real-world IoT
environments.

2 PROCEDURE FOR L2C

This research focuses on two types of errors in edge
device datasets: outliers and NULL values. Outliers
are categorized into three types: Global, Contextual,
and Collective (Aggarwal, 2015). While NULL val-
ues are straightforward to identify and handle, detect-
ing outliers requires more sophisticated techniques.
Standard algorithms such as Loess and Ensemble-
SVR are effective in managing common outliers but
struggle with complex cases (Deng et al., 2005), espe-
cially Collective outliers, which some methods even
suggest cannot be fully removed (Aggarwal, 2015).

To address these challenges, we propose a multi-
step hybrid approach that combines machine learning
models like SVR with time-series analysis. This ap-
proach is designed to handle all three types of out-
liers while also imputing missing values, enhancing
the overall accuracy of data cleaning in large IoT
datasets (Mahdavinejad et al., 2018). The integra-
tion of serverless real-time data analytics platforms
for edge computing ensures that our process is effi-
cient and scalable (Nastic and Rausch, 2017), making
it suitable for high-volume data environments where
timely and accurate data processing is critical.

2.1 Step-1: Initial Outlier Removal

In the first phase of outlier treatment, easily identifi-
able outliers are removed using two techniques: In-
terquartile Range (IQR) and Support Vector Regres-
sion (SVR). The IQR rule provides a quick and ef-
fective method for detecting global outliers, defined
using the following calculations:
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Figure 2: Data cleaned using the IQR rule. Contextual and
collective outliers remain.
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Figure 3: Data cleaned using SVR. Some valid points are
removed along with outliers, but a more accurate fit would
increase computational cost.

Upper=03+1.5xXIQR

e (1)
ower = Q1 —1.5xIQR

Where:

IOR =03 —01 )

Global outliers outside the Upper and Lower
bounds are removed, as illustrated in Figure 19.
While this method is efficient, it has limited impact
on contextual and collective outliers.

To handle non-linearities in time series data, we
apply SVR, which provides a more accurate method
for outlier detection. Although SVR is computation-
ally more intensive, it accommodates non-linear pat-
terns, improving the outlier detection process. We de-
fine a range for acceptable points using the standard
deviation of predictions, calculated as follows:

Top = Predicted + o
Bottom = Predicted — o

3)

While SVR improves the precision of outlier de-
tection, it may remove some valid data points. In-
creasing the fit accuracy would require more process-
ing time, which limits its real-time application.

2.2 Step-2: SVR

Support Vector Regression (SVR) is a robust non-
linear technique, but its computational complexity,
O(n?), makes it time-consuming, particularly for
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Figure 4: Cleaned data after outlier removal using s-SVR,
with the dataset divided into 5 parts. Most outliers, includ-
ing contextual ones, are removed, while non-outlier data
points remain intact. The split predictions for upper (or-
ange) and lower (green) bounds are visible.

large datasets with high variability. While parame-
ter tuning can improve accuracy, it further increases
computation time.

To mitigate this, we introduce split-SVR (s-SVR),
which divides the dataset into smaller subsets, applies
SVR to each subset, and merges the results. This ap-
proach adds a tolerance margin, making it more suit-
able for real-time dynamic environments. The pro-
cess involves data splitting, filtering with tolerance,
and merging, though it is not yet fully automated.

To account for variability in predictions, we calcu-
late the standard deviation of SVR-predicted values,
defining upper and lower bounds as follows:

Top = Predicted + (o of SVR) “4)

Bottom = Predicted — (o of SVR) 5)

These bounds allow for the removal of global out-
liers and assist in identifying contextual outliers. With
s-SVR, users have less concern over hyperparameter
tuning, as the tolerance adjustment simplifies the out-
lier removal process. Although the SVR curves do
not perfectly fit the data, they are sufficient to remove
most outliers, including contextual ones.

2.3 Step-3: Split Data into Subsets

While SVR and s-SVR remove most outliers, there is
a risk of eliminating valid data if not properly tuned.
To mitigate this, we proceed with a combination of
IQR and s-SVR, which retains more data. However,
both techniques struggle with certain contextual and
collective outliers, which can still affect predictions.
To address these remaining outliers, we introduce
anew step combining time series analysis with regres-
sion, ensuring alignment with previous steps. This
approach applies similarly after either IQR or s-SVR,
and we test it using IQR for broader outlier coverage.
Given the non-linear nature of the data, we sep-
arate trends using the first difference to identify the
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Figure 5: First difference between consecutive points show-
ing the rate of change in the data.
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Figure 6: Data when the first difference is calculated at a
frequency of 5. The variation is manageable for further
analysis.

underlying patterns. Through trial and error, a fre-
quency of 5 was found to be ideal for identifying
trends, though adjustments are needed for the first few
points. The trend values are calculated as follows:

b] =day —aj
by=a3—a
b3 =da4 —aj
b4:a5—a1
bs = ag—ay
b6:a7—a2

by1=ap—ay s
While trends are identifiable, not all trends are
equally informative due to the varying number of data
points in each trend. To ensure effective outlier de-
tection, the data is split into subsets based on trend
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Figure 7: Data when the first difference is calculated at a
frequency of 25. The variation is significantly higher com-
pared to a frequency of 5.
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Figure 8: Linear Regression for Phase-2: Outlier removal
after trend separation. The linear model poorly fits the data,
leaving many outliers within the defined parameters.

changes. We calculate the first difference and check
for sign changes using:

bp+1 X bp
cp= P00 ©)
b p+1 X bp|

If ¢, is 0 or 1, the trend remains constant, but if
¢p = —1, it indicates a trend shift. We create new
subsets at each point where ¢, = —1.

For practical application, we require each subset
to contain at least 5 data points. If fewer than 5 points
exist, the subset is combined with adjacent subsets to
maintain a consistent trend. This ensures that each
subset has sufficient data for further outlier analysis.

2.4 Step-4: Non-Linear Outlier
Detection and Removal

After separating trends, we now test multiple datasets
for contextual and collective outliers. Linear regres-
sion is initially applied but fails to effectively remove
outliers, particularly at the beginning of the dataset
(see Figure 8). Given the non-linear nature of the data,
a non-linear approach is necessary for further outlier
detection.

Given its success in earlier phases, we apply Sup-
port Vector Regression (SVR) to handle the non-
linearity. However, in this test, SVR overfits the data
by attempting to include all points, as shown in Fig-
ure 9. While SVR is useful for detecting contextual
outliers, it struggles with collective outliers due to its
tendency to fit all data points together, making it diffi-
cult to distinguish between valid and anomalous data.

To mitigate overfitting, we implement Loess (Lo-
cal Regression), a non-linear technique that avoids the
pitfalls of SVR overfitting. Loess provides a more
balanced approach, as illustrated in Figure 10, effec-
tively removing outliers while preserving the overall
trend in the data.

Despite the success of Loess in removing outliers,
the process increases the number of NULL values in
the dataset, necessitating imputation. Standard impu-
tation techniques, such as replacing with the mean or
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Figure 9: SVR for Phase-2: Outlier removal using SVR
after trend separation. Overfitting occurs, failing to remove
outliers.
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Figure 10: Loess for Phase-2: Outlier removal using Loess
after trend separation. Loess prevents overfitting while suc-
cessfully removing most outliers.

median, may not be ideal as they do not always re-
flect real values. A more suitable approach in this case
is mode replacement, where the most frequent value
is used for imputation, ensuring greater accuracy in
maintaining data integrity.

2.5 Step-5: Imputation of NULL Values

In previous phases, most outliers were replaced with
NULL values, which now need to be approximated
to make the dataset complete. Common imputation
techniques like Mean, Median, and Mode replace
NULLs with a single value, which may not suffi-
ciently capture the underlying trends in non-linear
data.

While Median and Mode provide better estimates
than the Mean, they still fail to account for non-
linearity. Given the non-linear nature of the dataset, a
more suitable approach is required. Since SVR tends
to overfit but is effective for non-linear predictions,
we apply it to the subsets for imputation based on pre-
dicted results, as shown in Figure 11.

Figure 11 demonstrates that SVR closely matches
the imputed data with the actual data for one subset.
This technique is then applied across all subsets, en-
suring both outlier removal and accurate NULL value
imputation in a fully automated process.

As shown in Figure 12, the process successfully
removes global outliers, while remaining contextual
and collective outliers are identified. The final dataset
provides an accurate representation with minimal out-
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Figure 11: SVR for Data Imputation: Original data (red)
and cleaned data (orange).
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Figure 12: Clean Data after IQR Phase-1: Original data
(red) and cleaned data (orange).

liers and properly imputed values.

3 EXPERIMENTS AND RESULTS

3.1 Test Setup

The algorithm was tested using data from an air qual-
ity monitoring system deployed in an office environ-
ment. Sensors continuously collected data at a 120-
second sampling rate, which was stored on a local
gateway and transmitted to a cloud server for long-
term storage. The dataset comprised 12,312 real-time
air pollution data points. To efficiently manage this
high volume of data, we implemented a serverless
real-time data analytics platform for edge computing
(Nastic and Rausch, 2017).

Machine learning techniques, including Support
Vector Regression (SVR) and Loess, were applied to
detect and handle both contextual and collective out-
liers within the dataset (Mahdavinejad et al., 2018).
These techniques were crucial for ensuring data accu-
racy and addressing the challenges posed by outliers
in a real-time processing environment.

The experiments were conducted on a laptop with
a Core 17-4750 Mobile CPU (2.00 GHz) and 16 GB
of RAM, utilizing the R Programming Language for
the algorithm implementation and analysis.
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Figure 13: Data Cleaning Using Loess (span=0.75). Red
is original data, blue is predicted data, green represents the
lower limit, and orange the upper limit. Data beyond green
and orange is removed.
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Figure 14: Data Cleaning Using Loess (span=2). Red is
original data, blue is predicted data, green represents the
lower limit, and orange the upper limit.

3.2 Standard Algorithm Results

We compared our multi-phase technique to standard
methods like Loess and ARIMA. ARIMA, a founda-
tional time series model (Box and Jenkins, 1976), per-
forms well with smaller, controlled datasets but strug-
gles with larger, more complex datasets due to its high
computational demands (Salman and Jain, 2019). In
contrast, SVR and Loess demonstrated better perfor-
mance in detecting outliers, especially in non-linear
data (Deng et al., 2005). By integrating these tech-
niques, L2C provides robust data cleaning for large-
scale IoT applications (Mahdavinejad et al., 2018).
Previous studies have also highlighted the efficacy
of Support Vector Machines in time series prediction
(Muller et al., 1999).

In Figure 13, the standard Loess span of 0.75 re-
moves significant portions of valid data while failing
to remove some outliers. This demonstrates ineffi-
ciency, as the model alters the dataset too drastically.
To improve accuracy, we experimented with different
span values.

As seen in Figure 14, increasing the span to 2
worsens the results, removing even more valid points.
Adjusting the span further was necessary to achieve a
balance between preserving the original data and re-
moving outliers.

The results improve significantly when the span
is adjusted to 0.0075 (Figure 15). A span of 0.075
underfits, and lowering it further causes overfitting.
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Figure 15: Data Cleaning Using Loess (span=0.075). Red
is original data, blue is predicted data, green is the lower
limit, and orange is the upper limit.
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Figure 16: Data Cleaning Using Loess (span=0.0075). Red
is original data, blue is predicted data, green is the lower
limit, and orange is the upper limit.

Although 0.0075 does not remove as many outliers as
other spans, it preserves most of the valid data, mak-
ing it the best fit. This configuration minimizes outlier
presence while maintaining data integrity.

Compared to ARIMA, as shown in Figure 18, our
approach is more effective for large datasets. ARIMA
struggles to detect collective outliers and is inefficient
due to its processing time and resource requirements
(Salman and Jain, 2019). To address this, we split the
dataset into 124 groups of 100 points each and per-
formed time series analysis on each subset. Although
this reduces processing time, the identified outliers
vary based on how the data is split, limiting full au-
tomation.

3.3 Test Results

We compared our multi-step technique with standard
methods for outlier detection and removal. Approx-

Value

Figure 17: Data Cleaning Using Loess (span=0.00075).
Red is original data, blue is predicted data, green is the
lower limit, and orange is the upper limit.
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Figure 18: Data Cleaning Using ARIMA (Log Trans-

formed). Many outliers remain, including zero values, indi-
cating ARIMA’s limited cleaning performance.
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Figure 19: Data Cleaning Using the two-phase s-SVR pro-
cess. The red is the original data, while orange represents
the cleaned data.

imately 8.78% of the dataset contained zero values,
making outlier detection essential. Initially, the In-
terquartile Range (IQR) rule was applied to eliminate
global outliers, but contextual and collective outliers
remained, as shown in Figure 8.

Next, we used Support Vector Regression (SVR)
to handle outliers more accurately, particularly for
non-linear data. Although SVR is computationally
intensive, it yielded better results. To optimize per-
formance, we applied split-SVR to reduce process-
ing time, which was effective for datasets with over
2.5% zero values, as demonstrated in Figure 10. Split-
ting the data into five sections with varying thresholds
helped in the removal of many contextual outliers.

We then applied trend analysis by calculating the
fifth difference and merging subsets with fewer than
five points. This yielded 384 distinct trends. Loess
was applied to each trend, successfully removing col-
lective outliers, as shown in Figure 12.

Finally, SVR was used to overfit the sample and
impute values in place of outliers. Figure 13 shows
that the outliers were completely removed, and the
imputed data closely matched the actual values. This
process was repeated across all subsets to achieve
the most accurate data representation in an automated
manner.

Figure 14 illustrates the effectiveness of the multi-
phase process. The cleaned data fits the original
dataset almost perfectly, with the data separated into
384 sets, each cleaned individually.

Table 1 summarizes the effectiveness of each tech-
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Table 1: Proposed Technique vs Standard Technique for
Outlier Removal.

Method Global Outliers | Contextual Outliers | Collective Outliers
1082 14 34

Loess (Span=0.75) 100% 85.71% 14.71%

Loess (Span=0.075) 100% 78.57% 91.18%

Loess (Span=0.0075) 100% 85.71% 32.35%

Loess (Span=0.00075) 100% 7.14% 100%

Loess (Span=2) 100% 0% 97.06%

ARIMA 57.12% 14.29% 0%

IQR Multi-Phase 100% 85.71% 100%

Split-SVR Multi-Phase 100% 85.71% 100%

nique in removing different types of outliers. Loess
shows strong performance in removing global out-
liers, though it struggles with contextual and collec-
tive outliers. ARIMA performs poorly, especially
with collective outliers. Our multi-phase techniques,
IQR and split-SVR, successfully removed all types of
outliers.

For contextual outliers, reducing the Loess span
from 0.75 to 0.00075 improves removal, but overfit-
ting and underfitting issues arise. ARIMA also strug-
gles with contextual outliers, while our methods re-
move the majority of them effectively.

Our techniques also remove all collective outliers,
while Loess with spans 0.00075 and 2 achieves this
with some issues of overfitting and underfitting. Table
2 compares the methods’ impacts on actual data and
imputation.

Table 2: Effect on Actual Data and Imputation.

Method Actual Data Affected | Data Replacement
Loess (Span=0.75) Yes No
Loess (Span=0.075) Yes No
Loess (Span=0.0075) Yes No
Loess (Span=0.00075) Yes No
Loess (Span=2) Yes No
ARIMA Yes No
IQR Multi-Phase No Yes
Split-SVR Multi-Phase No Yes

Table 2 illustrates that all methods affect actual
data, often removing valid points. Data imputation
can mitigate this, but only our techniques include im-
putation, which aims to replace removed points with
values close to the original.

Both of our techniques (IQR and split-SVR) per-
form equally well, suggesting that the second phase
(SVR) is more crucial than the first. Given the time
required for the first phase, we split the data into five
parts, which optimized performance. While s-SVR is
not fully automated, IQR is, so we prioritize using the
automated IQR technique for future applications.

4 SUMMARY AND CONCLUSION

This paper presented a multi-phase data cleaning ap-
proach that effectively addresses the challenges of
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handling NULL values and outliers in univariate data.
Data quality is paramount in machine learning appli-
cations, as unreliable or unclean data can lead to poor
model performance. Our research aimed to overcome
these challenges by introducing a systematic method
that ensures cleaner, more reliable datasets, particu-
larly in applications like soil moisture sensors.

We classified outliers into three main types:
global, contextual, and collective. Each type re-
quires a different approach for detection and removal,
which is why traditional methods often fall short. Our
multi-phase approach integrates s-SVR (split-SVR)
and trend-based segmentation, followed by Loess and
regression analysis to remove outliers at each stage
of processing. By using s-SVR, we successfully re-
moved global and most contextual outliers while pre-
serving the integrity of the data. The segmentation
and regression steps handled the remaining outliers,
ensuring a comprehensive cleaning process.

The advantage of this approach is its ability to au-
tomate much of the data cleaning process, minimiz-
ing the need for manual intervention. Compared to
standard techniques like Loess or ARIMA, which ei-
ther underfit or overfit the data, our method provides
superior accuracy in removing anomalies without dis-
torting the original dataset. This makes it particularly
suitable for univariate time series data, where trends
and patterns must be preserved for reliable analysis.

4.1 Impact on Machine Learning
Models

The impact of this method on machine learning mod-
els is significant. Clean, structured data ensures that
models perform better, with more accurate predic-
tions and fewer biases. In real-world applications,
such as soil moisture monitoring, having reliable data
leads to better decision-making and more efficient re-
source management. Additionally, by removing out-
liers and imputing missing values, the model’s abil-
ity to generalize is improved, leading to better perfor-
mance in various predictive tasks.

4.2 Future Directions

While this research focuses on univariate data, there
is room to expand this technique to more com-
plex datasets. Future work could involve adapting
the multi-phase process for multivariate data, which
would open up new applications in fields such as
healthcare, telecommunications, and finance, where
data variability is high. Moreover, integrating this
approach into real-time systems and large-scale IoT
environments could prove invaluable for industries
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requiring continuous monitoring and quick response
times.

Another promising area for future exploration is
the application of this method in deep learning and
large language models (LLMs). As these models
heavily depend on large, clean datasets, automating
data cleaning at this scale would greatly enhance
model performance, particularly in domains like natu-
ral language processing (NLP) and image recognition.

4.3 Conclusion

In conclusion, the multi-phase data cleaning method
we have proposed offers a comprehensive and auto-
mated solution to the critical challenge of handling
outliers and missing values in univariate datasets. By
removing global, contextual, and collective outliers
in successive stages, this approach significantly en-
hances the quality of data used in machine learning
models. The method’s scalability and adaptability
make it applicable across various industries that rely
on univariate time series data.

Improving data quality is vital to ensuring the ac-
curacy and reliability of machine learning models, es-
pecially in fields where precision is critical. Investing
in data cleaning processes, as demonstrated in this re-
search, leads to better predictive models and more in-
formed decision-making, thus benefiting a wide range
of applications.
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