
CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for
Securing Distributed Networks

Ciprian Paduraru1, Catalina Camelia Patilea1 and Alin Stefanescu1,2

1Department of Computer Science, University of Bucharest, Romania
2Institute for Logic and Data Science, Romania

Keywords: Large Language Models, Cybersecurity Assistant, Security Officers, Agentic AI, Fine-Tuning, Retrieval
Augmented Generation.

Abstract: Robust cybersecurity measures are essential to protect complex information systems from a variety of cyber
threats, which requires sophisticated security solutions. This paper explores the integration of Large Lan-
guage Models (LLMs) to improve cybersecurity operations within Security Operations Centers (SOCs). The
proposed framework has a modular plugin architecture where Agentic AI controls the information flow, in-
cludes Retrieval Augmented Generation (RAG), protection methods for human-chatbot interactions and tools
for managing tasks such as database interactions, code generation and execution. By utilizing these tech-
niques, the framework aims to streamline the workflows of SOC analysts, allowing them to focus on critical
tasks rather than redundant activities. The study also explores the dynamic customization of LLMs based on
client data, user experience, potential risks and language preferences to ensure a user-centric approach. The
results show improvements in efficiency and effectiveness and highlight the potential of LLMs in cybersecu-
rity applications.

1 INTRODUCTION

Large Language Models (LLMs) have shown remark-
able potential in areas such as natural language pro-
cessing, machine learning, and, more recently, cyber-
security: (Motlagh et al., 2024), (Shafee et al., 2024),
(Paduraru et al., 2024). Our research explores the ap-
plication of these advances in the development of in-
teractive assistants that support security profession-
als by automating and optimizing the data collection
processes and understanding for problem identifica-
tion and providing informed guidance for problem
remediation. Organizations and institutions have set
up specialized teams with different areas of expertise
to combat threats in real-time. One notable exam-
ple is the Security Operations Center (SOC) (Mughal,
2022), where SOC analysts work around the clock.
Their tasks include monitoring and detecting threats
in real-time, investigating and escalating incidents,
and managing security tools and information. They
work with network engineers and architects to im-
prove infrastructure protection against potential fu-
ture attacks.
Contributions. Our research aims to leverage the lat-
est advances in LLMs to support security profession-
als in real-time. The goal is to streamline their work-
flows so that they can focus on critical tasks rather

than redundant and time-consuming activities. The
goal is to allow customers to interact with systems,
logs, databases, code generation and execution, user
interface components, and internal tools using the
provided methods via natural language queries, with
the assistant acting as an intermediary. The contri-
butions of this work can be summarized as follows,
as an improvement of our previous work (Paduraru
et al., 2024):

• Improving the process of fine-tuning the LLM
model and datasets compared to our previous work.
We further fine-tune the model from two differ-
ent angles: a) doubling the original size of the
cybersecurity-related dataset with new sources and
b) matching the answers generated by the assis-
tant with the answers annotated by humans using
the Direct Preference Optimization (DPO) (Guo
et al., 2024) technique and human-in-the-loop. On
the technical level, we fine-tune the base model
from scratch, moving from Llama-2 (Touvron et al.,
2023) to the latest improvements in Llama-3.1
(Dubey et al., 2024).

• The problems reported in our previous work were
solved by adding the new mechanisms of Adaptive-
Retrieval Augmented Generation (RAG) (Jeong
et al., 2024), (Asai et al., 2023), (Yan et al., 2024),

660
Paduraru, C., Patilea, C. C. and Stefanescu, A.
CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for Securing Distributed Networks.
DOI: 10.5220/0013406000003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 660-667
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

to allow the model to self-check whether the re-
trieved data is relevant to the user’s prompt, evalu-
ate the quality of the generated response, including
the hallucination validator, and iterate to improve it.
In addition, the reiteration of the response now in-
cludes mechanisms that allow for variety and nov-
elty in the data retrieved from queries instead of a
greedy selection.

• Our work architecturally reworks the previous
project to be more independent and customized by
using a plugin architecture: clients are now able to
inject their fine-tuning data, data for RAG, tools,
and validators into an Agentic AI (Khanda, 2024)
flow.

Reusable open-source code and a dataset collec-
tion are provided at https://github.com/unibuc-cs/
CyberGuardian.

This article is structured as follows. The next sec-
tion presents works that have inspired our project or
that we have adapted to our specific context and use
cases. Section 3 describes the methods of data col-
lection and processing. Section 4 details the proposed
architecture, methods, components and their interac-
tions. The evaluation and discussions are presented
in Section 5. Finally, the last section concludes the
paper and outlines future work plans.

2 RELATED WORK

Recent research has investigated the use of LLMs in
both defensive and adversarial cybersecurity contexts,
offering a thorough review of contemporary practices
and identifying research gaps. The extensive evalu-
ation by (Motlagh et al., 2024) provides valuable in-
sights into the potential risks and advantages of in-
corporating LLMs into cybersecurity strategies. This
section will outline the primary sources of inspiration
for the present study.

In their study, (Al-Hawawreh et al., 2023) explore
the potential applications of ChatGPT in the field of
cybersecurity, especially in penetration testing and
threat defense. They present a case study in which
ChatGPT is used to create and execute false data in-
jection attacks on critical infrastructure, such as in-
dustrial control systems, and discuss the challenges
and future directions for its integration into cyberse-
curity. Other studies, such as those by authors ref-
erenced in (Franco et al., 2020) and (Shaqiri, 2021),
utilize conventional NLP techniques to aid in high-
level cybersecurity planning and management. These
studies focus on identifying logs of past cyberattacks,
proposing solutions, and providing insights for deci-

sion making through user interactions that lead to the
extraction and deployment of various solutions.

In (Arora et al., 2023), the authors develop a chat-
bot that uses AI and sentiment analysis of Twitter
data to predict and assess cyber threats on social me-
dia. (Tejonath Reddy, 2024) examines chatbots that
use deep learning as a proactive solution for detect-
ing persistent threats and phishing attacks in real-
time and concludes that deep learning algorithms can
adapt to new paradigms and detect subtle phishing in-
dicators, creating a stronger defense against evolv-
ing threats. The work by (Abdelhamid and et al.,
2023) proposes chatbots integrated with social net-
works as collaborative agents for continuous cyberse-
curity awareness, education, and training. Similarly,
another study in (Fung et al., 2022) presents a cyber-
security chatbot built on Google Dialogflow that ed-
ucates users about cyber risks, provides a knowledge
base, self-quizzes and advice, effectively improving
cybersecurity awareness.

Conversely, ensuring data security in chatbot in-
teractions is an important issue. For example, the
research and demonstration applications we propose
contain sensitive user data and introduce users to
important system functions without violating current
best practices. As chatbots become increasingly pop-
ular in various fields, they pose significant security
risks and vulnerabilities. (Yang et al., 2023) has con-
ducted a systematic literature review to identify po-
tential threats, propose effective solutions, and outline
promising future research directions.

3 DATASETS COLLECTION AND
INDEXING

This section shows how the data sources for
fine-tuning the LLM model were collected, post-
processed, and indexed for faster retrieval. The
overview of the process is shown in Figure 1 and is
explained below. The principles in (Paduraru et al.,
2024) are followed to collect and index the data to
align the base model with foundational knowledge
from the latest data and research in the field of cyber-
security. A formalized definition of this dataset can
be found in Eq. (1). It consists of documents, video
transcripts, and markdown post-processed data.

D = {PDFk, Transcript(Videoi), Markdown j} (1)

We follow the principles of Direct Preference Op-
timization (DPO) (Guo et al., 2024) to improve the
performance of the model by aligning the response of
the smaller model trained with both a teacher model
and a human-in-the-loop.

CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for Securing Distributed Networks

661

A. Data for base
model fine-tuningPDF files Markdown

Youtube
transcripts

Teacher (GPT4-o)
and humman feedback

B. Data for DPO
fine-tuning

Chunk 1

Chunk 2

Chunk N

...........

2. Organize in groups
and chunks 4.Store metadata

for each chunck
Mongo DB

VectorStore
Data

Embeddings

3.Create
embedings 5. Persistent

store

1. Gather data

Figure 1: The data collection process. First, the data set, D , is obtained from various sources of information that can be
exported in text format (Step 1.A). Then, the GPT-4o model is used as a teacher to generate pairs of questions, answers and
ideal answers. People randomly sample from this dataset to annotate the ideal answers from their point of view, resulting in
the dataset Dqa (Step 1.B). In addition, the metadata for both datasets is stored on a MongoDB server to simplify the update
process and avoid deduplication (Step 4). Finally, the data is split into smaller parts, embedded and permanently stored in a
vector database (Steps 3 and 5). The red colored blocks represent the output of this process.

A teacher model(OpenAI et al., 2024), in particu-
lar the GPT-4o1, is used to collect cybersecurity data
by extracting initial Nqdoc questions from a subset
of D documents (especially from foundational books
and recent tutorials or blogs) using prompts as de-
scribed in (Ivison et al., 2024)). The same model
is also asked to create Nqbase questions on various
basic sub-areas of cybersecurity (see Section 5) that
were not part of the first set, resulting in a total of
Nq = Nqbase +Nqdoc questions. The teacher model is
then asked to respond to each of these questions with
nchoices = 4 different versions, using a temperature of
0.8. Finally, we ask the teacher again to look at each
question and answer and choose the best one from its
point of view. We further denote this set of questions
and answers by Dqa.

Following the work in (Tihanyi et al., 2024), we
then use three human skill levels (beginner, interme-
diate, senior) to check NqhumansP percent of the set Dqa
and select which version out of the nchoices answers
they would prefer. Intuitively, a senior person might
prefer shorter, concise answers without too much de-
tail, as opposed to beginners who might want more
information. Each person was given a random sub-
set of the original and had access to a random source
of information when answering. The results are sum-
marized in the set DqaH ⊂ Dqa and sorted by exper-
tise in DHlevel

qaH
⊂ Dqa. Including the human in the

loop ensures that the dataset incorporates human feed-
back into the training loop to refine the model’s un-
derstanding of what constitutes a preferred response.
For efficiency reasons, the datasets are stored in an
embedded format, which we refer to as Demb, re-
spectively Dqaemb . In our implementation, we use
the sentence transformer embedding model (Reimers
and Gurevych, 2019). Specifically, we use the open

1https://openai.com/index/hello-gpt-4o/

source variant all-mpnet-base-v22. Its purpose is to
transform text data into float value vectors, a neces-
sary format for subsequent processing by Faiss’ in-
dexing and querying system.

4 ARCHITECTURE AND
IMPLEMENTATION

The architecture and components are implemented
using a plugin pattern, allowing higher capacity
models, alternative fine-tuning methods, various
functionalities, and components to be toggled on or
off based on specific use cases, as shown in Figure 2.
This approach, known in software engineering as the
separation of concerns, is a core concept applied in
the proposed methods.

Client-End Data Customization. The client can add
its own specific data to control the assistant according
to the use case. For example, the model can be
fine-tuned with SFT to more easily adapt to a specific
use case terminology, language, and culture within
its organization. RAG data can be specified such
that the assistant can retrieve information that needs
to be exact or fast to get, e.g., manuals of products,
architecture of the infrastructure, high-level APIs,
and frameworks available inside the system. Data can
be organized in groups, each with its own metadata to
follow the trend of hierarchical information retrieval
(Goel and Chandak, 2024). Tools are specified such
that the assistant can connect reasoning with actions
performed on the client’s infrastructures. A concrete
example can be: suggesting SQL source code to
blacklist an IP range of addresses in the firewall’s

2https://huggingface.co/sentence-transformers/all-
mpnet-base-v2

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

662

database, provision new virtual machines, add new
users to a group, etc. In general, these are operations
that are implemented in the client’s source code,
and the assistant has the information on all of these
at the description or prototype level. This concept
is discussed further in the paper and is known as
Agentic AI.

RAG Support. To efficiently summarize or extract
content from local system infrastructures such as
logs, databases, and source code, a retrieval aug-
mented generation (RAG) functionality is used. This
reduces human effort and is important for users,
particularly SOC teams, facing constantly updated
internal knowledge. Various types of information and
formats can be indexed and queried during the LLM
reasoning process, including internal documents
(e.g., whitepapers, communication, architecture, and
infrastructure documentation), source code APIs and
configuration files, and data sources like databases,
JSON or CSV files. To ensure diverse information
retrieval between iterations, the framework uses the
MMR (Carbonell and Goldstein, 1998) sampling
algorithm. Introducing noise into the RAG process
helps address issues reported in previous studies
(Paduraru et al., 2024), where users might prefer
different data retrieved after being dissatisfied with
the initial response.

User Preference and Conversation Safeguarding.
In general, organizations have specific cultural
communication rules. More, users may have diverse
preferences when interacting with an assistant, such
as wanting concise or detailed responses or preferring
formal or polite tones. These preferences can be
managed both through prompt engineering and
fine-tuning for specific groups. Also, users may have
varying levels of expertise, which can be matched
to specific fine-tuned models. This is illustrated in
Figure 3. For security measures, as prototyped in our
framework, they can be registered in an Access Con-
trol List (ACL), granting different levels of access
to internal resources. For example, some users may
have the privilege to execute code or initiate services
(e.g., a honeypot). To ensure that assistant conver-
sations adhere to various rules (e.g., gender-neutral
language, politeness), the Llama Guard model (Inan
et al., 2023) filter is utilized, along with its commonly
used taxonomy in LLMs, protecting conversations by
enforcing these guidelines.

The Fine-Tuning Process. The process for fine-
tuning a base model to better align with cybersecurity
knowledge and related tasks is illustrated in Figure 3.

This workflow and the source code are independent
of the chosen base input model; for our prototype
and evaluation, the Llama 3.1-8B-Instruct (Dubey
et al., 2024) was used along with the datasets pre-
sented in Section 3. The final version of the model,
CyberGuardian2LLM, is split into three categories
based on expertise level. This example is generic and
can be adapted according to user needs. With larger
preference datasets, the methods can also be tailored
to other factors, such as the text style of assistant
responses and combinations thereof.

Base Fine-Tuning. For this step, we follow the stan-
dard supervised training (SFT) methodology com-
monly used in previous research. The model pro-
cesses batches of dataset samples and compares them
to the corresponding ground truth using cross-entropy
as a loss function. At predefined intervals, the model’s
performance is evaluated using the perplexity metric.
SamplebatchB ∼ Demb # containing inputs and desired model

answers
Pass this through the model to get the predicted answers
Predictions =CyberGuardian2LLM (B [”Input”])
Loss represents how close the output of the model is

compared to the ground truth in the batch
Loss =CrossEntropy(Predictions,B [”Answer”])
U pdate weights o f CyberGuardian2LLM

Listing 1: Fine-tuning process.

Direct Responses and Preferences Fine-Tuning.
The loss function of DPO (Chen et al., 2024) is
adapted to our use case. Specifically, during the fine-
tuning process sample pairs of prompts (x), chosen
and rejected answers (yc, respectively yr) are sampled
from dataset Dqa. These are passed through two mod-
els: a) the base model, πbase, being the trained model
in the previous step CyberGuardian2LLMbase), and
b) the model under current fine-tuning πθ, represent-
ing the output model CyberGuardian2LLM.

Conversation Management. The observations from
the work of (Maharana et al., 2024) are followed to
avoid losing the conversation context over many iter-
ations. The conversation history between the user and
assistant is handled using two structures:

• The pair of last 5 messages exchanged in the
conversation between them: short-term memory,
Memsh.

• The conversation summary of all other older
messages condensed into a single paragraph: the
long memory, Meml .

Adaptive RAG. Our methods follow the ideas from
(Jeong et al., 2024), in using RAG in combination
with the AI agent to check two main things:

CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for Securing Distributed Networks

663

Client

Client training dataset

Client RAG data

Vector
Store
RAG

Vector
Store
Train

EMB

EMB

SFT

Original

RAG data +

Tools

Figure 2: Adding client specifics to the assistant knowledge. Three types of data can be added to control completely the
answers generations: the base fine-tuning data, RAG documents, and tools to interact with one infrastructure. The blue
colored components represent the output of adding the client-specific data into the previously fine-tuned model and RAG
support.

Llama 3.1-8B-Instruct

1.Base fine-tuning

Supervised
Fine-tuning (SFT)

Fine-tune with
DPO

2. Preference fine-tuning

Expert

Middle

Beginner

3.Final fine-
tuning using

Figure 3: The process of fine-tuning the Llama 3.1-8B-Instruct (as an example) to a model aligned more on the cybersecurity
field. There are two main steps in this process: 1) the base model fine-tuning, and 2) aligning with a teacher and human-in-
the-loop. The final models are slightly fine-tuned (Step 3) for different specifics, in our demonstration, to consider the level
of expertise of the human users.

• Is the retrieved information relevant to the user
question? This is needed specifically because the
retrieval mechanisms tend to score high enough
pieces of documents that might not be relevant.
Thus, the LLM is used as a judge by using its natu-
ral language understanding capabilities.

• Can get the information from other sources, for ex-
ample using existing tools registered by the client
(e.g., web-search, internal platform search, etc.),
or even human-in-the-loop, by reporting that no
sources were found and asking for help.

Due to space constraints, the prompts utilized
are available in the repository. Briefly, the LLM is
instructed to: (a) determine if the retrieved content
is relevant to the question (binary response: yes or
no); (b) perform a hallucination check by assessing
whether the final generated answer is grounded in
the provided documents; and (c) evaluate the quality
of the response by ascertaining if it adequately
addresses the original user’s question.

Tools and Interaction with the Backend Systems.
To enhance SOC specialists’ productivity and re-
sponse times, our work utilizes advanced methods
focusing on user interaction with LLM and system
processes. These methods, referred to as agents and
tools. ReACT agents (Yao et al., 2023) are the core
of our Agentic AI implementation. This method in-
volves first prompt engineering to provide the LLM
with brief descriptions of available tools. The LLM

model is fine-tuned over a few epochs using 50 exam-
ples of tool calls and parameter extraction. The main
steps are: act (call specific tools), observe (pass tool
output back to the model), and reason (determine the
next action based on tool output). Figure 4 shows how
the LLM interacts with various tools in the frame-
work. At each step, the LLM evaluates the problem,
the available tools, and decides whether to invoke a
tool that interacts with the organization’s infrastruc-
ture or provide a response. This method allows for
task decomposition, where complex queries are bro-
ken down into manageable pieces and resolved us-
ing appropriate tools. The set of tools implemented
in the source code as exemplification are commonly
used such as ACL operation, databases access, office
tools, python code generation (by invoking internally
another specialized model, Code Llama 7B (Rozière
et al., 2024)), and safety checker tool (invoking Llama
Guard (Inan et al., 2023)).

5 EVALUATION

5.1 Evaluation Setup

To iterate over the architectural quality of the frame-
work, and test Agentic AI and the RAG component,
the solution presented was tested first with a group
of students (master’s degree, from the University of
Bucharest). Each group was asked to simulate a dis-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

664

User/ SoC
specialist

Entity Solver

Action Solver

Set of tools
(default and

client)

Conv
History

Client systems

Act

Initial result

1. Prompt

5.Reason / Decision making: provide the answer or invoke existing tools and get their results

2. Update

Vector
Store
RAG

3.Query

Prompt
updated and
Contextual

Data
Filter only

relevant content

Hallucination
check

Conversation
Safeguarding Ok

Rework
Final response

4.Rag retrieval and filtering

6. Response checker

Figure 4: The flow of the Agentic AI: (1) receiving the user’s prompt, (2) reformulating the current query based on the
memories of previous conversations, (3) giving the reformulated prompt, retrieving and filtering relevant content from the
indexed data, (4) deciding whether the answer can be given or must be given via the exposed services on the client side (using
tools/function calls); the decision is based on LLM and some NLP-based processing techniques for easier identification of the
entities and actions requested in the prompt, (5) checking the response for hallucinations and security; if the response matches
the guidelines, returning it to the user and updating the internal knowledge; if it needs to be revised instead, add the reviewer’s
response to the history so that the model can assess what was wrong with the original response the next time. Note that while
the framework repository only contains illustrative examples, the tool suite, models, and validators can be customized by each
client site.

tributed application considering a use-case from dif-
ferent domains such as medical, gas stations, smart
home systems, etc. In total, we counted 17 differ-
ent applications across various domains. For each,
the request was to gather at least 3-4 PDF manuals
own made or from ithe nternet that could represent
the client data for that particular use case. The tar-
get was to have ∼ 100 pages of data on each case
to perform RAG tests. Each team of students repre-
sented the Client class in Figure 2. The focus from an
architectural point of view was to make the methods
reusable across use cases.

Table 1 shows different values that are used to
fine-tune the current version of the model as men-
tioned in Section 3. The high temperature used when
generating the responses from the teacher model, 0.8
was able to produce diverse answers, but still almost
correct. In this sense, we followed the observations of
(Ivison et al., 2024) which mentions that better pref-
erence data leads to the largest improvements from all
other factors.

5.2 Quantitative and Qualitative
Evaluation

There are two research questions that we address in
our study:

• RQ1. How well does the Cyberguardian2LLM
understand the cybersecurity domain?

• RQ2. What is the real feedback of human users
engaged in the experiments?

RQ1 Analysis. To quantitatively assess the effec-
tiveness of the fine-tuned CyberGuardian2LLM, we
measure the response usefulness using an established
method (Zheng et al., 2023), involving automated

Table 1: Table containing the values used in Section 4. The
first group represents the dataset dimensions, the second
is the number of humans who participated in the experi-
ments, while the retrieval parameters are presented in the
last group.

Description Value
Dataset
Nqdoc 5000
Nqbase 4000
Nqdoc 1000

NqhumansP 30%
No. of humans participating 83

DqaH beginners 40
DqaH intermediate 39

DqaH seniors 4

evaluation with a larger model, specifically GPT-4,
serving as the judge. This is also applied in the cy-
bersecurity domain in the work of (Paduraru et al.,
2024) and (Tihanyi et al., 2024), which datasets we
also reuse in the process of fine-tuning our model.

Five topics in cybersecurity relevant to SOC spe-
cialists: have been selected:

• System protection against security risks and mal-
ware.

• Cryptography and authentication mechanisms.

• Configuring security protocols such as firewalls and
intrusion detection systems (IDS).

• Network security infrastructure (including fire-
walls, VPNs, web proxies, IDS/IPS).

• Investigation of data breaches and leaks.

These clusters are denoted as
Topics = (t pi)i=1,...5. The judge, GPT-4, is prompted
to generate 20 questions for each of the five topics,

CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for Securing Distributed Networks

665

totaling 100 questions, denoted by Que. This set
is created by inserting the topic variable into the
template shown in Listing 2.
Consider yourself an interviewer for a SOC specialist

position. Ask 20 relevant. different questions on the
topic {topic var}

Listing 2: The template prompt used to ask questions to the
judge LLM.

We measure the CyberGuardian2LLM responses
for each Q ∈ Que against two vanilla (no fine-tuned)
Llama 3.1 models (Llama 3.1-8B-Instruct, and 70B-
Instruct), and the model from (Paduraru et al., 2024).
To compare the answers head-to-head, the judge is
prompted to respond to which one he prefers, List-
ing 3. The template variable for each question Qvar is
filled in, along with the responses of the two mod-
els compared, LLM1 resp, and LLM2 resp. The
observation made from the results shown in Table
2, is that in the synthetic experiments, the Cyber-
Guardian2LLM’s answers are preferable over the pre-
vious ones, except the bigger class model (70B)
which needs significantly more computational re-
sources to infer (GPU memory: ∼ 9.6GB vs ∼ 84GB).
The results shown suggest that a fine-tuned model can
overpass or come close to the much larger (sometimes
impractical for end-user machines), as reported also
in literature (Yao et al., 2023).

Table 2: Head-to-head comparison of response preferences,
with GPT-4 serving as the evaluator. The second col-
umn shows the percentage of cases where each model was
preferred over CyberGuardian2LLM. The Llama versions
shown in the first two rows are the public vanilla versions,
without any fine-tuning.

Model Preferred over
CyberGuardian2LLM

Llama3.1-8B 29%
Llama3.1-70B 61%
CyberGuardianLLM 33%

Given the question: {Q var}, respond which of the following
two answers you prefer. Write only Version1 or
Version2.

Version1: {LLM1 resp}.
Version2: {LLM2 resp}.

Listing 3: The template for classifying the answers with
judge LLM.

RQ2 analysis. To evaluate from a different perspec-
tive, during each case, the assistant emulated signals
that could indicate such an attack. The 83 human par-
ticipants were asked to use the assistant to solve the
issue. Solving these issues involves things as such:
finding the flooding IPs, blacklisting them within the
firewall database, starting a honeypot server, analyz-
ing data flow specifics in terms of size and procu-
rance, and so on. An emulator for different types

of attacks, including DDoS or ransomware attacks
(de Neira et al., 2023), has been used for evaluation.
The snapshots of the attacks provided various data
tables with statistics on the utilization of resources
(e.g. servers, routers, local hub systems), and con-
nection logs of users including their location, time,
and resources consumed in the network. The deploy-
ment interface was handled via RestAPI and the client
was implemented with Streamlit 3 libraries and tools
(including visualizations). All these simulations and
screenshots can be found in the repository.

The task was correctly solved by 65 people within
a single instance of the test. The rest had to restart
the test and try once or twice. Their feedback after
each question-response pair is collected using a rat-
ing score 1-5 and optional natural language descrip-
tion. The average score of responses is 4.17. One im-
portant observation is that users considered that the
cybersecurity assistant helped them in two ways:

• they can ask contextual items around the topic that
is trying to solve.

• the functionalities of each use-case were faster re-
trieved (RAG), and actions could be taken using
natural language requests.

6 CONCLUSIONS AND FUTURE
WORK

The CyberGuardian framework demonstrates the po-
tential to enhance the efficiency and effectiveness of
Security Operations Centers (SOCs) through the ap-
plication of LLMs and Agentic AI. By leveraging
techniques such as Retrieval Augmented Generation
(RAG) and ensuring secure human-chatbot interac-
tions, CyberGuardian 2 addresses various cybersecu-
rity tasks, including database management, firewall
configuration, and code execution. The framework’s
adaptability to different user experience levels and
its client-independent architecture make it a versatile
tool for diverse applications. Future work will focus
on further fine-tuning the model, expanding its ca-
pabilities, and integrating more complex multi-agent
functions to support advanced cybersecurity opera-
tions.

ACKNOWLEDGEMENTS

This research was partially supported by the project
“Romanian Hub for Artificial Intelligence - HRIA”,

3https://streamlit.io/

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

666

Smart Growth, Digitization and Financial Instru-
ments Program, 2021-2027, MySMIS no. 334906
and European Union’s Horizon Europe research and
innovation programme under grant agreement no.
101070455, project DYNABIC.

REFERENCES

Abdelhamid, S. and et al. (2023). Cybersecurity aware-
ness, education, and workplace training using socially
enabled intelligent chatbots. In Creative Approaches
to Technology-Enhanced Learning for the Workplace
and Higher Education, pages 3–16, Cham. Springer
Nature Switzerland.

Al-Hawawreh, M., Aljuhani, A., and Jararweh, Y. (2023).
ChatGPT for cybersecurity: practical applications,
challenges, and future directions. Cluster Computing,
26(8):3421–3436.

Arora, A., Arora, A., and McIntyre, J. (2023). Developing
chatbots for cyber security: Assessing threats through
sentiment analysis on social media. Sustainability,
15(17).

Asai, A. et al. (2023). Self-rag: Learning to retrieve, gener-
ate, and critique through self-reflection.

Carbonell, J. and Goldstein, J. (1998). The use of mmr,
diversity-based reranking for reordering documents
and producing summaries. In Proc. of ACM SIGIR,
pages 335–336.

Chen, C., Liu, Z., Du, C., Pang, T., Liu, Q., Sinha, A.,
Varakantham, P., and Lin, M. (2024). Bootstrapping
language models with dpo implicit rewards.

de Neira, A. B., Kantarci, B., and Nogueira, M. (2023).
Distributed denial of service attack prediction: Chal-
lenges, open issues and opportunities. Computer Net-
works, 222:109553.

Dubey, A. et al. (2024). The llama 3 herd of models.
Franco, M. F. et al. (2020). Secbot: a business-driven con-

versational agent for cybersecurity planning and man-
agement. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–
7.

Fung, Y.-C. et al. (2022). A chatbot for promoting cyber-
security awareness. In Cyber Security, Privacy and
Networking, pages 379–387, Singapore. Springer Na-
ture Singapore.

Goel, K. and Chandak, M. (2024). Hiro: Hierarchical infor-
mation retrieval optimization. CoRR, abs/2406.09979.

Guo, S. et al. (2024). Direct language model alignment from
online ai feedback.

Inan, H., Upasani, et al. (2023). Llama guard: Llm-
based input-output safeguard for human-ai conversa-
tions. arXiv preprint arXiv:2312.06674.

Ivison, H. et al. (2024). Unpacking dpo and ppo: Disentan-
gling best practices for learning from preference feed-
back.

Jeong, S. et al. (2024). Adaptive-rag: Learning to adapt
retrieval-augmented large language models through
question complexity.

Khanda, R. (2024). Agentic ai-driven technical trou-
bleshooting for enterprise systems: A novel weighted
retrieval-augmented generation paradigm.

Maharana, A. et al. (2024). Evaluating very long-term con-
versational memory of LLM agents. In Proceedings
of ACL, pages 13851–13870, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Motlagh, F. N. et al. (2024). Large language models in cy-
bersecurity: State-of-the-art.

Mughal, A. A. (2022). Building and securing the modern
security operations center (soc). International Jour-
nal of Business Intelligence and Big Data Analytics,
5(1):1–15.

OpenAI et al. (2024). GPT-4 technical report.
Paduraru, C., Patilea, C., and Stefanescu, A. (2024). Cyber-

Guardian: An interactive assistant for cybersecurity
specialists using large language models. In Proc. of
ICSOFT’24, volume 1, pages 442–449. SciTePress.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.

Rozière, B. et al. (2024). Code llama: Open foundation
models for code.

Shafee, S., Bessani, A., and Ferreira, P. M. (2024). Evalua-
tion of llm chatbots for osint-based cyber threat aware-
ness.

Shaqiri, B. (2021). Development and refinement of a chat-
bot for cybersecurity support. Master’s thesis, Univer-
sity of Zurich, Zurich, Switzerland.

Tejonath Reddy, K. (2024). How deep learning chatbots
empower cybersecurity against phishing attacks. In-
ternational Center for AI and Cyber Security Re-
search and Innovations (CCRI).

Tihanyi, N., Ferrag, M. A., Jain, R., Bisztray, T., and Deb-
bah, M. (2024). Cybermetric: A benchmark dataset
based on retrieval-augmented generation for evaluat-
ing llms in cybersecurity knowledge. In 2024 IEEE
International Conference on Cyber Security and Re-
silience (CSR), pages 296–302.

Touvron, H. et al. (2023). Llama 2: Open foundation and
fine-tuned chat models.

Yan, S.-Q. et al. (2024). Corrective retrieval augmented
generation.

Yang, J. et al. (2023). A systematic literature review of
information security in chatbots. Applied Sciences,
13(11).

Yao, S. et al. (2023). ReAct: Synergizing reasoning and
acting in language models. In ICLR’23.

Zheng, L. et al. (2023). Judging llm-as-a-judge with mt-
bench and chatbot arena. In Advances in Neural In-
formation Processing Systems (NeurIPS, volume 36,
pages 46595–46623.

CyberGuardian 2: Integrating LLMs and Agentic AI Assistants for Securing Distributed Networks

667

