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Abstract: Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches
for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary
Optimization (QUBO). These algorithms aim to minimize the objective function xT Qx, where Q is a QUBO
matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem
embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in Q, contributing
to significant computational and error-related challenges. To address this, we introduce the concept of semi-
symmetries in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into
ancilla qubits. Semi-symmetries frequently arise in optimization problems such as Maximum Clique, Hamilton
Cycles, Graph Coloring, and Graph Isomorphism. We theoretically demonstrate that the modified QUBO ma-
trix Qmod retains the same energy spectrum as the original Q. Experimental evaluations on the aforementioned
problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to 45%.
For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and
better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum
algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.

1 INTRODUCTION

The Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014) is designed to tackle com-
binatorial optimization problems using quantum com-
puters by preparing a quantum state that maximizes
the expectation value of the cost-hamiltonian. QAOA
is widely recognized as a prime contender for show-
casing quantum advantage on Noisy Intermediate-
Scale Quantum (NISQ) devices (Zou, 2023). It aims
to approximate the ground state of a given physical
system, often referred to as the Hamiltonian. How-
ever, its successful implementation faces challenges
due to the high error rates inherent in current near-
term quantum devices, which lack full error correc-
tion capabilities.

Utilizing QAOA to solve a problem entails a two-
step process. Initially, the problem is translated into
a parametric quantum circuit consisting of p layers
each consisting of 2 adjustable parameters, where p
is a hyperparameter that needs to be set manually.
This circuit is then run for thousands of trials. Subse-
quently, a classical optimizer utilizes the expectation

value of the output distribution to refine the parame-
ters. This iterative process continues until the optimal
parameters for the circuit are determined. The cost
function, which QAOA tries to minimize is usually
represented as a Quadratic Unconstrained Binary Op-
timization (QUBO) problem.

The quantity of two-qubit CNOT operations
within a QAOA circuit is equal to 2C · p where C
is the number of non-zero couplings in the QUBO
(number of edges in the problem graph). However,
CNOT operations are susceptible to errors and of-
ten lead to prolonged runtimes. For instance, on
the Google Sycamore quantum processor (Ayanzadeh
et al., 2023), CNOTs exhibit an average error-rate
of 1%. Furthermore, CNOT gates might require ad-
ditional SWAP gates since control- and target-qubit
might not be connected on the hardware chip. There-
fore, minimizing the number of these operations be-
comes crucial to improve the efficiency and accuracy
of quantum optimization algorithms like QAOA.

In this paper, we therefore propose a method for
using ancilla qubits to reduce the number of non-zero
couplings and therefore also the number of CNOT op-
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erations and the depth of the QAOA circuit. We will
also show that these sparser (but larger) QUBO matri-
ces are easier to solve using Quantum Annealing since
lower density leads to shorter physical qubit chains.

We present the concept of semi-symmetries (see
Definition 2) which we factor out into ancilla qubits.
Our algorithm can therefore create different QUBO
matrices that represent the same low-energy spec-
trum. To demonstrate the effectiveness of our ap-
proach, we tested it on four well-known optimiza-
tion problems: Maximum Clique, Hamilton Cycles,
Graph Coloring, and Graph Isomorphism. Our results
show that our method can reduce the number of cou-
plings and QAOA circuit depth by up to 45%, thus
significantly improving the efficiency and scalability
of Quantum Annealing and QAOA for solving a di-
verse range of NP-hard optimization problems.

2 BACKGROUND

2.1 Quadratic Unconstrained Binary
Optimization

Let Q be a symmetric, real-valued (n× n)-matrix
and x ∈ Bn be a binary vector. Quadratic Uncon-
strained Binary Optimization (QUBO) (Zielinski
et al., 2023b; Roch et al., 2023) is an optimization
problem of the form:

x∗ = argmin
x

H(x) = argmin
x

n

∑
i=1

n

∑
j=i

xi x j Qi j (1)

The function H(x) is usually called Hamiltonian.
We will refer to the matrix Q as the “QUBO ma-
trix”. The task is to find a binary vector x that is as
close as possible to the optimum which is known to
be NP-hard (Glover et al., 2018). QUBOs attracted
special attention recently since they can be solved
using Quantum Optimization approaches like Quan-
tum Annealing (QA) (Morita and Nishimori, 2008) or
QAOA (Farhi et al., 2014) which promises speed-ups
compared to classical algorithms (Farhi and Harrow,
2016). Numerous problems have already be encoded
as a QUBO formulation (Bucher et al., 2023; Zielin-
ski et al., 2023a; Nüßlein et al., 2023).

To solve a QUBO matrix using Quantum Anneal-
ing (QA), it must first be embedded onto a specialized
graph (Prasanna et al., 2019; Mooney et al., 2019;
Lodewijks, 2020). This process involves represent-
ing each logical qubit with multiple physical qubits.
These physical qubits must be interconnected, form-
ing what is known as a chain.

2.2 QAOA

The Quantum Approximate Optimization Algorithm
(QAOA) is a hybrid quantum-classical algorithm pro-
posed by Farhi et al. in 2014 (Farhi et al., 2014)
for solving combinatorial optimization problems. Let
C(x) be a cost function, where x represents a binary
string encoding a possible solution. The goal is to
find the x that minimizes C(x). QAOA encodes this
optimization problem into a quantum circuit, which
can be parameterized by angles γ and β. The quantum
circuit prepares a quantum state |ψ(γ,β)⟩ that repre-
sents a superposition of all possible solutions. The
quantum circuit consists of alternating layers of two
types of operators: the cost operator UC and the mixer
operator UB. The cost operator is responsible for en-
coding the cost function into the quantum state, while
the mixer operator is responsible for exploring differ-
ent solutions efficiently. The quantum state |ψ(γ,β)⟩
prepared by the circuit is given by:

|ψ(γ,β)⟩= e−iγpUB e−iβpUC · · ·e−iγ1UB e−iβ1UC |+⟩⊗n

where |+⟩⊗n represents the initial state of n qubits ini-
tialized to the superposition state, and UC and UB are
the cost and mixer operators, respectively which are
applied p times. p is a hyperparameter that needs to
be manually specified. The parameters γ and β control
the evolution of the quantum state.

The next step involves optimizing the parameters
γ and β to minimize the expectation value of the cost
function. This optimization process is typically per-
formed using classical optimization algorithms such
as gradient descent or genetic algorithms. Given
the quantum state |ψ(γ,β)⟩, the expectation value
of the cost function can be calculated as E(γ,β) =
⟨ψ(γ,β)|C|ψ(γ,β)⟩. The goal is to find the optimal
parameters γ∗ and β∗ that minimize E(γ,β). This opti-
mization process involves iteratively updating the pa-
rameters.

2.3 Maximum Clique

In graph theory, the Maximum Clique problem
involves finding the largest subset of vertices V ′ ⊆ V
in a graph G(V,E) such that every pair of vertices is
connected by an edge. This problem has extensive
applications across various domains, including social
network analysis and bioinformatics (Eblen et al.,
2011; Rossi et al., 2015). To formulate the Maximum
Clique problem as a QUBO problem, binary variables
xi are used for each vertex i, where xi = 1 indicates
that vertex i is included in the clique, and xi = 0
otherwise. The Hamiltonian can therefore be written
as:
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H(x) = ∑
i
−xi +A · ∑

(i, j)∈E

xix j

The second summand of H enforces the solution
to be a clique while the first summand rewards larger
cliques (Lucas, 2014).

2.4 Hamilton Cycles

Let G(V,E) be a graph. The Hamilton Cycles prob-
lem asks if there is a path that starts from vertex v0,
visits every other vertice exactly once, and ends in
vertex v0 (Lucas, 2014). This problem has practi-
cal applications in various fields, including logistics,
transportation, and circuit design (Kawarabayashi,
2001; Laporte and Martı́n, 2007). To formulate this
problem as a QUBO we introduce binary variables xi, j
with i ∈ [1..|V |] and j ∈ [1..|V |]. xi, j = 1 iff vertex i is
at position j of the cycle. The Hamiltonian can now
be written as (Nüßlein et al., 2022):

H(x) = ∑
i
−xi +A ·∑

i, j
∑
k,l

xi, jxk,l · I[i = k∨ j = l

∨ (l = j+1∧ (i,k) /∈ E)∨ (l = |V |−1∧ j = 0
∧ (i,k) /∈ E)]

H consists of three constraints: (1) each vertex
must be visited (2) two vertices can’t be at the same
position in the cycle (3) two vertices can not be in
neighboring positions of the cycle if there is no edge
in the graph connecting them.

2.5 Graph Coloring

The Graph Coloring problem encompasses a wide
range of applications from scheduling to register
allocation in compilers, and even to radio fre-
quency assignment in wireless communication net-
works (Ahmed, 2012). At its core, the problem re-
volves around assigning colors to the vertices of a
graph in such a way that no two adjacent vertices
share the same color. Let G = (V,E) be a graph, and
k be the number of available colors. To formulate this
problem as a QUBO we introduce binary variables xi,k
representing the assignment of color k to vertex i (Lu-
cas, 2014).

H(x) = ∑
i,k
−xi,k +A ·∑

i,k1

∑
j,k2

xi,k1x j,k2 · I[i = j

∨ (k1 = k2∧ (i, j) ∈ E)]

H encodes the two constraints that each vertex can
only have one color and two adjacent vertices can’t
have the same color.

2.6 Graph Isomorphism

Graph Isomorphism (GI) is an important problem in
graph theory that asks whether two graphs are struc-
turally equivalent, albeit possibly differing in their
vertex and edge labels. Formally, two graphs G1 =
(V1,E1) and G2 = (V2,E2) are considered isomor-
phic if there exists a bijective mapping between their
vertices such that their edge structures remain un-
changed. In contrast to Maximum Clique, Hamilton
Cycles and Graph Coloring, the complexity class for
GI is still unknown (although it is expected to be in
NP-intermediate) (Lu, ).

To formulate GI as a QUBO problem, we intro-
duce binary variables xi, j representing the mapping of
vertex i of G1 to vertex j of G2. The Hamiltonian can
now be formulated as (Lucas, 2014):

H(x) = ∑
i
−xi +A · ∑

i1, j1
∑

i2, j2

xi1, j1xi2, j2 ·

I[i1 = j2∨ j1 = j2∨ ((i1, i2) ∈ E1∧ ( j1, j2) /∈ E2)

∨ ((i1, i2) /∈ E1∧ ( j1, j2) ∈ E2)]

3 RELATED WORK

In this paper, we propose the concept of Semi-
Symmetries in QUBO matrices Q and an algorithm
for factoring them out into ancilla qubits to reduce
the number of couplings and therefore the number of
CNOT gates and circuit depth in QAOA and the chain
length in QA. There are already two well-known
types of symmetries in QUBO matrices: bit-flip-
symmetry and qubit-permutation-symmetry (Shay-
dulin and Galda, 2021; Shaydulin and Wild, 2021;
Shaydulin et al., 2020). Symmetry is defined here re-
garding the solution vectors {x} and their associated
energies {xT Qx}.

3.1 Bit-Flip-Symmetry

Bit-flip-symmetry denotes the property of QUBOs that
the inverse bit vector xI = 1− x to a bit vector x both
have the same energy: (xI)

T QxI = xT Qx. Bit-flip-
symmetries occur, for example, in the Max-Cut prob-
lem:

H(x) = ∑
(i, j)∈E

−xi− x j +2xix j

Bit-flip-symmetry can be identified in a QUBO matrix
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Q by substituting xi← (1− xi) and x j← (1− x j):

H(x) = ∑
(i, j)∈E

−(1− xi)− (1− x j)+2(1− xi)(1− x j) =

= ∑
(i, j)∈E

−2+ xi + x j +2(1− x j− xi + xix j) =

= ∑
(i, j)∈E

−xi− x j +2xix j

Since the energy stays the same the QUBO contains a
bit-flip-symmetry. Eliminating bit-flip-symmetry can
be done by removing the last qubit and assigning it the
value 0. Then, the remaining (n−1)× (n−1) QUBO
matrix still encodes the original Hamiltonian.

3.2 Qubit-Permutation-Symmetry

Qubits i and j are qubit-permutation-symmetrical if
they have the same coupling values to all other qubits,
i.e.:

∀ k ∈ [1..n] : Qi,k = Q j,k

This implies that for all x(i=1, j=0) it holds:

H(x(i=1, j=0)) = H(x(i=0, j=1))

We use the notation x(i=1, j=0) for an arbitrary solution
vector x with qubit i having value 1 and qubit j having
value 0. However, a trivial reduction of such a QUBO
is not possible, since there are 3 cases that have dif-
ferent energies: x(i=0, j=0), x(i=1, j=0) and x(i=1, j=1).

3.3 Choosing a Value for P

Several works (Niu et al., 2019; Pan et al., 2022b;
Ni et al., 2023) have analyzed the influence of circuit
depth on the performance of QAOA. Note that depth
is sometimes used synonymously with the number of
layers, which we refer to as p. In this paper, we ex-
clusively refer to depth as the depth of the transpiled
quantum circuit. To select the optimal number of rep-
etitions p, several approaches have been proposed for
automatically setting this hyperparameter (Pan et al.,
2022b; Ni et al., 2023; Pan et al., 2022a; Lee et al.,
2021). In our experiments, we always used p = 1.

3.4 Other Approaches for Eliminating
Couplings in Q

In Algorithm 1, the original Q is modified by factor-
ing out semi-symmetries into additional ancilla qubits.
However, we show that in doing so, the energy land-
scape for valid solutions is not altered. In contrast,
there are heuristic approaches that alter the energy
landscape to simplify Q. For example, in the paper

(Sax et al., 2020), an approach was introduced to re-
duce the number of couplings in a QUBO by simply
setting the smallest couplings to 0 since they have the
smallest influence on the energy landscape. By al-
tering the energy landscape in this manner, it can no
longer be guaranteed that the optimal solution x∗mod of
the modified QUBO Qmod corresponds to the optimal
solution x∗ of the original QUBO Q.

Ising graphs associated to real-world problems,
such as Airport Traffic Graphs, often exhibit a power-
law structure (Ayanzadeh et al., 2023), where some
nodes have many more connections than others. In
the paper (Ayanzadeh et al., 2023), an approach is pre-
sented on how to partition the graphs with respect to
these ’hubs’. This eliminates many couplings of the
Hamiltonian, and the individual subgraphs can then
be solved individually using a divide-and-conquer ap-
proach. A detailed analysis of the performance of
QAOA depending on the graph structure is provided
in (Herrman et al., 2021). In (Ponce et al., 2023),
an approach is proposed on how large Max-Cut QU-
BOs can be solved by decomposing them into many
smaller QUBOs. A similar approach is pursued in
(Majumdar et al., 2021).

There are already several papers (Shaydulin and
Galda, 2021; Shaydulin and Wild, 2021; Shaydulin
et al., 2020) that exploit symmetries in QUBOs
to generate more efficient and shorter QAOA cir-
cuits. In (Shaydulin and Galda, 2021), a method is
proposed for leveraging bit-flip-symmetry and qubit-
permutation-symmetry on Max-Cut graphs. In (Shay-
dulin et al., 2020) various types of symmetries that are
relevant to QAOA and classical optimization prob-
lems are discussed. One prominent type is variable
(qubit) permutation symmetries, which are transfor-
mations that rearrange the qubits of the quantum state
without changing the problem’s objective function.
Such a symmetry can be caused when a graph con-
tains automorphisms (a mapping of the graph to it-
self). The authors show that if a group of variable per-
mutations leaves the objective function invariant, then
the output probabilities of QAOA will be the same
across all bit strings connected by such permutations,
regardless of the chosen QAOA parameters and depth
which can be used to reduce the dimension of the ef-
fective Hilbert space.

4 ALGORITHM

We start this section by providing a formal definition
of conflicting qubits and semi-symmetries.

Definition 1 (Conflicting qubits). Let H(x) = xT Qx
be the energy of a solution x. Qubits i and j are
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called conflicting, iff for every solution x(i=1, j=1) it
holds that:

H(x(i=1, j=1))> {H(x(i=1, j=0)),H(x(i=0, j=1)),H(x(i=0, j=0))}

.

Definition 2 (Semi-symmetry). Conflicting qubits
(i, j) are semi-symmetric if and only if:

∃U ⊆{1..n}\{i, j}∧|U | ≥ 3 :∀k∈U : Qi,k =Q j,k ̸= 0

In other words, two conflicting qubits (i, j) are semi-
symmetric iff there are at least 3 other qubits to which
i and j have the same non-zero couplings. This is a
weakened definition of symmetry compared to qubit-
permutation-symmetry where qubits i and j needed
the same couplings to all other qubits.

4.1 Proof-of-Concept Example

In the following section, we demonstrate our algo-
rithm for a simple proof-of-concept example. To do
this, we consider the following graph:

1

2

3

4

5

6

Figure 1: A simple proof-of-concept graph.

We now want to find the largest clique (Maximum
Clique) for the graph G = (V,E) in Figure 1, i.e. the
largest set of nodes for which each pair of nodes is
connected by an edge. The Hamiltonian that encodes
this problem is given by :

H = ∑
i
−xi + ∑

(i, j)∈E

3xix j

The QUBO matrix Q for Maximum Clique and the
graph from Figure 1 is listed in Table I (upper). It
requires 6 qubits and 9 couplings. Q contains a semi-
symmetry between qubits 2 and 5 which can be fac-
tored out into an additional ancilla qubit 7 (see Table
I (lower)). The modified QUBO matrix Qmod requires
7 qubits but only 8 couplings.

In the following section, we theoretically show
that our algorithm doesn’t change the energy land-
scape for valid solutions and in section 4.3 we analyze
the energy spectra for both QUBO matrices in Table
I.

Algorithm 1: Factoring Semi-Symmetries.

Input: QUBO matrix Q of size n×n
number of ancillas numAncillas ∈ N
parameter z ∈ R+

nnew = n
cL = GETCONFLICTLIST(Q,nnew)

while len(cL)> 0 do
syms,(i, j) = GETMOSTSYMQUBITS(Q,nnew,cL)
if len(syms)< 3 or nnew = n+numAncillas then

break
end if
nnew = nnew +1
Q = ENHANCE(Q,nnew,(i, j),syms)
cL = GETCONFLICTLIST(Q,nnew)

end while

return Q

function GETCONFLICTLIST(Q,n)
cL = []
Z = [∑ j∈[1..n],Qi, j<0 Qi, j : i ∈ [1..n]]
for i = 1 to n, j = 1 to n do

if i < j and Qi, j >−Z[i]−Z[ j] then
cL.append((i, j))

end if
end for
return cL
end function

function GETMOSTSYMQUBITS(Q,n,cL)
best = (0,1)
bestSyms = []
for (i, j) ∈ cL do

syms = [k ∈ [1..n] : Qi,k = Q j,k ̸= 0]
if len(syms)≥ len(bestSyms) then

best = (i, j)
bestSyms = syms

end if
end for
return bestSyms,best
end function

function ENHANCE(Q,n,(i, j),syms)
Qi,i = Qi,i + z
Q j, j = Q j, j + z
Qn,n = z
Qi,n =−2 · z
Q j,n =−2 · z
Qi, j = 2 · z
for k ∈ syms do

Qk,n = Qi,k
Qi,k = 0
Q j,k = 0

end for
return Q
end function
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Figure 2: The green line represents the sorted energy spectrum of the left QUBO in Table I. The orange lines represent the
energy spectrum of the right QUBO in Table I with the lower graph in both plots being the energetically more favorable choice
of the ancilla value while the upper graph in both plots representing the energetically less favorable choice. The upper plot
represents the energy spectrum of Qmod with z = 3 and the lower plot with z = 9. For z = 3 we can see that invalid solutions
can have a lower energy in Qmod than in Q but if we increase z all invalid solutions have an energy equal or higher than in Q.
But even z = 3 is already sufficient for the global optimum x∗ in Q to also be the global optimum in Qmod .

Table 1: (Upper) QUBO matrix Q for Maximum Clique
and the graph in Figure 1. (Lower) Modified QUBO ma-
trix Qmod of Q using Algorithm 1. The semi-symmetry be-
tween qubits 2 and 5 was factored out into an additional
ancilla qubit.

-1 3 3
-1 3 3 3

-1 3 3
-1 3

-1 3
-1

-1 3
2 9 -6

-1 3 3
-1 3

2 -6
-1 3

3

4.2 Theoretical Analysis for Correctness

We can prove that our modified QUBO Qmod has the
same optimal solutions as Q with the best choice of
ancilla values, i.e. Algorithm 1 doesn’t change the
energies of valid solutions and doesn’t decrease the
energy of invalid solutions. Valid solutions x are bit-
vectors that don’t violate conflicting qubit constraints,
i.e. if (i, j) are conflicting then xi = 0 or x j = 0. In-
valid solutions are bit-vectors with xi = 1 and x j = 1.
Proposition 1. If we choose z = ∑(i, j) |Qi, j|, valid
solutions x have the same energy regarding Q as
to Qmod with the best values for the ancilla qubits
xmod = x+[xa]. The energy of invalid solution doesn’t
decrease with respect to Qmod even with the best an-
cilla values.

Proof. Let Q be any QUBO matrix and x ∈ Bn be any
solution vector. The energy E for x corresponds to
E = xT Qx. Let (xi,x j) be a pair of conflicting qubits,
i.e. no valid solution x contains assignments i = 1 and
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j = 1 at the same time. Further assume that (xi,x j)
are semi-symmetrical and Algorithm 1 factored out
the semi-symmetries into an ancilla qubit xa.

Case 1: xi = 0,x j = 0,xa = 0: in this case, we can
easily see that the energy of xmod = x + [0] regard-
ing Qmod is identical to the original energy: Emod =

(x+[0])T ·Qmod · (x+[0]) = E.

Case 2: xi = 0,x j = 0,xa = 1: in this case the
modified energy corresponds to: Emod = E + z +
∑k∈syms Qi,k. Since we can choose z = ∑(i, j) |Qi, j|, it
holds that z+∑k∈syms Qi,k ≥ 0. Therefore: Emod ≥ E.

Case 3: xi = 1,x j = 0,xa = 0: Emod = E + z −
∑k∈syms Qi,k. Again, since z = ∑(i, j) |Qi, j|, it holds that
z−∑k∈syms Qi,k ≥ 0. Therefore: Emod ≥ E.

Case 4: xi = 1,x j = 0,xa = 1: Emod =E+z+z−2z+
∑k∈syms Qi,k−∑k∈syms Qi,k = E.

Case 5: xi = 0,x j = 1,xa = 0: analogous to case 3.

Case 6: xi = 0,x j = 1,xa = 0: analogous to case 4.

Case 7: xi = 1,x j = 1,xa = 0: Emod =E+z+z+2z−
∑k∈syms Qi,k−∑k∈syms Qi,k > E.

Case 8: xi = 1,x j = 1,xa = 1: Emod = E + z +
z + z − 2z − 2z + 2z − ∑k∈syms Qi,k − ∑k∈syms Qi,k +
∑k∈syms Qi,k = E + z−∑k∈syms Qi,k ≥ E.

The best choices for the ancilla qubit for valid solu-
tions are case 1, case 4 and case 6 which all have
energy E. Therefore, the energy did not change for
valid solutions. For invalid solutions (cases 7 and 8)
the energy does not decrease.

4.3 Empirical Evaluation of the Energy
Landscape for the PoC

We now empirically investigate this theoretical find-
ing in our proof-of-concept example. Since there are
6 qubits, there are 26 = 64 possible solutions x. For
each x we calculated the energy regarding Q (Table
I, left), see green lines in Figure 2. Further, we have
calculated the energy in the modified QUBO (Table
I, right) with both possible values (0 and 1) for the
ancilla qubit 7. Then we have plotted for each x the
original energy, the energy in the modified Qmod with
the worse choice for the ancilla qubit and the better
choice for the ancilla qubit.

The upper plot in Figure 2 shows the result with
z = 3, and the lower plot shows the result with z =
9. We can verify the proposition if we choose z
big enough, but often a lower value for z is already
enough for the original optimal solution x to also be
the optimal solution in Qmod .

5 EXPERIMENTS

We conducted experiments on four representative
combinatorial optimization problems — Maximum
Clique, Graph Coloring, Hamilton Cycles, and Graph
Isomorphism — to evaluate the impact of removing
semi-symmetries from QUBO formulations. Each
problem instance is characterized by the number of
vertices |V | and edges |E|, with additional parameters
such as the number of colors k for Graph Coloring.
Our goal was to assess how introducing additional an-
cilla qubits (to remove semi-symmetries) influences
key hardware-related metrics after embedding the re-
sulting QUBOs onto a quantum annealer.

Figure 3 summarizes our findings. The figure con-
sists of a 4× 5 grid of plots, where each row corre-
sponds to one of the four problems (from top to bot-
tom: Maximum Clique, Graph Coloring, Hamilton
Cycles, Graph Isomorphism) and each column rep-
resents a different metric. The metrics we considered
were: the number of couplers used in the embedded
QUBO, the total number of physical qubits, the mean
chain length, the chain break fraction, and the prob-
ability of a successful solution (Success). The hor-
izontal axis in every subplot denotes the number of
vertices |V | for the given problem instances, thus cap-
turing how problem scale affects these metrics. We
compared three scenarios for each problem and set-
ting: the original QUBO (blue), and two symmetry-
free variants obtained by introducing 5 (orange) or 10
(green) ancilla qubits to remove semi-symmetries.

As the problem size |V | increased, the original
QUBO instances tended to produce larger and more
complex embeddings, reflected by a higher number
of couplers, more physical qubits, and longer chains.
These embedding characteristics often led to a higher
chain break fraction and, consequently, a lower prob-
ability of success. In contrast, when we introduced
ancilla qubits to remove semi-symmetries, both the 5-
and 10-ancilla configurations showed a noticeable re-
duction in complexity: we observed fewer couplers, a
smaller chain length, and a reduced chain break frac-
tion. This improved embedding quality often trans-
lated into a higher success probability for finding the
optimal solution, despite the growing complexity of
the underlying problem instances.
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Figure 3: This figure presents the outcomes of our experiments on removing semi-symmetries using the algorithm described in
Section 3. We evaluated our approach on four optimization problems: Maximum Clique, Graph Coloring, Hamilton Cycles,
and Graph Isomorphism. Along the horizontal axis, the plot shows increasing problem size. We considered five metrics: the
number of couplings, the number of physical qubits, the mean chain length, the chain break fraction, and the success rate.
The success metric equals 1 whenever the annealer reaches the global optimum, as verified by a classical heuristic solver. Our
results indicate that removing semi-symmetries reduces the number of couplings, which in turn lowers the mean chain length.
This reduction leads to fewer chain breaks and ultimately improves the success rate.

Notably, the advantage of the symmetry-free ap-
proach became more pronounced at larger problem
sizes.

In summary, these experiments demonstrate
that leveraging semi-symmetry removal to produce
symmetry-free QUBOs can yield more hardware-
friendly embeddings. The resulting QUBOs generally
require fewer resources (couplers, physical qubits)
and produce higher-quality embeddings (shorter
chains, lower chain break fractions), ultimately
improving the probability of success. By making
problem instances more tractable for current quan-
tum annealers, our approach provides a practical
path toward better performance on larger and more
challenging optimization problems.

In a second experiment (see Figure 4), we ana-
lyzed the transpiled circuit depth of QAOA with
p = 1. Unlike the first experiment, we factored

out all semi-symmetries. In the first experiment,
we used a fixed number of semi-symmetries, as
eliminating smaller semi-symmetries (e.g. fewer than
10 common couplings) typically does not improve
performance on quantum annealers. This is because
the additional physical qubits required to represent
the new logical (ancilla) qubits often exceed the
physical qubits saved by shortening the chains.

The results demonstrate that the real benefit of our
approach becomes evident with larger problem sizes,
as these inherently contain more semi-symmetries.
As quantum hardware continues to advance, enabling
the solution of larger problem instances, this method
will become increasingly significant. The ability to
effectively handle semi-symmetries at scale promises
substantial improvements in circuit depth and re-
source efficiency, highlighting the long-term rele-
vance of this technique beyond the currently solvable
problem instances.
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Figure 4: Comparison of QAOA circuit depth with and without semi-symmetry elimination for different graph problems:
MaxClique (left), HamiltonCycles (center), and GraphIsomorphism (right). The blue solid line (Original) represents the
circuit depth without symmetry elimination, while the orange dashed line (SymFree max) shows the results after factoring
out all semi-symmetries. The reduction in circuit depth becomes more pronounced for larger graph sizes, demonstrating the
efficiency of the semi-symmetry elimination approach.

For the empirical evaluation in the first experi-
ment, we used the D-Wave Advantage 4.1 quantum
annealer, which features 5760 qubits. Each experi-
mental configuration was executed over 10 runs, and
the standard deviation is reported in the results to il-
lustrate variability.

For the QAOA experiments, we transpiled the cir-
cuits using Qiskit Aer. However, the transpilation was
performed solely to measure circuit depth, as the re-
sulting circuits are too large to be executed or simu-
lated on available quantum hardware.

6 CONCLUSION

In this work, we introduced the concept of semi-
symmetries in QUBO matrices and proposed an al-
gorithm for identifying and factoring these symme-
tries into ancilla qubits. Our method effectively re-
duces the number of non-zero couplings in the QUBO
matrix, which directly translates to improvements in
both the Quantum Approximate Optimization Algo-
rithm (QAOA) and Quantum Annealing.

Theoretical analysis confirmed that the modified
QUBO matrix Qmod retains the same energy spec-
trum as the original matrix Q, ensuring the correctness
of the optimization problem. Our experimental eval-
uations demonstrated significant reductions in both
computational and physical resource requirements.
Specifically, our approach achieved up to a 45% re-
duction in couplings and QAOA circuit depth. For
Quantum Annealing, the reduced matrix structure led
to sparser problem embeddings, shorter qubit chains,
and improved overall performance.

The results were validated across a range of com-
binatorial optimization problems, including Maxi-
mum Clique, Hamilton Cycles, Graph Coloring, and

Graph Isomorphism, all of which naturally exhibit
semi-symmetries. The findings indicate that leverag-
ing such symmetries enhances the scalability and effi-
ciency of quantum optimization algorithms, address-
ing key challenges such as circuit depth, error accu-
mulation, and embedding complexity.

Looking forward, as quantum hardware contin-
ues to advance, the ability to exploit matrix structure
for optimization problems will become increasingly
crucial. Our method provides a promising step to-
ward making quantum algorithms more practical and
scalable for real-world combinatorial problems. Fu-
ture work will explore further generalizations of semi-
symmetry detection, integration with higher-layer op-
timization frameworks, and broader applicability to
other classes of quantum algorithms.
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