
Reshaping Reality: Creating Multi-Model Data and Queries from
Real-World Inputs

Irena Holubová a, Alžběta Šrůtková and Jáchym Bártı́k b

irena.holubova@matfyz.cuni.cz, srutkova.alzbeta@gmail.com, jachym.bartik@matfyz.cuni.cz

Keywords: Multi-Model Data, Data Transformation, Real-World Datasets.

Abstract: The variety characteristic of Big Data introduces significant challenges for verified single-model data manage-
ment solutions. The central issue lies in managing the multi-model data. As more solutions appear, especially
in the database world, the need to benchmark and compare them rises. Unfortunately, there is a lack of avail-
able real-world multi-model datasets, the number of multi-model benchmarks is still small, and their general
usability is limited. This paper proposes a solution that enables creation of multi-model data from virtually
any given single-model dataset. We introduce a framework that enables automatic inference of the schema of
input data, its user-defined modification and mapping to multiple models, and the data generation reflecting
the changes. Using the well-known Yelp dataset, we show its advantages and usability in three scenarios re-
flecting reality.

1 INTRODUCTION

Although the traditional relational data model has
been the preferred choice for data representation for
decades, the advent of Big Data has exposed its lim-
itations in various aspects. Many technologies and
approaches considered mature and sufficiently ro-
bust have reached their limits when applied to Big
Data. One of the most daunting challenges is the
variety of data, which encompasses multiple types
and formats that originate from diverse sources and
are inherently adherent to different models. There
are structured, semi-structured, and unstructured for-
mats; order-preserving and order-ignorant models;
aggregate-ignorant and aggregate-oriented systems;
models where data normalization is critical or the re-
dundancy is naturally supported; etc.

The naturally contradictory features of the so-
called multi-model data introduce an additional di-
mension of complexity to all aspects of data manage-
ment, including modelling, storing, querying, trans-
forming, integrating, updating, indexing, and many
more. Hence, several multi-model tools for data
management have emerged. For example, consider-
ing the storage of multi-model data, more than 2/3
of the 50 most widely used database management

a https://orcid.org/0000-0003-2113-1539
b https://orcid.org/0000-0002-5664-5890

systems (DBMSs)1 now fall under the category of
multi-model following the Gartner prediction (Fein-
berg et al., 2015) made almost 10 years ago. Unfor-
tunately, no standards exist on which models to com-
bine and how, so each DBMS provides a proprietary
solution.

Similarly, there exist polystores (Lu et al., 2018;
Bondiombouy and Valduriez, 2016), sometimes de-
noted as multi-database systems. The general idea is
that several distinct data management systems (usu-
ally single-model) live under a common, integrated
schema provided to the user. Polystores can be fur-
ther classified (Tan et al., 2017) depending on vari-
ous aspects, such as the number of query interfaces
or the types of underlying systems (homogeneous or
heterogeneous), the level of autonomy of the underly-
ing systems, etc. So, again, the variety of choices is
wide.

Choosing the optimal tool for the particular use
case is highly challenging, considering the range of
each area’s approaches. Naturally, we need to be
able to compare the selected set of tools for all target
use cases, and benchmarking comes into play. De-
spite many single-model benchmarks and data gener-
ators for all the common models (see Section 2), the
shift to the multi-model world is not straightforward.
The multi-model test cases must cover the required

1https://db-engines.com/en/ranking

174
Holubová, I., Šrůtková, A. and Bártík, J.
Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs.
DOI: 10.5220/0013395300003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 174-184
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

subset of models and their mutual relations, such as
multi-model embedding, cross-model references, or
multi-model redundancy. In addition, the variety of
use cases grows with the number of distinct models
combined. Hence, the number of truly multi-model
benchmarks is small, and their versatility and cover-
age are limited.

In response to this problem, we propose a solu-
tion that enables the creation of virtually any possible
multi-model data set together with the respective op-
erations. To ensure the data sets have realistic char-
acteristics, we do not utilize the classical approach
of exploitation of generators, providing values with
a required distribution. Instead, this paper proposes a
framework for transforming given single- (or multi-)
model data and queries to any possible combination
of multi-model data and queries.

Our approach is based on utilizing the toolset
we have developed in our research group for vari-
ous aspects of multi-model data management based
on the unifying categorical representation of multi-
model data – the so-called schema category (Koupil
and Holubová, 2022). This abstract graph representa-
tion backed by the formalism of category theory en-
abled us to propose and develop tools for categorical
schema modeling (Koupil et al., 2022a), categorical
schema inference (Koupil et al., 2022b), querying us-
ing SPARQL-based query language MMQL (Koupil
et al., 2023), or query rewriting (Koupil et al., 2024).
We show that selected features of the tools, when
appropriately extended and integrated, can form a
framework whose outputs enable the simulation of
virtually any multi-model use case.

Outline. In Section 2 we overview related work. In
Section 3, we introduce the categorical representation
of multi-model data and the tools we utilize in the
proposal. In Section 4, we introduce the multi-model
transformation framework and provide an illustrative
example using the Yelp dataset. In Section 5, we con-
clude and outline future steps.

2 RELATED WORK

Two main obvious approaches to benchmark data
management tools exist. We can use existing, prefer-
ably real-world datasets or a data generator that out-
puts synthetic, pseudo-realistic datasets. Although we
can find many representatives of both, most focus on
a single selected model. The number of multi-model
representatives is very low.

2.1 Repositories

Considering the well-known repositories of real-
world datasets, the most popular model is relational,
reflecting the history and popularity of relational
DBMSs. The second most popular model is hier-
archical, expressed usually in JSON (International,
2013), the main format supported in NoSQL docu-
ment DBMSs. There are also repositories of graph
data, as this model represents specific use cases,
hardly captured by the previous two.

The most popular repositories are usually related
to research activities. There are general repositories
such as the Kaggle repository2 of datasets for data
science competitions (involving, e.g., Titanic survival
data), the UCI Machine Learning Repository3 for ma-
chine learning research (involving, e.g., census data),
the IEEE DataPort4, or the Harvard Dataverse5. The
open-access repository Zenodo6, developed under the
European OpenAIRE program, enables researchers to
share datasets and other research outputs. For graph
data, there are popular repositories such as the Stan-
ford Large Network Dataset Collection7, the Network
Data Repository8, or the Open Graph Benchmark9.

The open data movement naturally provides an-
other good source of data. Many governments (e.g.,
US10, UK11, EU12, etc.) provide open data por-
tals hosting various datasets on demographics, eco-
nomics, transportation, and public health. Similarly,
Amazon Web Services (AWS) host a variety of open
datasets13 that can be accessed and analyzed directly
in the cloud.

Various datasets can be found also in GitHub14,
or related projects, such as DataHub15. Or, one can
search the whole Internet, e.g., using the Google
Dataset Search16.

2https://www.kaggle.com/
3https://archive.ics.uci.edu/
4https://ieee-dataport.org/
5https://dataverse.harvard.edu/
6https://zenodo.org/
7https://snap.stanford.edu/data/
8https://networkrepository.com/
9https://ogb.stanford.edu/

10https://data.gov/
11https://www.data.gov.uk/
12https://data.europa.eu/
13https://registry.opendata.aws/
14https://github.com/
15https://datahub.io/
16https://datasetsearch.research.google.com/

Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs

175

2.2 Generators

Often, we cannot easily find a suitable real-world
dataset. In that case, we can use a data generator
or a comprehensive benchmark with a data generator
capable of producing pseudo-realistic datasets with
required natural features (e.g., distribution of values
or structural features). However, to our knowledge,
most existing generators are limited to a single, spe-
cific data model or format, or they are constrained to
a fixed set of one or a few use cases, each represented
by a dataset and related operations. For example, pop-
ular benchmarks, such as TPC-H and TPC-DS17, are
naturally focused on the relational data model. Simi-
larly, benchmarks like XMark (Schmidt et al., 2002)
or DeepBench (Belloni et al., 2022) are tailored to the
document data model involving basic NoSQL or path-
finding queries. A comprehensive review of purely
graph data generators is presented in (Bonifati et al.,
2020). For instance, GenBase (Taft et al., 2014) fo-
cuses on the array data model and queries for array
manipulation.

Considering multi-model data, only a few repre-
sentatives fall into this category. BigBench (Ghazal
et al., 2013) covers semi-structured and unstruc-
tured data and the relational data model, but it
lacks support for both graph and array data mod-
els. UniBench (Zhang et al., 2019) does not sup-
port the array data model either, and it considers only
a single use case within the benchmark. Finally,
M2Bench (Kim et al., 2022) encompasses relational,
document, graph, and array data models. Neverthe-
less, despite each covered benchmark task involving
at least two data models, the benchmark is designed
to fit within one of three predefined use cases.

3 CATEGORICAL VIEW AND
MANAGEMENT OF
MULTI-MODEL DATA

Multi-model data refers to data represented by multi-
ple interconnected logical models within a single sys-
tem. The interconnection can be done in several ways:

1. The two (or more) models can be mutually em-
bedded. For example, a JSONB column in Post-
greSQL18 enables embedding a JSON document
into a relational table.

2. A reference can exist between two entities resid-
ing in different modes.

17https://www.tpc.org/
18https://www.postgresql.org/

3. The same part of data can be represented redun-
dantly using multiple models.

Integrating different data models within a larger
system, such as a polystore or a multi-model DBMS,
allows for using the most appropriate model for spe-
cific tasks. For example, structured data with slight
variations might best suit the document model. Data
with numerous relationships requiring efficient path
queries may fit the graph model. Or, rapidly generated
data with simple querying needs could be handled by
the key/value model.

3.1 Categorical Representation of
Multi-Model Data

First, to unify the terminology from different models,
we use the following terms: A kind corresponds to
a class of items (e.g., a relational table or a collec-
tion of JSON documents), and a record corresponds
to one item of a kind (e.g., a table row or a JSON
document). A record consists of simple or complex
properties having their domains.

To grasp the popular models’ specific features,
we utilize the so-called schema category (Koupil and
Holubová, 2022), a unifying abstract categorical rep-
resentation of multi-model data to manage any possi-
ble combination of known models.

Let us first remember the basic notions of category
theory. A category C = (O,M ,◦) consists of a set of
objects O, set of morphisms M , and a composition
operation ◦ over the morphisms ensuring transitivity
and associativity. Each morphism is modelled as an
arrow f : A → B, where A,B ∈ O, A = dom(f),B =
cod(f). And there is an identity morphism 1A ∈ M
for each object A. The key aspect is that a category
can be visualized as a multigraph, where objects act
as vertices and morphisms as directed edges.

The schema category is then defined as a tuple
S = (OS,MS,◦S). Each schema object o ∈ OS is in-
ternally represented as a tuple (key, label, superid,
ids), where key is an automatically assigned inter-
nal identity, label is an optional user-defined name,
superid ̸= /0 is a set of attributes (each correspond-
ing to a signature of a morphism) forming the ac-
tual data contents a given object is expected to have,
and ids ⊆ P (superid), ids ̸= /0 is a set of particu-
lar identifiers (each modelled as a set of attributes)
allowing us to distinguish individual data instances
uniquely. Each morphism m ∈ MS is represented as
a tuple (signature, dom, cod, label). The explicitly
defined morphisms are denoted as base, obtained via
the composition ◦S as composite. The signature al-
lows us to distinguish all morphisms except the iden-
tity ones mutually. For base morphism, we use a

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

176

single integer number. For composite morphism, we
use the concatenation of signatures of respective base
morphism using the · operation. dom and cod repre-
sent the domain and codomain of the morphism. Fi-
nally, label ∈ { #property, #role, #isa, #ident }
allows us to further distinguish morphisms with se-
mantics “has a property”, “has an identifier”, “has a
role”, or “is a”. (We provide explanatory examples in
Section 4).

3.2 Categorical Multi-Model
Data-Management Toolset

The schema category (together with its mapping to
the underlying models) allows us to seamlessly han-
dle any combination of models and process them in-
dependently of the system. When a specific opera-
tion needs to be performed at this abstract level, it is
passed down to the underlying database system for
execution.

During the last couple of years, our research group
has developed a family of tools that enable one to
manage multi-model data represented using category
theory. The tools whose selected functionality we will
utilize for our proposed purpose are the following:

• MM-evocat (Koupil et al., 2022a) enables the
manual creation of the schema category repre-
senting the conceptual model, its mapping to a
selected combination of the logical models, and
propagation of further changes in the categorical
schema to data instances.

• MM-infer (Koupil et al., 2022b) enables (semi-
)automatic inference of the schema category from
sample multi-model data instances.

• MM-evoque (Koupil et al., 2024) enables
querying over the schema category using the
Multi-Model Query Language (MMQL) (Koupil
et al., 2023), which is based on well-known
SPARQL (Prud’hommeaux and Seaborne, 2008)
notation. The queries are then decomposed
according to the mapping to logical models.
The subqueries are evaluated in the underlying
DBMSs, and the partial results (if any) are com-
bined to produce the final result. In addition, the
changes in the schema category are propagated to
the queries.

4 MULTI-MODEL
TRANSFORMATION
FRAMEWORK

The original aim of the listed tools is different, and
so is their interface and overall functionality. How-
ever, if we utilize and extend their selected function-
ality, integrate the tools thanks to the common cate-
gorical representation of multi-model data, and add
the respective GUI, we can gain a framework that
enables a user-friendly and efficient way to generate
pseudo-realistic multi-model data. On the input, we
assume a real-world single-model data set (or, even-
tually, a synthetic one with reasonable characteristics
or a multi-model dataset we want to modify). On the
output, we want to get multi-model data created from
the input data based on user requirements. Eventually,
the users can also provide a query over the input data,
and we want to output its respective modification re-
flecting the data transformation (if it exists). We can
identify several scenarios where such a framework is
applicable:

• Scenario A: The users provide input data with
model X , and they want to transform it to model
X ′.

• Scenario B: The users provide input data having
model X , and they want to transform its part to
model X ′ and the rest to X ′′, whereas a multi-
model DBMS that supports both X ′ and X ′′ exists.

• Scenario C: The users provide input data having
model X , and they want to transform its part to
model X ′ and the rest to X ′′, whereas none of the
DBMSs we consider supports both X ′ and X ′′. So,
the data is stored in two DBMSs.

Our framework covers all three scenarios. To ex-
plain the ideas, we provide a running example based
on a subset of the Yelp Open Dataset19. The data de-
scribes Yelp’s businesses, reviews, and user data, all
represented using the JSON format.
Example 4.1. Fig. 1 involves a part of the input
dataset. We can see JSON document collections User,
Review, Checkin, Business, and Tip, i.e., the data
represented in the original JSON document model
(green). Next to the documents, we can see the initial
schema category automatically inferred from the data
by MM-infer. The green nodes represent the roots of
the respective kinds. In the compound brackets, we
can see the identifiers of the kinds (e.g., the property
review id for kind Review, or the pair of proper-
ties user id, business id for kind Tip). The ar-
rows represent morphisms – in this simple example,

19https://www.yelp.com/dataset

Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs

177

only the most common type “has a property” (whose
label we omit for simplicity), i.e., leading to simple/-
complex properties of the kinds.

As we can see, the quality of the initial schema
category is limited by the input data quality, the in-
put model’s specific features, and the capabilities of
automatic schema inference of MM-infer In particu-
lar, the properties denoted with red color bear values
of identifiers of various kinds, as they probably rep-
resent the respective references. E.g., kind Review is
identified by review id, but it also involves user id
of the user who created the review and business id
of the reviewed business. This cannot be captured
using JSON, but we want to capture this informa-
tion in the schema category and use it later. Simi-
larly, kind User has a set of properties (denoted with
pink color) that have the same (in this case simple)
structure and semantics (as we can guess from their
names compliment *) and differ only in type. And
there might be lots of such properties. So, at the cat-
egorical (conceptual) level, expressing them as a sin-
gle property with a particular type might make more
sense and can be represented better in another logical
model.

Example 4.2. Fig. 2 depicts the situation after the
users visualized the initial schema category in MM-
cat and edited it using its extension MM-evocat to
solve the issues. 20 First, the users replaced repeating
occurrences of properties business id and user id
and expressed the references using the morphisms
with the respective direction (the new morphisms are
emphasized with dotted arrows). Second, the proper-
ties of kind User that are structurally and semanti-
cally equivalent were merged and transformed into a
single property with a respective property TYPE.

Example 4.3. Having the edited schema category,
we can use MM-evocat again to modify the map-
ping (initially to the input document model). Follow-
ing scenario A, we want to transform all the JSON
document data into the relational model. The situ-
ation is depicted in Fig. 3, where the users changed
the mapping of the whole schema category to the re-
lational model (violet). Namely, the original kinds
User, Review, Business, and Tip were mapped to
the respective relational tables instead of JSON col-
lections. Regarding the features of the relational mod-
els, also the property friend of kind User and prop-
erty date of kind Checkin had to be mapped to sep-
arate kinds Friend and Date (and, therefore, to re-
spective separate relational tables). Similarly, the

20Some issues can be solved in MM-infer (semi-
)automatically, we use them just for illustration.

property attribute of kind Business was mapped
to a map of attributes and thus a separate table.

Example 4.4. Following scenario B, the users might
find out that transforming all the data to the relational
model is not optimal, and they decide to use the best
of both worlds. As depicted in Fig. 4, they kept the
mapping of kinds User and Friend to the relational
models, each to a separate table, like in Fig. 3. They
also want to keep a mapping of kinds Review and Tip
to the relational model but to merge them into a sin-
gle table because Tip is just a subset of Review. So,
they create a new kind Comment that covers both of
them and map it to a single table. The new kind re-
quires property comment id, which we can reuse (for
records of kind Review) or generate by a simple al-
gorithm (for records of kind Tip).

Finally, they decided to embed the kinds
Attribute and Date, which required separate rela-
tional tables, to the relational table of kind Business.
So, they mapped them to the document model and em-
bedded them to the kind Business. (Such a combi-
nation of models is supported, e.g., in PostgreSQL.)
This transformation reduced the overhead of join-
ing the same tables each time while keeping the kind
Business mapped to the relational model.

Fig. 4 depicts the result, where we get truly multi-
model data represented in two logical models – violet
relational and green document.

Example 4.5. Finally, following scenario C and as
depicted in Fig. 5, the users might further transform
the multi-model data from a combination of two to
a combination of three logical models and map the
kind Comment to the wide-column model (red). This
model is better suited for frequent data analysis, i.e.,
the type of queries the users might want to do with the
comments. It also more naturally represents that tips
do not have all the attributes of reviews.

So, as we can see, by using the framework, it is
very simple to transform the input data to any multi-
model data only by modification of the schema cat-
egory and its mapping to the logical models. Nev-
ertheless, we may also want a similar functionality
for the queries. Extending the framework further
with MM-quecat makes it possible to query over the
schema category using MMQL (Koupil et al., 2023), a
graph query language utilizing the SPARQL notation
to query over the schema category. Depending on the
specified mapping of the schema category to the logi-
cal models, the MMQL query can be translated using
MM-quecat to be evaluated in the underlying DBMS.
But, for our purposes, instead of querying, we only
retrieve the query with the transformed data and use it
for benchmarking.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

178

Figure 1: Input single-model JSON document collections and inferred initial schema category.

Figure 2: Edited (improved) schema category from Fig. 1.

Example 4.6. For example, the users may want to
query for “names of businesses which have been re-
viewed since January 1st, 2023 and allow dogs”. Its
expression in MMQL over the improved schema cate-
gory in Fig. 2 is provided in Fig. 6. If the input data
in Fig. 2 were stored in MongoDB21, its translation to
MongoDB QL is provided in Fig. 7.

If we change the mapping to another model (or
a combination of models) represented in another
DBMS (or multiple DBMSs), we get the query ex-
pressed using the respective query language(s). In ad-
dition, if we change the part of the schema category

21https://www.mongodb.com/

accessed by the query, the modification of MMQL is
ensured along with the modification of the mapping.

Example 4.7. When we unify the business attributes
to a map, as depicted in Fig. 3, the MMQL query is
modified to reflect the change, as depicted in Fig. 8.
In addition, in Fig. 3, we also changed the mapping
to the relational model (scenario A). Assuming that
now the data is stored in PostgreSQL, the respective
mapping to the relational model ensures the transla-
tion of MMQL query to the SQL query provided in
Fig. 9.

Example 4.8. If we use the combination of the doc-
ument and relational model (scenario B) depicted in

Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs

179

Figure 3: Schema category from Fig. 2 mapped to the relational model (scenario A).

Figure 4: Schema category from Fig. 2 mapped to relational and document model (scenario B).

Figure 5: Schema category from Fig. 4 mapped to relational, document, and wide-column model (scenario C).

Fig. 4, we can assume that the data is still stored in
PostgreSQL. As SQL in PostgreSQL is extended to-
wards the support of cross-model queries over both

relational and document data, i.e., SQL/JSON, the
evaluation process again translates the MMQL query
to a single, this time cross-model query, as depicted

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

180

SELECT {

?business name ?name .

}

WHERE {

?business -reviewed/created ?date ;

with/allowsDogs "true" ;

named ?name .

FILTER(?date > "2023-01-01")

}

Figure 6: MMQL query over the improved schema category
in Fig. 2.

db.review.aggregate([

{ $match: {

date: { $gt: ISODate(’2023-01-01’) }

} },

{ $lookup: {

from: "business",

localField: "business_id",

foreignField: "business_id",

as: "business"

} },

{ $match: {

attributes: { DogsAllowed: true }

} },

{ $project: {

_id: 0,

name: "$business.name"

} },

])

Figure 7: MongoDB QL query over data from Fig. 2.

SELECT {

?business name ?name .

}

WHERE {

?business -reviewed/created ?date ;

-of ?attribute ;

named ?name .

?attribute isType "DogsAllowed" ;

isValue "true" .

FILTER(?date > "2023-01-01")

}

Figure 8: MMQL query over schema category from Fig. 3.

in Fig. 10. Note that despite the mapping change, the
parts of the schema category accessed by the MMQL
query remain untouched, so the MMQL query remains
the same.

Example 4.9. Finally, suppose we use a combination
of models unsupported by a single multi-model DBMS
(scenario C) depicted in Fig. 5. In that case, the eval-
uation consists of the decomposition of the query to
two subqueries for the respective subsystems – SQL
for PostgreSQL and, e.g., CQL for Apache Cassan-

SELECT business.name AS name

FROM business

JOIN review ON business.business_id

= review.business_id

JOIN attribute ON business.business_id

= attribute.business_id

WHERE review.date > ’2023-01-01’

AND attribute.type = ’DogsAllowed’

AND attribute.value = true

Figure 9: SQL query over data from Fig. 3 (scenario A).

SELECT business.name AS name

FROM business

JOIN comment ON business.business_id

= comment.business_id

JOIN attribute ON business.business_id

= attribute.business_id

WHERE comment.date > ’2023-01-01’

AND attributes->>’DogsAllowed’ = ’true’

Figure 10: SQL/JSON query over data from Fig. 4 (sce-
nario B).

SELECT business_id

FROM comment

WHERE date > ’2023-01-01’

SELECT name AS name

FROM business

WHERE business_id IN (/* CQL query result */)

AND attributes->>’DogsAllowed’ = ’true’

Figure 11: CQL and SQL queries over data from Fig. 5
(scenario C).

dra22 – as depicted in Fig. 11. Thus, we can also
test a family of DBMSs, together with the need to use
an additional tool to merge the results. However, be-
cause the schema category did not change, the MMQL
query stays the same again.

4.1 Architecture

Fig. 12 provides the schema of the architecture of the
proposed framework. In general, we utilize selected
parts of the functionality of the existing and verified
tools, extend them, integrate them, and roof the whole
framework with a GUI to create the target framework.
The expected work with the framework is as follows:

1. The users provide the input single-model data to
be transformed. The data can be stored in one of
the supported DBMSs or provided in files.

22https://cassandra.apache.org/

Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs

181

Table 1: Comparison of approaches using different metrics.

Metric Without framework Using framework
Time Required (hours) 10+ (estimation) 0.5 (estimation)
Lines of Code 200+ 0
Potential for Errors High (coding, manual transformation) Low (tool has been tested)
User Expertise Required Advanced Beginner / Intermediate
Flexibility / Customization High High

Table 2: User interaction needed in particular scenarios for the Yelp dataset.

Scenario Step Without framework (min) Using framework (min) Difference (min)

A

Step 1 120 5 +115
Step 2 120 10 +110
Step 3 120 12 +108
Step 4 180 2 +180
Step 5 180 0 +180

B
Step 3 180 12 +168
Step 4 240 2 +238
Step 5 240 0 +240

C
Step 3 240 16 +234
Step 4 300 2 +298
Step 5 300 0 +300

2. MM-infer parses the data and infers a schema that
a new schema conversion module transforms to
the initial schema category.

3. The users can modify the schema category de-
pending on their requirements. The users can
change the mapping of the schema category to se-
lected combinations of logical models, or they can
also change the structure of the schema category
itself. When the modification is finished, MM-
evocat transforms the data according to the new
mapping.

4. In addition, the users can specify an MMQL
query, which is updated using MM-evoque ac-
cording to the changes in the mapping or the
schema category to reflect the changes.

4.2 Evaluation of the Proposed Solution

Table 1 provides an overview of the advantages of
framework utilization compared to manual data/query
transformation. On average, depending on the com-
plexity of the data, it is much faster. The frame-
work enables us to infer the initial schema category
and, thus, get the overall view of the data structure
quickly. Also, all special cases and outliers are imme-
diately provided to the users in a visual form. Also,
the specification of the requested output is fast, and
the transformation is performed automatically with-
out the need to know the specific features of the un-
derlying systems.

Of course, we assume the framework supports all
the required systems for which we want to create the

Figure 12: Architecture of the framework.

testing data. However, integrating a new DBMS is
simple, as it only requires implementing a respective
wrapper. Once we have it, we do not need to imple-
ment any transformation script, and we can express
the modification only by interacting with the frame-
work tools. Consequently, we avoid numerous user-
defined errors, as the users are shielded from the tech-
nical details. Thus, we do not require an expert famil-
iar with the specifics of various DBMSs.

The flexibility of the framework compared to
manual data transformation is not limited. As men-
tioned above, although the framework currently sup-
ports MongoDB, PostgreSQL, neo4j, Apache Cassan-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

182

dra, JSON files, or CSV files, new DBMSs and data
formats can be easily added using wrappers.

Finally, Table 2 illustrates the time required for
user interactions across scenarios A, B, and C de-
picted in Figs. 3, 4, and 5 when processing the
Yelp dataset, comparing the conventional manual ap-
proach versus using the proposed framework tool.
The framework streamlines the workflow by automat-
ing every step of the process. In Step 1, it infers the
schema from the data. Following this, the framework
facilitates editing the schema in Step 2 by providing a
user-friendly interface that allows users to make nec-
essary adjustments with minimal effort. In Step 3,
it supports creating custom mappings between differ-
ent data models. It then moves on to generate multi-
model data in Step 4. Finally, it translates queries to
operate across different data models in Step 5. The
results demonstrate a substantial reduction in the time
required for each step when using the framework,
highlighting its efficiency and effectiveness in reduc-
ing user input and eventual errors.

5 CONCLUSION

This paper proposes a solution to the problem of lack
of real-world multi-model data (and the respective
queries). We use a different approach instead of the
common strategy of generating a synthetic dataset de-
spite having numerous realistic features. Using a spe-
cific utilization of our previously created toolset, we
introduce the idea of a transformation framework that
can transform a given, preferably real-world, dataset
into a preferred multi-model dataset. Using a well-
known dataset, Yelp, we demonstrate the advantages
and applicability of the idea.

Our future work will focus primarily on imple-
menting a common interface that will cover the whole
functionality of the proposed framework and simplify
the integration of the tools. In addition, we want to
focus on the simulation of the evolution of the re-
sulting datasets, either through user specification or
through the detection of changes in the input single-
model data or operations. Lastly, we want to create
a repository of the resulting multi-model datasets to
provide a robust source of test cases to be immediately
used. We also want to perform extensive experiments
with the datasets to provide unbiased benchmarking
results for elected multi-model databases.

ACKNOWLEDGMENT

This work was supported by the GAČR grant no. 23-
07781S and GAUK grant no. 292323.

REFERENCES

Belloni, S., Ritter, D., Schröder, M., and Rörup, N. (2022).
DeepBench: Benchmarking JSON Document Stores.
In Proceedings of the 2022 Workshop on 9th Interna-
tional Workshop of Testing Database Systems, DBTest
’22, page 1–9, New York, NY, USA. Association for
Computing Machinery.

Bondiombouy, C. and Valduriez, P. (2016). Query process-
ing in multistore systems: an overview. Int. J. Cloud
Comput., 5(4):309–346.

Bonifati, A., Holubová, I., Prat-Pérez, A., and Sakr, S.
(2020). Graph Generators: State of the Art and Open
Challenges. ACM Comput. Surv., 53(2).

Feinberg, D., Adrian, M., Heudecker, N., Ronthal, A. M.,
and Palanca, T. (12 October 2015). Gartner Magic
Quadrant for Operational Database Management Sys-
tems, 12 October 2015.

Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte,
A., and Jacobsen, H.-A. (2013). BigBench: towards
an industry standard benchmark for big data analytics.
In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’13, page 1197–1208, New York, NY, USA. Associa-
tion for Computing Machinery.

International, E. (2013). JavaScript Object Notation
(JSON). http://www.JSON.org/.

Kim, B., Koo, K., Enkhbat, U., Kim, S., Kim, J., and Moon,
B. (2022). M2Bench: A Database Benchmark for
Multi-Model Analytic Workloads. Proc. VLDB En-
dow., 16(4):747–759.

Koupil, P., Bártı́k, J., and Holubová, I. (2022a). MM-
evocat: A Tool for Modelling and Evolution Manage-
ment of Multi-Model Data. In Proc. of CIKM ’22,
CIKM ’22, pages 4892–4896, New York, NY, USA.
ACM.

Koupil, P., Bártı́k, J., and Holubová, I. (2024). MM-
evoquee: Query Synchronisation in Multi-Model
Databases. In Proc. of EDBT ’24, pages 818–821.
OpenProceedings.org.

Koupil, P., Crha, D., and Holubová, I. (2023). A Universal
Approach for Simplified Redundancy-Aware Cross-
Model Querying. Available at SSRN 4596127.

Koupil, P. and Holubová, I. (2022). A unified represen-
tation and transformation of multi-model data using
category theory. J. Big Data, 9(1):61.

Koupil, P., Hricko, S., and Holubová, I. (2022b). MM-
infer: A Tool for Inference of Multi-Model Schemas.
In Proceedings of the 25th International Conference
on Extending Database Technology, EDBT 2022, Ed-
inburgh, UK, March 29 - April 1, 2022, pages 2:566–
2:569. OpenProceedings.org.

Reshaping Reality: Creating Multi-Model Data and Queries from Real-World Inputs

183

Lu, J., Holubová, I., and Cautis, B. (2018). Multi-model
Databases and Tightly Integrated Polystores: Current
Practices, Comparisons, and Open Challenges. In
Proc. of CIKM 2018, pages 2301–2302, Torino, Italy.
ACM.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. W3C. http://www.w3.org/
TR/rdf-sparql-query/.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J.,
Manolescu, I., and Busse, R. (2002). XMark: a bench-
mark for XML data management. In Proceedings of
the 28th International Conference on Very Large Data
Bases, VLDB ’02, page 974–985. VLDB Endowment.

Taft, R., Vartak, M., Satish, N. R., Sundaram, N., Mad-
den, S., and Stonebraker, M. (2014). GenBase: a
complex analytics genomics benchmark. In Proceed-
ings of the 2014 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’14, page
177–188, New York, NY, USA. Association for Com-
puting Machinery.

Tan, R., Chirkova, R., Gadepally, V., and Mattson, T. G.
(2017). Enabling query processing across heteroge-
neous data models: A survey. In BigData, pages
3211–3220.

Zhang, C., Lu, J., Xu, P., and Chen, Y. (2019). UniBench:
A Benchmark for Multi-model Database Manage-
ment Systems. In TPCTC 2018, pages 7–23, Cham.
Springer International Publishing.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

184

