
LLM-Generated Microservice Implementations from RESTful API
Definitions

Saurabh Chauhan, Zeeshan Rasheed, Abdul Malik Sami, Zheying Zhang, Jussi Rasku,
Kai-Kristian Kemell and Pekka Abrahamsson

Faculty of Information Technology and Communication Science, Tampere University, Finland
{saurabh.chauhan, zeeshan.rash , jussi.rasku, kai-kristian.kemell,

pekka.abrahamsson}@tuni.fi

Keywords: OpenAPI, Artificial Intelligence, Natural Language Processing, Generative AI, Software Engineering, Large
Language Model, Microservices, API-First, Design First, REST, RESTFul API.

Abstract: The growing need for scalable, maintainable, and fast-deploying systems has made microservice architecture
widely popular in software development. This paper presents a system that uses Large Language Models
(LLMs) to automate the API-first development of RESTful microservices. This system assists in creating
OpenAPI specification, generating server code from it, and refining the code through a feedback loop that an-
alyzes execution logs and error messages. By focusing on the API-first methodology, this system ensures that
microservices are designed with well-defined interfaces, promoting consistency and reliability across the de-
velopment life-cycle. The integration of log analysis enables the LLM to detect and address issues efficiently,
reducing the number of iterations required to produce functional and robust services. This process automates
the generation of microservices and also simplifies the debugging and refinement phases, allowing developers
to focus on higher-level design and integration tasks. This system has the potential to benefit software devel-
opers, architects, and organizations to speed up software development cycles and reducing manual effort. To
assess the potential of the system, we conducted surveys with six industry practitioners. After surveying prac-
titioners, the system demonstrated notable advantages in enhancing development speed, automating repetitive
tasks, and simplifying the prototyping process. While experienced developers appreciated its efficiency for
specific tasks, some expressed concerns about its limitations in handling advanced customizations and larger-
scale projects. The code is publicly available at https://github.com/sirbh/code-gen.

1 INTRODUCTION

There is growing interest in microservice architecture
among organizations (Saxena and Bhowmik, 2023).
This approach is getting popular because it breaks
down application components into smaller indepen-
dent services, which makes it easier to scale, develop,
and deploy (Chen et al., 2017). Each service in a mi-
croservices architecture is built independently to ful-
fill a specific function, enabling focused development.
This modularity allows for independent deployability,
faster updates, and the flexibility for teams to choose
the best tools and languages for each service, opti-
mizing performance and productivity. Additionally,
services can be scaled individually based on demand,
promoting efficient resource usage. Lastly, this archi-
tecture also promotes fault isolation which means fail-
ure to one service does not impact the others, making
the system resilient (Romani et al., 2022).

Microservice architecture promotes flexibility but
it introduces several challenges. For example, one is-
sue is effectively communicating the changes done in
one service to other stakeholders. Breaking changes
done in the API of one service can remain unidenti-
fied until runtime. Furthermore, development teams
often rely on manual communication to notify other
stakeholders about API changes which slows down
the development process and increases the risk of hu-
man error (Lercher, 2024). To address these issues,
an API-First approach can be utilized which focuses
on defining API before implementation allowing de-
velopment teams to create API contracts that specify
how a service will interact (Rivero et al., 2013). Open
API specification (OAS) can be used to define these
API contracts making it easier for developers and ma-
chines to understand and interact with them. Lastly,
one of the major benefits of OAS is to allow version-
ing of API contracts helping development teams to

Chauhan, S., Rasheed, Z., Sami, A. M., Zhang, Z., Rasku, J., Kemell, K.-K. and Abrahamsson, P.
LLM-Generated Microservice Implementations from RESTful API Definitions.
DOI: 10.5220/0013391000003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 161-173
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

161



change and communicate the updates effectively.
While the Open API specification can provide sig-

nificant advantages like versioning and effective com-
munication but its adoption introduces certain chal-
lenges. Writing these specifications requires an un-
derstanding of the OAS format and tools related to
it. Development teams might require training or they
need to make themselves familiar with syntax and
tools related to it so that the created specification doc-
ument is both accurate and functional (Lazar et al.,
2024).

Furthermore, once the API spec has been gener-
ated, development teams need to accurately translate
it into working code which again increases the risk
of human error. This problem can be resolved by us-
ing automatic code generators like Swagger Codegen
(Ponelat and Rosenstock, 2022). However, this gen-
erated code might not follow the coding conventions
of the organization and they need to make the neces-
sary modifications. Also, this approach will primarily
generate foundational elements such as request and
response models, basic structural code, and documen-
tation comments; the core functionality and business
logic must be developed and implemented by the de-
velopment team.

In order to address the above-mentioned chal-
lenges, introducing generative AI in the development
process seems like a promising solution. AI-driven
tools leveraging LLM can assist development teams
in writing Open API specifications. Such tools re-
duce the learning curve since the developer can gen-
erate the first draft of the specification simply by pro-
viding natural language prompts. Furthermore, LLMs
can also be employed to generate more complex code
compared to traditional code generators and accord-
ing to the desired conventions, thus minimizing hu-
man error. However, one of the limitations of the cur-
rent generation of LLMs is that they can produce only
a few hundred lines of code at a time (Rasheed et al.,
2024a). This limitation of LLMs is not a problem with
microservice architecture because each service is in-
dependent, small, and focuses on a particular problem
of the large system. Hence integrating LLMs can sig-
nificantly boost developer’s productivity.

This paper presents a system that helps in the cre-
ation of OpenAPI specifications and the generation of
API code related to that specification. By integrat-
ing a chat interface, it allows developers to refine the
generated code and specification through natural lan-
guage prompts, easing the development process from
design to fixing. The generated code will follow a
predefined folder organization and also be deployable
in the Docker environment. A key feature of this sys-
tem is its ability to access the logs from the local de-

velopment environment in order to guide and assist
developers in debugging the service code. This ac-
cess to logs improves the quality of fixes, as the sys-
tem can offer more accurate, context-aware solutions.
The system consolidates all these tasks under a single
interface, significantly reducing the need for switch-
ing between multiple tools and sources. Developers
no longer need to manually search through logs, error
messages, and external documentation. Instead, they
can rely on the system to gather necessary context,
identify issues, and offer relevant fixes, making the
development process more efficient. Moreover, this
system utilizes a multi-agent workflow, where each
agent is designed to perform a specific, well-defined
task. For instance, one agent is responsible for gen-
erating the OpenAPI specification based on user in-
put, another takes this specification to generate the
server code, and yet another tests the code, identi-
fies issues and suggests or applies fixes. This division
of responsibilities ensures that the system is modu-
lar. Additionally, LLMs have limited memory, and by
distributing tasks across multiple agents, the system
minimizes the strain on any single agent.

To validate the system’s functionality and usabil-
ity, we surveyed industry practitioners who had vary-
ing levels of experience in software development and
microservice architecture. This allowed us to cap-
ture a broad spectrum of feedback on the system’s
usability and effectiveness across different expertise
levels. Additionally, we made the data from our
data analysis publicly available at https://zenodo.org/
records/14505669, providing transparency and en-
abling further insights from the development commu-
nity (Chauhan, 2024b).

2 BACKGROUND

2.1 Generative AI

Generative Artificial Intelligence (AI) is a branch of
machine learning that can create realistic and com-
plex data, like text or images, by learning patterns and
structures from existing data (Kaswan et al., 2023).
A wide range of fields such as technology, business,
education, healthcare, and arts have been affected di-
rectly or indirectly by Generative AI (Ding and Ra-
man, 2024), (Chen et al., 2024), (Rasheed et al.,
2024d). Even though it introduces some challenges
like mode collapse, evaluation difficulties, ethical is-
sues, and data quality it also offers diverse opportuni-
ties for amplifying creativity and productivity. There
is a need for proper AI-human alliance so that these
challenges can be eliminated and benefits can be max-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

162



imized (Olson, 2024), (Jorge et al., 2022), (Kaswan
et al., 2023), (Rasheed et al., 2024b).

Generative AI presents several technical chal-
lenges. One of the most common ones is hallucina-
tion, where it produces content that often looks cor-
rect but is factually incorrect or fabricated (Alkaissi
and McFarlane, 2023). Depending on the indus-
try, this can lead to serious consequences (Sallam,
2023). Incorporating Human-in-the-Loop (HITL) ap-
proaches can address concerns related to the accu-
racy of AI-generated content. By involving humans
in tasks where precision is critical, the risk of halluci-
nations or incorrect outputs in the final product can be
significantly reduced. Additionally, human feedback
can provide rapid evaluations of generated content,
helping the model to refine and improve the accu-
racy of its outputs over time (Christiano et al., 2017),
(Rasheed et al., 2025).

2.2 Generative AI Models for Code
Generation

Generative AI models in simple terms are machine
learning models that are trained using vast datasets
giving them the ability to understand structures and
patterns in data across different domains (Zhao et al.,
2024), (Wang et al., 2024), . In recent years, these
models have become a very popular choice for code
generation tasks. These models combine natural lan-
guage understanding with generative capabilities and
have demonstrated exceptional performance in code
synthesis. (Liu et al., 2023), (Rasheed et al., 2023),
(Rasheed et al., 2024c). This has attracted the at-
tention of many academic researchers and software
developers (Jiang et al., 2024). Another application
of these code-generating models is code completion
where code snippets are suggested based on partially
written code. A more recent advancement in genera-
tive AI models for code-related tasks is the incorpora-
tion of function-calling capabilities in large language
models (LLMs). Function calling allows models to
execute structured API requests, interact with external
systems, and automate complex workflows. Instead
of merely generating code as output, function-calling
LLMs can invoke predefined functions, retrieve real-
time data, and even perform code execution (Kim
et al., 2024). This feature is particularly beneficial in
software development, as it enables seamless integra-
tion with APIs, debugging tools, and deployment en-
vironments. Despite many benefits and capabilities,
Generative AI models in code generation tasks face
some challenges. One of the most common and con-
cerning ones is the quality of the code snippet gener-
ated, which often contains bugs or security vulnera-

Figure 1: Microservice Architecture.

bilities. As mentioned earlier, human involvement in
the process of using LLMs to solve a particular prob-
lem becomes very crucial. Furthermore, fine-tuning
the model on datasets containing vulnerability fixes
can also address the security concerns in generated
code (Wang et al., 2023).

2.3 API-First Approach in
Microservices

API-first or API-first approach is a design philosophy
that prioritizes the design and defining of Application
Programming Interfaces (APIs) before the implemen-
tation of its logic (Beaulieu et al., 2022). The API’s
inputs and output parameters are discussed first and
defined concretely so that there is a clear understand-
ing of the API’s use cases and how communication
with the API will take place. This leads to shared un-
derstanding and clear contracts among different ser-
vices, which further promotes modularity since API
clients and suppliers only need to follow the rules of
these contracts. In other words, API definitions are
treated as first-class citizens (Dudjak and Martinović,
2020).

In microservice architecture, the system is first
broken down into smaller independent services. Then
API contracts of these independent services must be
defined before the development team starts imple-
menting them. Once interface specification has been
established for each service it is shared among the
team so that consumers and providers can work to-
gether. This leads to faster delivery and promotes re-
usability. Depending upon the communication type
i.e synchronous or asynchronous, suitable tools must
be selected for writing the specification (Dudjak and
Martinović, 2020).

To define these API contracts we must establish
some standards so that we can ensure clarity and
consistency which further improve collaboration. To
achieve this standardization we can use OpenAPI
specification (OAS) to define these API (Casas et al.,

LLM-Generated Microservice Implementations from RESTful API Definitions

163



2021). OAS is a standard format for describing
RESTful APIs, making them machine-readable and
easy to share across teams and systems. It provides a
complete definition of the API, including endpoints,
operations, request/response formats, and security re-
quirements. Moreover, the OAS definition can also
be used to generate interactive documentation which
can be used to interact with API and to grasp what to
expect in the response (Casas et al., 2021).

https://github.com/sirbh/sample generated cpi/
blob/main/openapi spec.yml. Additionally, these
specification documents can be versioned to track
the changes, fostering clear communication about the
updates done in the API, across various development
teams or consumers.

As mentioned earlier API first approach treats
APIs as first-class citizens and hence they can serve
as a single source of truth. This enables development
teams who are writing code for clients and servers to
work in parallel, as a clear and well-defined contract
has already been established. Furthermore, this con-
currency also stretches to testing, allowing testers to
plan test cases, and allowing client and server imple-
mentation to be validated more quickly. This syn-
chronous development process allows development
teams to detect faults early which further leads to
rapid iteration promoting the agile development life
cycle (De, 2023).

3 RESEARCH METHODOLOGY

In this section, we present the methodology for au-
tomating the entire development of a service from
generating Open API specification to testing and fix-
ing the API code. Section 3.1 provides details of
the formulated Research Questions (RQs). The sys-
tem design and multi-agent workflow are discussed in
Section 3.2 and we discuss the details of our evalua-
tion framework in Section 3.3.

3.1 Research Questions (RQs)

Based on our study goal, we formulated the following
two Research Questions (RQs).

RQ1. How do users perceive the usability
and effectiveness of a system that automates
code generation and testing, compared to tra-
ditional manual coding methods?

The main objective of RQ1. is to assess user per-
ceptions of the usability and effectiveness of an AI-

driven system for code generation and refinement.
This includes comparing the AI system with tradi-
tional manual coding methods regarding ease of use,
efficiency, and user satisfaction.

RQ2. To what extent does the system reduce
the need for switching between multiple de-
velopment tools in the development and test-
ing of microservices?

The main objective of RQ2. is to evaluate how
effectively the system minimizes the need for switch-
ing between different development tools. This in-
volves determining how much the AI system sim-
plifies the process by integrating multiple functions,
such as coding, testing, and deployment.

RQ3.What impact does the system have on re-
ducing manual coding efforts and increasing
the speed of microservice development?

The main objective of RQ3. is to analyze how the
system reduces manual coding efforts and accelerates
microservice development.

3.2 System Design

The system is scoped to the development of ser-
vices that perform Create, Read, Update, and Delete
(CRUD) operations and will communicate using
REST architectural style, which is a perfect fit for
these services because of its ability to handle CRUD
operations using HTTP methods such as POST, GET,
PUT and DELETE (Adam et al., 2020). The system
will use OpenAPI Specification standards to define
the API specification as it provides a complete frame-
work for defining REST APIs (Casas et al., 2021).
The LLM that is responsible for interacting with users
is GPT-4 by OpenAI because of its great performance
in generating accurate code snippets and interpret-
ing complex natural language prompts. Moreover,
its advanced function calling feature makes it a suit-
able model for this type of system (Zimmermann
and Koziolek, 2023). The system uses this function-
calling feature of LLM to interact with the user’s en-
vironment and to execute appropriate commands. The
generated API code will be in JavaScript that uses
the Express.js framework, a lightweight and flexible
framework ideal for building RESTful web services.
Unlike traditional code generators that primarily pro-
duce boilerplate code or a basic API skeleton, this
system generates fully functional API code, includ-
ing business logic. An example of a generated Ope-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

164



nAPI specification and its related code is provided
here: https://github.com/sirbh/sample generated cpi

The system’s workflow is quite structured and in-
volves three stages as shown in figure 2, figure 3, and
figure 4 which starts by taking input from the user
and transitions into testing of generated server code.
For this task, we have used a multi-agent architecture
where each LLM agent has a distinct role. Details
about the agents can be found in Table 1 which also
contains details of functions that a particular agent
can call in order to interact with the local environment
of the user.

The multi-agent architecture was adopted to en-
hance the system’s modularity, flexibility, and scala-
bility. By dividing the system’s functionality into dis-
tinct agents—each responsible for a specific task such
as code generation, testing, and specification genera-
tion — the system can operate more efficiently and be
easily maintained.

Furthermore, the multi-agent architecture enables
the replacement or updating of individual agents as
needed. If there is a need to switch to a new lan-
guage or framework, the code-generator agent can be
replaced with one tailored for that environment. This
eliminates the need to rework the entire system and
makes it easier to update the technology stack with-
out causing disruption.

In terms of memory management, the separa-
tion of responsibilities between the agents ensures
that each agent maintains only the relevant context it
needs. For example, the spec generator agent, which
is responsible for generating the OpenAPI specifica-
tion, does not need to be aware of code generation,
fixes, or testing details. It simply handles the speci-
fication input and passes it to the appropriate agents.
This clear separation allows for more efficient mem-
ory management, as each agent stores and processes
only the information relevant to its task. By isolating
memory usage between agents, the system reduces
unnecessary data storage, avoids potential conflicts,
and enhances overall performance.

Following are the steps involved in the process of
generating, validating, and fixing the code for a ser-
vice:

3.2.1 OpenAPI Specification Generation

First as shown in figure 2, the user provides high-
level requirements of the service which typically in-
volve data models, endpoints, and type of database
operation that are required to be implemented for ex-
ample the following prompt can be given: generate
OpenAPI specification for product service that can
perform add product, edit product, delete product
and fetches list of products operations. The product

should have fields like name, description, price, and
quantity. Based on these inputs the system utilizes the
GPT-4 model to generate the first version of OpenAPI
specification. The spec-generator agent mainly han-
dles this task. This step is very crucial in ensuring that
the service interface is concretely defined and follow
the OAS standards. An example of generated spec-
ification can be found here https://github.com/sirbh/
sample generated cpi/blob/main/openapi spec.yml

3.2.2 Finalization of Specification

After the initial OpenAPI specification is generated, it
is presented to the user for review. The user can make
adjustments or provide additional details to the spec-
generator agent to refine the specification. This iter-
ative process continues until the specification accu-
rately reflects the user’s requirements. Once the user
is satisfied by the output of the spec-generator agent,
user can suggest to agent that spec is final as shown
in figure 2 and it can save it in the local environment
of the user. Using GPT-4’s function calling feature
the agent will then call the necessary function which
will take the specification in string format as input and
save the specification in the user’s local environment.
This finalized version will serve as a blueprint or con-
tract that will shape the rest of the development pro-
cess of the service and hence will ensure consistency
and purity as we move forward with the process.

3.2.3 Server Code Generation

The finalized OpenAPI specification of the service is
provided to the Server Code Generator that contains
two agents i.e. code-generator and JSON-cleaner as
shown in figure 3. The code-generator agent takes
the specification and outputs a JSON string. It is
prompted by the system with details such as the de-
sired folder structure of the server code, the target
programming language, and the framework in which
the code should be generated. The structure of JSON
is such that it represents the desired folder struc-
ture where the key represents the directory and the
value represents the content of the file for example
“server/index.js” will be the key and the content of
file “index.js” will be the value. This JSON string
may have some invalid tokens that may throw errors
while parsing. To prevent the system from throw-
ing an error the system, further passes this JSON
string to a JSON-cleaner agent that cleans the JSON
string so that it can be parsed without throwing any
runtime error. To save the code in the local envi-
ronment of the user, the JSON-cleaner agent calls
a function that will parse the JSON, create directo-
ries and files based on the key, and fill those files

LLM-Generated Microservice Implementations from RESTful API Definitions

165



Figure 2: Specification Generation.

Figure 3: Server Code Generation.

with the content represented by the corresponding
value. The final output after this step will be the
saved server code in the user’s local environment,
organized with a logical folder structure. This in-
cludes all necessary files, such as the implemented
server and business logic, database service for man-
aging data, and configurations required to deploy the
code in a Docker environment. An example of gener-
ated server code can be found here https://github.com/
sirbh/sample generated cpi/tree/main/express-server

3.2.4 Automated Validation and Execution

In order to interact with server code the system uses a
code-tester agent. This agent heavily uses the func-
tion calling feature of GPT-4 LLM. The most im-
portant function it calls helps execute the “docker-
compose up.” command that builds and loads the
docker container in the user’s local environment. For
example user can give a prompt e.g. run docker con-
tainers and the agent can use this prompt to match the
most appropriate function out of the list of functions
that are provided to this agent as shown in table 1.
It can then call the function that will execute docker
compose up –build. Also, it can call functions that can
help in fetching the logs of the container and the status
of all the services running related to the server code if
the prompts e.g.get logs related to service or get ser-
vice status are provided. After calling the appropriate
function it uses the returned data to show a summary
of what’s happening in the docker engine in a read-
able format. It eliminates the need to read the console
logs which are often not user-friendly. Moreover, to
validate the working of the server, the user can use
natural language prompts e.g. get the list of products
or delete product with id. The agent will then make re-
quests to the server container by calling the function
and getting the output to the user which eliminates the
need to switch to any other tool like Postman to make
requests and validate functionality.

3.2.5 Iterative Code Fixing

After the user can interact with server code i.e. start
and run containers, make requests to server contain-
ers, and get logs of running containers, there might be
a scenario where the user encounters issues or some-
thing does not work as expected. In such cases, the
code-tester agent, which has access to the server logs
through its memory context if the user has asked for
the logs (as discussed in previous steps), can assist. If
the user asks the agent to detect the problem, the agent
can analyze the logs and suggest potential fixes. Fur-
thermore, it can interact with the code-fixer agent as
shown in figure 4 to modify the already saved server
code by doing those fixes and restarting the services
again to run the updated code. This eliminates the
requirement of users to look through the code and
make the updates, hence it can help in increasing pro-
ductivity and saving time. To achieve this, the code
tester agent prompts the code-fixer with the issue in
code and server code in JSON format. The code-fixer
agent then calls a function that takes two inputs i.e.
the server code and the potential fix to a encountered
problem. The output of the code-fixer is again a JSON
string with keys as directories and values as the con-
tent of the files. This code is again parsed and saved,
which updates the server code on the user’s working
environment. After the code is updated, the user can
give a prompt to the code tester agent to rebuild and
restart all the services and validate the server code,
if it’s working as expected. This functionality is re-
peated by keeping the user in the loop until the desired
result is achieved.

3.3 Evaluation Framework

To test the impact and capability of the system, a sur-
vey was conducted by getting direct feedback from
industry practitioners. The tool’s source code along
with detailed usage instructions were provided to each

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

166



Figure 4: Intracting With Server.

participant. They were subsequently asked to com-
plete a feedback form after using the tool to create a
service.

The goal of this evaluation was to check and cal-
culate how accurate the tools are in generating ser-
vice code and how effective they are in debugging it.
The system was first tested by each participant, after
which an online survey was conducted to gather both
quantitative and qualitative data.

3.3.1 Questionnaire Design

To effectively grade the system we carefully planned
questions to capture both quantitative and qualitative
insights from participants about their experience with
the system. The interview had two main sections:
1. Participant’s Background.

2. Questions for tool evaluation.
The survey begins with the questions about prac-

titioner’s overall experience with software develop-
ment and with microservice architecture. The ques-
tions are in the Table 2. These questions helped in
making sense of the feedback based on their skill
level.

The core of the interview was about the effective-
ness of the system where participants were asked to
rate how well the system translated the natural lan-
guage prompts into OpenAPI specification, alignment
of generated server code with specification, and the
effectiveness of the system in saving time, helping
with fixing the code and validating the server code
using natural language prompts. It was a mix of 13
single-choice and 6 open-ended questions as listed in
Table 3. The single-choice questions include yes/no
questions and statements with scale from 1 to 10,
where 1 indicates strong disagreement and 10 indi-
cates strong agreement. The open-ended questions
focus on understanding developers’ perceptions of the

tool’s advantages, limitations, and areas of improve-
ment in their own words. This approach of using
both open-ended and single-choice questions helped
in ensuring that the feedback covered a wide range of
aspects like code quality, folder structure, following
best practices, and production readiness.

3.3.2 Practitioners Selections

The participants were selected based on their experi-
ence in software development and familiarity with mi-
croservice architecture. A total of six developers par-
ticipated in testing the system, representing a range
of experience levels as shown in Table 4 and Table
5. These participants were selected using convenience
sampling.

Most of the participants had more than 2 to 3
years of software development experience, with one
of them having more than 10 years of experience. Re-
garding experience with microservices, most partici-
pants had limited exposure, with 4 participants having
no experience while 2 participants having 4-5 years of
experience with microservices architecture.

By collecting real-world data from industry prac-
titioners with different experience levels, the evalu-
ation provided valuable insights into the tool’s util-
ity in real development environments. This approach
helped identify both the strengths and areas for im-
provement of the tool. The smaller number of partic-
ipants was intentional, as the tool is still in its early
stages. This allowed for focused and in-depth feed-
back, ensuring that the data gathered was more ac-
tionable and directly applicable to the development
process before expanding testing to a larger group.

3.3.3 Data Collection

The data collection process aimed to evaluate the sys-
tem’s usability and effectiveness based on participant

LLM-Generated Microservice Implementations from RESTful API Definitions

167



Table 1: LLM Agent Details.

Agent Job Functions Calls Function Description
spec-generator Generate OpenAPI

specification from
user API description

save openapi spec Saves the given OpenAPI
specification text to a
YAML file and returns
success/error.

code-generator Generate code for
server in JSON format
and save it in user’s
working directory

save json Validates and fixes a given
JSON object before saving
it as server code.

json-cleaner Cleans JSON data of
server files so that it
can be parsed without
error

code-fixer Takes server code in
JSON format with
instructions for
making fixes or
updates and updates
the code

save json Validates and fixes a given
JSON object before saving
it as server code.

code-tester Executes docker
commands to start
containers and fetch
logs from containers.
Also, send requests to
service and show
results to users. It is
also responsible for
making changes to the
server code

run docker compose
check docker compose status
get docker compose logs
run curl command
update json

Start the services in the
local docker engine

Get the status of
container-related to
docker-compose file

Get logs of containers

Used to send HTTP
requests to services

Update/fix server code
based on logs

Table 2: Background Information Questions.

No. Question
1 How many years of experience do you have

in software development? Required to
answer. Single choice.

2 How many years of experience do you have
working with microservice architecture?
Required to answer. Single choice.

3 Which programming languages are you most
comfortable with? Required to answer.
Open-ended.

feedback. The survey was conducted over a 2 month
period, during which all six participants tested the
system. Participants were emailed the usage instruc-
tions for the system (Chauhan, 2024a), along with a
link to the survey form. They were instructed to use
the system first and then complete the survey form to
ensure their responses reflected their hands-on expe-

rience.
To facilitate structured testing, participants were

provided with a detailed step-by-step guide outlining
how to set up and interact with the system. The tool
usage sessions were self-paced, allowing participants
to work at their convenience. On average, it took par-
ticipants 51 minutes and 16 seconds to fill out the sur-
vey.

3.3.4 Data Analysis

The data collected from the survey was analyzed us-
ing both quantitative and qualitative methods. Quan-
titative responses, which mostly included ratings on a
scale 1 to 10, were assessed by calculating the mean to
identify central trends and overall satisfaction levels
across categories such as API accuracy, code quality,
and time-saving ability. Modes were also calculated
to identify the most frequent responses, that offered
insights into the most common experiences partici-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

168



Table 3: Mapping of Survey Questions to Research Questions.

No. Question Research Question
Addressed

1 Did the tool successfully convert your natural language API description into
an accurate OpenAPI specification?

RQ1

2 How well did the generated server code align with the OpenAPI specification
and your initial description?

RQ1, RQ3

3 How much time did the tool save you compared to manually creating an API
and server code?

RQ3

4 How effective was the tool in helping you debug and fix issues in the
generated code?

RQ1

5 Did the tool’s testing features (e.g., sending API requests) effectively validate
the functionality of the generated API?

RQ2

6 If No, what was the issue? RQ1, RQ3
7 How effectively did the tool’s code update and fix features work in resolving

identified problems?
RQ1

8 How does using this tool compare to your usual method of API and server
code development in terms of speed?

RQ3

9 How does the code quality produced by the tool compare to what you would
typically write manually?

RQ1, RQ3

10 How would you rate the overall readability of the code generated by the tool? RQ1
11 Was the code organized in a logical manner (e.g., clear separation of concerns,

modularity)?
RQ1, RQ3

12 Do you feel the tool-generated code adheres to best practices and coding
standards (e.g., naming conventions, formatting)?

RQ1, RQ3

13 How likely are you to recommend the generated code to be used as part of a
production system, purely based on its readability?

RQ1, RQ3

14 How likely are you to replace or reduce your usage of other tools like
Postman, Docker CLI, or your IDE if this tool offered comparable
functionality in one interface?

RQ2

15 What was the most significant advantage of using this tool? RQ1, RQ2, RQ3
16 What was the most significant disadvantage or limitation of the tool? RQ1, RQ2, RQ3
17 Would you recommend this tool to other developers? RQ1, RQ3
18 What improvements would you suggest for the tool? RQ1, RQ2, RQ3
19 How do you see this tool fitting into your regular development workflow? RQ2, RQ3

Table 4: Participants’ Years of Experience in Software De-
velopment.

Experience Type Years of Experience Number of Participants

Software Development

No Experience
2–3 years
4–5 years
6–10 years
10+ years

1
2
1
1
1

Table 5: Participants’ Years of Experience in Microservice
Architecture.

Experience Type Years of Experience Number of Participants

Microservice Architecture No Experience
4-5 years

4
2

pants had with the system. This helped to highlight re-
curring patterns in user feedback, providing a clearer
picture of the system’s overall performance. Quali-
tative data from open-ended questions was analyzed
using thematic analysis to identify common patterns,
suggestions, and feedback (Boyatzis, 1998). These

approaches allowed a detailed understanding of both
the numerical data and written text shared by partici-
pants.

4 PRELIMINARY RESULTS

In this section, we present the results of data collected
from the participants. The participants were assigned
labels such as P1, P2, etc, and as shown in Figure 6
their year of experience is labeled with their respec-
tive provided ratings for each attribute of the system.
We will discuss about data collected for each attribute
of the system in the sections below. Due to the small
sample size, these results should be interpreted as in-
dicative rather than definitive.

LLM-Generated Microservice Implementations from RESTful API Definitions

169



Figure 5: Thematic Map.

4.1 RQ1: User Perceptions of Usability
and Effectiveness

Users generally perceived the AI-driven system as
more usable and effective compared to traditional
manual coding methods. The mean rating for the
tool’s speed compared to usual methods was 7.8
out of 10, indicating a significant perceived im-
provement in efficiency. Moreover, the system’s
ability to convert natural language API descriptions
into OpenAPI specifications was positive, with all
six participants reporting successful conversion.
The mean rating for the alignment of generated
server code with the OpenAPI specification was
7.0 out of 10 (mode = 8), indicating a high level of
accuracy. Thematic analysis of qualitative responses
revealed three primary themes as shown in Figure 5:

Time Efficiency: Users find time-saving as a
major advantage evident from survey question
3 in Table 3 got a mean rating value of 7.67
out of 10. One respondent noted, “It automates
the whole process of building CRUD microser-
vices, which saves a lot of time and effort.”

Simplify Development: Users appreciated the
tool’s ability to handle multiple aspects of develop-
ment as the mean rating was 7 for survey question 14
in Table 3. One developer(P2) commented, “It makes
setting up CRUD microservices quick and easy by
automating a lot of the boring, repetitive parts.”

Workflow Integration: Users saw the potential for the
tool to streamline their development process. A de-
veloper(P4) commented, “I would definitely see it as
a great ’starter-pack’ for initial API Design and spec-
ification phase, rapid prototyping and MVP develop-
ment with API-First approach in Agile Development.”

However, some users, particularly those with more
experience, expressed concerns about over-reliance

on the tool. One senior developer(P3) cautioned, “it
is effective but can’t rely totally.”

4.2 RQ2: Reduction in Tool Switching

The system showed promise in reducing the need for
switching between multiple development tools. The
mean likelihood of replacing or reducing the usage of
other tools was 7.0 out of 10 with the mode of 8, in-
dicating a moderate to high potential for tool consoli-
dation. Qualitative responses supported this finding.

Integrated Workflow: Users appreciated the
tool’s ability to combine multiple functions. A
participant(P6) noted, “The ability to interact
with Docker, execute server code, and send API
requests using natural language prompts elimi-
nates the need to switch between multiple tools.”

Centralized Development: The tool’s capacity
to handle various aspects of development in one
interface was frequently mentioned as an advantage.

Dependency Concerns: One user(P2) expressed con-
cern about the tool’s reliance on Docker, which could
be a limitation in certain development environments.

However, more experienced developers expressed
some reservations. One user(P3) commented that
while the tool is effective, they “can’t rely totally.”
on it, suggesting a need for integration with existing
workflows rather than a complete replacement.

4.3 RQ3: Impact on Manual Coding
Efforts and Development Speed

The system demonstrated a significant positive
impact on reducing manual coding efforts and
increasing development speed. The mean rating
for time saved compared to manual creation was
7.7 out of 10, indicating substantial time sav-
ings. Thematic analysis revealed two main themes:

Automation of Repetitive Tasks: Users appre-
ciated the automation of CRUD operations and
API documentation. A user(P2) stated, “It makes
setting up CRUD microservices quick and easy by
automating a lot of the boring, repetitive parts.”

Rapid Prototyping: The system was seen
as particularly valuable for quick prototyp-
ing and MVP development. A developer(P4)
noted its usefulness in “rapid prototyping and
MVP development with API-First approach..”

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

170



Figure 6: Data Analysis Result.

However, some limitations were identified. A senior
developer pointed out that for large-scale software
development, the tool has limited customization and
flexibility, “particularly for complex features like
custom authentication, authorization, data validation,
error handling, and business logic”.

5 DISCUSSION

Several research efforts have been conducted to ex-
plore the use of LLMs for autonomous code gener-
ation (Rasheed et al., 2024a). However, these sys-
tems do not actually test the code in real-world en-
vironments, which can lead to potential issues such
as configuration mismatches, missing dependencies,
or platform-specific bugs that may not be caught dur-
ing testing. To this end, our proposed system en-
hances this approach by directly executing the gen-
erated code within the user’s local environment. By
running the code locally, the proposed system ensures
that the generated code functions as expected in the
user’s specific setup, addressing environment-specific
issues right away. It also provides feedback based on
logs generated and suggests fixes based on those logs,
which helps the user resolve issues quickly. Unlike
CodePori, which depends on abstract external verifi-
cation done by LLM agents, this system offers a more
reliable approach for validating code.

Other than this, traditional AI-assisted code gener-
ation tools, such as GitHub Copilot, offer significant

improvements in developer productivity by provid-
ing intelligent code suggestions (Zhang et al., 2023).
However, these tools operate primarily in a static en-
vironment, relying on contextual information avail-
able within the codebase but lacking real-time feed-
back from the execution environment (Nguyen and
Nadi, 2022). This limitation often leads to inaccurate
or incomplete code suggestions, as the model does
not have access to runtime errors or deployment is-
sues. In contrast, our system takes a more holistic
approach by providing suggestions based on output
logs in the runtime environment. Despite these ad-
vantages, there are potential challenges. The accu-
racy of error detection and fix suggestions depends on
the LLM’s understanding of logs and its ability to in-
terpret deployment-specific issues. Further improve-
ments, such as fine-tuning models on domain-specific
logs or integrating reinforcement learning-based cor-
rections, could enhance the system’s reliability.

6 CONCLUSION

Participants involved in the interview, identified sig-
nificant time savings, automation of repetitive tasks,
and the ability to handle API design with code gen-
eration as the primary advantages. Participants with
2-3 years of experience highlighted the system’s abil-
ity to automate the entire CRUD microservice gener-
ation process. Participants with more than 6 years of
development found the system helpful in specification

LLM-Generated Microservice Implementations from RESTful API Definitions

171



generation and documentation but suggested storing
interaction history with the system. Another, sugges-
tion from experienced participants was to improve the
system’s user interface.

Based on the feedback there are several directions
in which the CRUD Microservice Code Generator can
be expanded and improved. The most immediate fo-
cus is on incorporating open-source models to en-
hance flexibility and security. Integrating open-source
alternatives to the current language model allows the
tool to be adapted for a broader developer community
and align more closely with open-source standards.
Also, support for other languages and frameworks can
be added like Python, Java, C#, and other popular
programming languages. This will allow developers
from diverse backgrounds to leverage the tool within
their preferred technology stacks.

Another key area for future development is to im-
prove the system’s ability to provide fixes because
currently, it does require further refinement in cer-
tain cases where user intervention is necessary to re-
solve more complex issues in the server code. In
some situations, the fixes suggested by the agents are
not sufficient to fully address the problem, and ad-
ditional manual adjustments are needed. To improve
this, more advanced models can be explored, or the
current LLM models can be further trained to handle
these edge cases. This could enhance the system’s
ability to recognize and suggest better fixes and im-
prove its understanding of different types of issues
in server code. By refining the model’s capabilities
to handle more complex scenarios autonomously, the
system could reduce the need for user intervention
and provide more effective solutions for code genera-
tion and debugging

Furthermore, the system’s ability to fix and mod-
ify existing code while maintaining the desired folder
structure can be expanded to larger projects by di-
viding the codebase into smaller chunks that can be
managed by a single LLM agent. These agents can
then work in teams to implement fixes or upgrades,
improving efficiency and scalability. Additionally,
more functions can be added to the LLM tool-calling
feature to address more complex Docker commands
or other system commands commonly used in de-
velopment environments, such as Git commands or
cloud deployment commands. This would allow users
to interact with the system using natural language
prompts, eliminating the need to remember complex
commands. Instead of only providing input through
text, a voice-based interface could also be developed
to enable users to perform the entire development pro-
cess, from generating code to deploying it, using spo-
ken commands. This would further simplify the de-

velopment workflow, making the tool more accessible
to users.

To further validate and refine these improvements,
a follow-up survey will be conducted with a larger
number of developers after implementing the modi-
fications. This will help in gathering more compre-
hensive data and insights, ensuring that the system
evolves based on broader user feedback.

These advancements aim to increase the tool’s
adaptability and reduce the manual effort required in
API and server code development, making it a more
powerful and intelligent developer assistant.

REFERENCES

Adam, S. I., Moedjahedy, J. H., and Maramis, J. (2020).
Restful web service implementation on unklab infor-
mation system using json web token (jwt). In 2020
2nd International Conference on Cybernetics and In-
telligent System (ICORIS), pages 1–6.

Alkaissi, H. and McFarlane, S. I. (2023). Artificial halluci-
nations in chatgpt: implications in scientific writing.
Cureus, 15(2).

Beaulieu, N., Dascalu, S. M., and Hand, E. (2022). Api-first
design: a survey of the state of academia and indus-
try. In ITNG 2022 19th International Conference on
Information Technology-New Generations, pages 73–
79. Springer.

Boyatzis, R. E. (1998). Transforming qualitative informa-
tion: Thematic analysis and code development. Sage.

Casas, S., Cruz, D., Vidal, G., and Constanzo, M. (2021).
Uses and applications of the openapi/swagger specifi-
cation: a systematic mapping of the literature. In 2021
40th International Conference of the Chilean Com-
puter Science Society (SCCC), pages 1–8.

Chauhan, S. (2024a). Code for service generation and in-
structions.

Chauhan, S. (2024b). Llm-generated microservice imple-
mentations from restful api definitions.

Chen, R., Li, S., and Li, Z. (2017). From monolith to mi-
croservices: A dataflow-driven approach. In 2017
24th Asia-Pacific Software Engineering Conference
(APSEC), pages 466–475.

Chen, X., Liao, Y., and Yu, W. (2024). Generative ai in
higher art education. In 2024 6th International Con-
ference on Computer Science and Technologies in Ed-
ucation (CSTE), pages 135–140.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S.,
and Amodei, D. (2017). Deep reinforcement learning
from human preferences. Advances in neural infor-
mation processing systems, 30.

De, B. (2023). API Management : An Architect’s Guide
to Developing and Managing APIs for Your Organi-
zation. Apress, Berkeley, CA, 2nd ed. 2023. edition.

Ding, S. and Raman, V. (2024). Harness the power of gen-
erative ai in healthcare with amazon ai/ml services. In

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

172



2024 IEEE 12th International Conference on Health-
care Informatics (ICHI), pages 490–492.

Dudjak, M. and Martinović, G. (2020). An api-first method-
ology for designing a microservice-based backend as
a service platform. Information Technology and Con-
trol, 49(2):206–223.

Dudjak, M. and Martinović, G. (2020). An api-first method-
ology for designing a microservice-based backend as
a service platform. Information technology and con-
trol, 49(2):206–223.

Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. (2024). A
survey on large language models for code generation.
arXiv preprint arXiv:2406.00515.

Jorge, C. C., Tielman, M. L., and Jonker, C. M. (2022).
Artificial trust as a tool in human-ai teams. In 2022
17th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 1155–1157.

Kaswan, K. S., Dhatterwal, J. S., Malik, K., and Baliyan,
A. (2023). Generative ai: A review on models and ap-
plications. In 2023 International Conference on Com-
munication, Security and Artificial Intelligence (ICC-
SAI), pages 699–704.

Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. (2024). An llm compiler
for parallel function calling.

Lazar, K., Vetzler, M., Uziel, G., Boaz, D., Goldbraich, E.,
Amid, D., and Anaby-Tavor, A. (2024). Specrawler:
Generating openapi specifications from api documen-
tation using large language models.

Lercher, A. (2024). Managing api evolution in microser-
vice architecture. In 2024 IEEE/ACM 46th Interna-
tional Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), pages 195–197.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. (2023). Is
your code generated by chatgpt really correct? rig-
orous evaluation of large language models for code
generation.

Nguyen, N. and Nadi, S. (2022). An empirical evaluation of
github copilot’s code suggestions. In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 1–5.

Olson, L. (2024). Custom developer gpt for ethical ai solu-
tions. In 2024 IEEE/ACM 3rd International Confer-
ence on AI Engineering – Software Engineering for AI
(CAIN), pages 282–283.

Ponelat, J. S. and Rosenstock, L. L. (2022). Designing APIs
with Swagger and OpenAPI. Simon and Schuster.

Rasheed, Z., Sami, M. A., Kemell, K.-K., Waseem, M.,
Saari, M., Systä, K., and Abrahamsson, P. (2024a).
Codepori: Large-scale system for autonomous soft-
ware development using multi-agent technology.

Rasheed, Z., Sami, M. A., Rasku, J., Kemell, K.-K., Zhang,
Z., Harjamaki, J., Siddeeq, S., Lahti, S., Herda, T.,
Nurminen, M., et al. (2024b). Timeless: A vision for
the next generation of software development. arXiv
preprint arXiv:2411.08507.

Rasheed, Z., Sami, M. A., Waseem, M., Kemell, K.-K.,
Wang, X., Nguyen, A., Systä, K., and Abrahamsson,
P. (2024c). Ai-powered code review with llms: Early
results. arXiv preprint arXiv:2404.18496.

Rasheed, Z., Waseem, M., Ahmad, A., Kemell, K.-K., Xi-
aofeng, W., Duc, A. N., and Abrahamsson, P. (2024d).
Can large language models serve as data analysts?
a multi-agent assisted approach for qualitative data
analysis. arXiv preprint arXiv:2402.01386.

Rasheed, Z., Waseem, M., Kemell, K. K., Ahmad, A.,
Sami, M. A., Rasku, J., Systä, K., and Abrahams-
son, P. (2025). Large language models for code gen-
eration: The practitioners perspective. arXiv preprint
arXiv:2501.16998.

Rasheed, Z., Waseem, M., Kemell, K.-K., Xiaofeng, W.,
Duc, A. N., Systä, K., and Abrahamsson, P. (2023).
Autonomous agents in software development: A vi-
sion paper. arXiv preprint arXiv:2311.18440.

Rivero, J. M., Heil, S., Grigera, J., Gaedke, M., and Rossi,
G. (2013). Mockapi: An agile approach support-
ing api-first web application development. In Daniel,
F., Dolog, P., and Li, Q., editors, Web Engineering.
Springer Berlin Heidelberg.

Romani, Y., Tibermacine, O., and Tibermacine, C.
(2022). Towards migrating legacy software systems to
microservice-based architectures: a data-centric pro-
cess for microservice identification. In 2022 IEEE
19th International Conference on Software Architec-
ture Companion (ICSA-C), pages 15–19.

Sallam, M. (2023). Chatgpt utility in healthcare educa-
tion, research, and practice: systematic review on the
promising perspectives and valid concerns. In Health-
care, volume 11, page 887. MDPI.

Saxena, D. and Bhowmik, B. (2023). Paradigm shift from
monolithic to microservices. In 2023 IEEE Interna-
tional Conference on Recent Advances in Systems Sci-
ence and Engineering (RASSE), pages 1–7.

Wang, J., Cao, L., Luo, X., Zhou, Z., Xie, J., Jatowt, A.,
and Cai, Y. (2023). Enhancing large language models
for secure code generation: A dataset-driven study on
vulnerability mitigation.

Wang, J., Yang, Q., and Chen, Y. (2024). A large lan-
guage model–based approach for automatically opti-
mizing bim. In 2024 43rd Chinese Control Confer-
ence (CCC), pages 8518–8523.

Zhang, B., Liang, P., Zhou, X., Ahmad, A., and Waseem, M.
(2023). Practices and challenges of using github copi-
lot: An empirical study. In Proceedings of the 35th In-
ternational Conference on Software Engineering and
Knowledge Engineering, volume 2023 of SEKE2023,
page 124–129. KSI Research Inc.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang,
C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang,
X., Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. (2024).
A survey of large language models.

Zimmermann, D. and Koziolek, A. (2023). Gui-based soft-
ware testing: An automated approach using gpt-4 and
selenium webdriver. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing Workshops (ASEW), pages 171–174.

LLM-Generated Microservice Implementations from RESTful API Definitions

173


