
Making Reinforcement Learning Safer via Curriculum Learning

Kelvin Toonen and Thiago D. Simão
Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

Keywords: Safe Reinforcement Learning, Curriculum Learning, Constrained Reinforcement Learning.

Abstract: The growth of deep reinforcement learning gives rise to safety concerns about applications using reinforcement
learning. Therefore, it is crucial to investigate the safety aspect in this field, especially in the domain of robotics
where agents can break surrounding objects or themselves. Curriculum learning has the potential to help with
creating safer agents, because it helps the agent with learning faster and it allows for the agent to learn in safer
and more controlled environments leading up to the target environment. More specifically, we change the
environment only slightly to make it easier to transfer knowledge from one environment to the next, while still
influencing the exploration process of the agent. This project combines curriculum learning with constrained
reinforcement learning, a specific form of incorporating safety, to create a framework that allows agents to
learn safely, even during training. This framework is also extended to include automation of the curriculum.

1 INTRODUCTION

Deep reinforcement learning is quite prevalent in, for
example, the robotics domain and works by having
an agent, the model, learn how to behave in the en-
vironment by exploring and earning a reward when it
performs an action that we deem to be good. Here
we want to optimize the parameters of the agent in
such a way that the cumulative reward is maximized,
which is the objective of the agent. Ultimately, in
many practical applications, we want to do this with-
out having unwanted side effects or using unsafe ex-
ploration, which are more likely to occur in complex
agents and environments (Amodei et al., 2016).

Plenty of research has been done on safety in deep
reinforcement learning (Kadota et al., 2006; Simão
et al., 2021; Yang et al., 2023). Many of these meth-
ods still require a lot of training on top of the large
amount needed for regular reinforcement learning. As
this increases the number of environment interactions,
the agent has more opportunities to make mistakes.

For this research, we look at a method of creat-
ing safe agents in a faster way, namely through cur-
riculum learning. Curriculum learning is based on the
concept that, similar to humans, it is much easier for
an agent to learn a task by starting from easy exam-
ples and progressively making the task more difficult
until the target task, the task that we want the agent to
perform, is reached (Narvekar et al., 2020).

Previous attempts at using curriculum learning for

safe reinforcement learning have focused on a strict
definition of safety, where a state is safe as long as the
agent can return to an initial state (Eysenbach et al.,
2018; Turchetta et al., 2020). This definition is lim-
iting as many more forms of unsafe scenarios exist,
where some small costs may be tolerated. An as-
pect that is often overlooked by similar discussions,
is that part, or the whole, of training is exempt from
considerations of safety. As in any real setting, mis-
takes during training are also very important, we want
to take the whole training process into account when
discussing safety. Furthermore, these approaches re-
quire the training of several additional agents to train
the primary agent.

For this research, we investigate the combination
of curriculum learning and safe reinforcement learn-
ing. We create a curriculum of tasks with slightly dif-
ferent environments that lead up to a target task where
we want to stay within certain safety constraints as
much as possible throughout training. The fact that
we create a curriculum through small changes in the
environment gives us the freedom to create safer ini-
tial environments to train on, while teaching the agent
valuable knowledge that it can use in the more un-
safe, safety-critical environments. This is first done
for a static curriculum that is defined before training
of any agents. Then this is extended to an adaptive
curriculum that adjusts based on the performance of
each individual agent. The creation of these curricula
does not require any pre-training or other agents to

Toonen, K. and Simão, T. D.
Making Reinforcement Learning Safer via Curriculum Learning.
DOI: 10.5220/0013388100003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1465-1472
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

1465

help train the primary agent, giving it an edge in this
regard to state of the art.

Contribution. We propose a framework using cur-
riculum learning that reduces the safety regret of RL
agents with minimal loss in task performance. The
sequencing for this curriculum is adaptive, meaning
that it allows the agents to go to more difficult tasks
only when they are considered ready.

2 RELATED WORK

Constrained RL. In safe RL there are two common
approaches to incorporating safety: ones that alter
the optimization criterion (Basu et al., 2008; Tamar
et al., 2013), or ones that alter the exploration process
(Tang et al., 2010; Simão et al., 2021; Yang et al.,
2023). Constrained RL falls into the former category
and has sprung forth many different ways of incorpo-
rating safety through constraints. Many approaches
exist that use Lagrangian relaxation to include the
constraints in the objective directly (Ray et al., 2019;
Zhang et al., 2020; Yang et al., 2022) or use a simi-
lar approach through penalty functions (Zhang et al.,
2022). Others use trust regions together with approx-
imations of the objective and constraints (Achiam
et al., 2017), or stop the episode when the agent has
exceeded the cost limit (Sun et al., 2021).

Curriculum Learning in RL. Curriculum learning
is much harder to categorize in a similar way, due
to the vast amount of techniques used. Search algo-
rithms are used to find a good ordering of the tasks by
training agents on different curricula (Foglino et al.,
2019a; Foglino et al., 2019b). In a similar fash-
ion, a curriculum can be created iteratively by start-
ing on the target task and then creating prior tasks
that teach the agent what it was unable to do in the
current task (Narvekar et al., 2016). GANs can be
used to create a generator that generates the tasks and
a discriminator that decides whether they are of ap-
propriate difficulty (Florensa et al., 2018). Self-paced
learning uses a distribution over possible tasks and ad-
justs the distribution based on the performance of the
agent, moving to more difficult tasks when the agent
does well (Klink et al., 2019; Klink et al., 2021; Eimer
et al., 2021).

Curriculum Learning in Safe RL. There is not
much research that combines curriculum learning in
safe RL. One of these few performs curriculum induc-
tion by training two agents, one that learns the task

and another that “resets” the former agent by mov-
ing it back to an initial state (Eysenbach et al., 2018).
The algorithm induces a curriculum for the resetting
agent only, as the better both agents become, the later
the early abort will occur. Therefore, it learns to re-
cover from more distant states as both agents learn.
A similar research extends this concept by replacing
the resetting agent with a teacher, who has access to a
collection of resetting agents and learns when to use
which of them (Turchetta et al., 2020). To do this, the
teacher must be trained on several students such that
it can adaptively choose the next resetting agent for
any student. A major limitation of these approaches
is their definition of safety. They define any unrecov-
erable state as unsafe, which is a very restricting defi-
nition. Therefore, we want to use a more general def-
inition of safety, namely that of satisfying some con-
straints. This is an extension of their definition, as
we can add the constraint that we cannot go into any
unrecoverable states.

3 BACKGROUND

This section introduces constrained RL and curricu-
lum learning. Finally, it formalizes the problem of
designing a curriculum to improve the safety of con-
strained RL.

3.1 Constrained RL

Constrained RL is a form of safe RL where safety
is defined as staying within certain constraints,
such as requiring the expected return to be high
enough (Kadota et al., 2006). Adding such constraints
to a Markov decision process (MDP) results in a con-
strained MDP that describes the process with those
constraints (Altman, 1999). The goal of constrained
RL is to train the agent to stay within these con-
straints. This is often done by penalizing the viola-
tion of the constraints (Smith et al., 1997; Altman,
1998). In this paper, we will focus on the constraint
that limits the costs that the agent is allowed to incur.
Note that costs in this context are different from nega-
tive rewards, as they have semantics that cannot easily
be translated to rewards, such as energy consumption.
Intuitively, they represent actions that the agent can
only execute a limited number of times.
Definition 3.1 (Constrained MDP). We define a con-
strained MDP as the tuple ⟨S;A; p;r;c;α⟩ with S the
state space, A the action space, p : S×A× S→ [0,1]
the transition function, r : S×A× S→ R the reward
function, c : S×A×S→R the cost function and α the
cost limit.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1466

Figure 1: The target task from our experiments. Red is the
agent, green is the goal, blue are the hazards and yellow
are the possible starting locations, where a higher opacity
relates to a higher probability of starting there.

An example environment can be found in Fig-
ure 1, where the agent needs to reach the goal. How-
ever, going over the hazards results in costs, as it, for
example, may be a difficult-to-traverse area that re-
sults in a lot of energy consumption. Therefore a con-
straint on these costs would allow the agent to reach
the goal without running out of energy.

Similarly to the return that is defined as the cu-
mulative discounted reward R = ∑

∞
t=0 γtrt , where t is

the time step, rt represents the reward, and γ ∈ [0,1]
is the discount factor that allows the influence of fu-
ture rewards to be controlled (Puterman, 1994), we
define the notion of cumulative discounted cost C =
∑

∞
t=0 γtct , where ct is the cost at time step t. To op-

timize, the agents need an objective and in this case,
the constrained criterion is:

max
π∈Π

Eπ(R) subject to Eπ(C)≤ α. (1)

While there are multiple ways to constrain the cost,
we choose to bound the expected cumulative cost be-
cause it is the simplest and most widely used (Wachi
et al., 2024). Similarly to the return, this is ap-
proximated through the cost value function V π

C =
Eπ(C | s0 = s),, which is the expected cumulative
discounted cost following policy π starting from the
starting states s0.

3.2 Curriculum Learning

The idea of curriculum learning is that it is easier to
learn a complex task by iteratively building up to that
task than to start on that task immediately. A curricu-
lum is a sequence of tasks, which in this context are
constrained MDPs, such that the order accelerates or
improves learning. Curriculum learning is then find-
ing a curriculum such that the order of tasks is opti-
mized (Narvekar et al., 2020).

Curriculum learning has three main elements:
task generation, task sequencing, and transfer learn-
ing (Narvekar et al., 2020). Here we focus on task
sequencing, where we allow only changes in the re-
ward, cost and transition functions, and in the starting
or goal state distributions between different tasks in
the curriculum.

Definition 3.2 (Curriculum). A curriculum is defined
as a directed acyclic graph ⟨V ,E ,T ,g⟩, where V
is the set of vertices, E is the set of directed edges
{(vi,vi+1) | (vi,vi+1) ∈ V ×V }, T is the set of tasks
mi = ⟨S;A; pi;ri;ci;α⟩, where a task is thus a con-
strained MDP, and g : V → T is a function that as-
sociates each vertex with a task.

In the case of a linear curriculum, before we can
train on the task of node vi+1, we need to train on the
task of node vi. There also is a single sink node vt that
contains the target task.

Many different types of curriculum learning tech-
niques exist, but we put an emphasis on their different
levels of automation. We distinguish between four
levels of automation that each build upon the previ-
ous level. The first level is a fully hand-made cur-
riculum, where the tasks are created and ordered by
hand. The second level is automated task sequencing,
where the order of tasks is calculated beforehand by
an algorithm and where these tasks are still created by
humans. The third level is adaptive task sequencing,
where it is adaptively decided for each agent individ-
ually when a task change should occur during training
through an algorithm. Finally, the fourth level is au-
tomated task generation, where also the creation of
tasks is automated such that each element of the cur-
riculum generation is automated.

4 PROBLEM STATEMENT

Our goal is to find whether curriculum learning al-
lows for safer learning for the agents. To measure
safety within a constrained MDP, we use an adapted
definition of constraint violation regret from (Efroni
et al., 2020). This is useful as it ignores the cost if it
is below the allowed limit, which means that this met-
ric works better than simply taking the total cost in-
curred (Müller et al., 2024). The constraint violation
regret, which we will shorten to regret, is defined as:

Reg(K,c,α) =
K

∑
k=1

[V πk
c (s0)−α]+, (2)

where K is the number of episodes, πk is the policy at
episode k, s0 is the starting state and [x]+ = max(x,0).
We use regret to compare performance with respect to
safety, as it does not suffice to look at the difference in
constraint violation. This is the case as in constrained
RL it does not matter how much the constraint is vi-
olated, only whether it is violated. Furthermore, we
put an emphasis on the safety during training, thus
we need a metric that can summarize the performance
over several episodes.

Making Reinforcement Learning Safer via Curriculum Learning

1467

(a) Task 0 (b) Task 1 (c) Task 2

(d) Task 3 (e) Task 4 (f) Task 5
Figure 2: Curriculum tasks used for most experiments. Red is the agent, green is the goal, blue are the hazards and yellow are
the possible starting locations, where a higher opacity relates to a higher probability of starting there.

Using the definitions from the previous sections,
the goal of our research is the following. We want
to build a curriculum ⟨V ,E ,T ,g⟩ that helps an agent
solve constrained MDP mt ∈ T according to Crite-
rion 1, associated with vertex vt , while minimizing
the regret Reg(K,ci,α) at each vertex.

5 CURRICULUM LEARNING
FOR CONSTRAINED RL

We describe the methods that we use to create an
automated curriculum learning algorithm for con-
strained RL.

5.1 Hand-Made Curriculum

As a first step a hand-made curriculum is created,
which will be expanded to contain some automation.
To create a curriculum ⟨V ,E ,T ,g⟩, we follow four
guidelines (Peng et al., 2018). We isolate complexity
by creating tasks that try to teach the agent one new
skill, such as not going in a straight line to the goal if
there is a hazard in the way. This is done by select-
ing the simplest environments to introduce one com-
plexity at a time, meaning that we create the simplest
versions of the tasks that teach the agent a new skill.
These tasks are chosen such that they are most simi-
lar to the target environment, such as by introducing
more and more parts of the target environment into
the tasks. This is also an example of introducing com-
plexity by building on previous tasks, which in general
can be done by requiring skills learned from previous
tasks to complete the current task. In this way, a cur-
riculum can be created with an implied ordering.

The resulting tasks can be found in Figure 2,
where each task is slightly more difficult than the
tasks before. These tasks all share the same state

space S and action space A , so it therefore falls in
our definition of only having small changes between
the tasks. Now the set of tasks T is clear, we need
to create g to map vertices V to each of these tasks.
This is simple as we can just map the ith vertex to the
ith task:

g(vi) = mi,∀i ∈ [0,6], (3)

where vi ∈ V , mi ∈ T and |V | = |T | = 7. The only
remaining part of the curriculum is E , which deter-
mines the relationship between tasks. As we have
created a curriculum with a linear ordering, we will
create the edges as:

ei = (vi,vi+1),∀i ∈ [0,5], (4)

with ei ∈ E and |E |= 6.

Schedule. Although we have defined a curriculum,
in practice we still need to define when to change
tasks. There are too many options to try all of them,
but we will follow some general heuristics. The first
one is that later tasks, which are also the harder tasks
as they require the knowledge of previous ones, need
progressively more training time. The second is that
we do not want to train until convergence for each
intermediate task, because there might be a risk of
overfitting on an easy task, resulting in possibly un-
safe behavior in future tasks. More importantly, it
is faster to not train until convergence (Narvekar and
Stone, 2019). As for this type of curriculum, it needs
to be decided beforehand when the task changes oc-
cur, we need to look at when the average agent con-
verges and stop the task some episodes before that.
After some small experiments, we decided to change
tasks at epochs 10, 20, 40, 100, 300 and 700, where
there is thus a shift from task 0 to 1 at epoch 10, from
task 1 to 2 at epoch 20, etc. In our case, an epoch is
1000 steps and may consist of multiple episodes.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1468

Algorithm 1: Learning algorithm with an adaptive curricu-
lum for the basic instantiation.
Input: Number of training epochs n
Input: Task distribution p⃗c
Input: Cost constraint α

Input: Cost threshold factor β

Input: Threshold of successful epochs needed κ

1: k← 0 ▷ The number of successful epochs
2: for i = 0, 1, ..., n do
3: Sample task mi ∼ p⃗c
4: task completed,cost← Train on task mi
5: if task completed and cost≤ β ·α then
6: k← k+1
7: if k ≥ κ then
8: UPDATEDISTRIBUTION(p⃗c) ▷ This shifts the

Dirac distribution to the next task
9: k← 0 ▷ Reset counter of successful epochs

5.2 Adaptive Curriculum

To automate part of the curriculum, we make the se-
quencing adaptive, which means that each curricu-
lum is tailored to the specific agent in terms of task
changes. For our approach, we take inspiration from
two other approaches by generalizing them and com-
bining them. One of these strategies maintains a prob-
ability distribution over the tasks and shifts the dis-
tribution to harder tasks on a successful episode or to
easier tasks on an unsuccessful episode (Wu and Tian,
2017). The other strategy allows the agent to move on
to the next task in the sequence only when the change
in Q-values between updates is small enough, indicat-
ing that the agent has converged on this task (Asada
et al., 1996). These two methods can be combined
by using a probability distribution over the tasks and
finding a good measure to decide when and how the
distribution over the tasks should shift.

In this research, we take a very basic approach that
uses a Dirac distribution p⃗c over the tasks and where
we only allow the distribution to shift to the next task
or stay at the current task. Furthermore, we introduce
hyperparameters κ and β, where κ is the amount of
epochs where the agents needs to have completed an
episode with an expected cost of at most β ·α. Here β

is based on the idea that we can either be lenient with
the cost limit, larger than 1, to allow for reaching the
target task quicker or that we can be strict with the
cost limit, smaller than 1, forcing the agent to already
be very safe on the intermediate tasks. The expected
cost is used instead of the actual cost, as this is what
the agent is optimizing for and we want to decrease
the influence of lucky starting positions, by not using
the exact costs made during the epochs.

Pseudocode for this algorithm can be found in Al-
gorithm 1. At the start of each epoch, we sample a

task from the distribution p⃗c (Line 3), which can be
any distribution, but in this case it is a Dirac distri-
bution with probability 1 on task 0. After training on
this task (Line 4), we look at the cost and whether
an episode has been completed, and check if this re-
sulted in a successful epoch (Lines 5-6). The condi-
tion in the if-statement can be changed depending on
the definition of a successful episode. After this if-
statement, we check whether there were enough suc-
cessful epochs on this distribution (Line 7). If this is
the case we update the distribution to be a Dirac dis-
tribution over the next task and reset the number of
successful epochs (Line 8). The condition in the if-
statement and the exact functionality of updating the
distribution can be changed depending on the strategy
for when to change the distribution.

6 EMPIRICAL EVALUATION

We first set up experiments for the static hand-made
curriculum and then for the adaptive curriculum.

For the experiments, we train agents using sev-
eral different safe RL algorithms with a cost limit of
5, which has as a consequence that the agent can-
not go through the center of a hazard or through the
overlapping area of two adjacent hazards without go-
ing over this limit. For most algorithms, we train
a baseline version without using the curriculum and
a curriculum version, and later adaptive curriculum
version, trained with their respective curricula. The
only exceptions are PPO (Schulman et al., 2017) and
CPO (Achiam et al., 2017), which are trained with
only a baseline version. Here PPO is a general RL
algorithm that gives us insights mainly about the opti-
mal return when not considering constraints and CPO
is a very popular safe RL algorithm that we con-
sider less promising for use with a curriculum than
the other algorithms.

Although our experiments primarily focus on
safety during training, we also evaluate the agents on
the target task throughout training, for 5 episodes ev-
ery 10 epochs.

6.1 Static Curriculum

Comparing Safe RL Algorithms. The agents used
in this experiment consist of a curriculum version
and a baseline version, which does not use a cur-
riculum, of the algorithms CRPO (Xu et al., 2021),
CUP (Yang et al., 2022), FOCOPS (Zhang et al.,
2020), PCPO (Yang et al., 2020), PPOEarlyTermi-
nated (Sun et al., 2021) and PPOLag (Ray et al.,
2019). For PPOLag we have performed some hyper-

Making Reinforcement Learning Safer via Curriculum Learning

1469

0.0 2.5 5.0 7.5 10.0 12.5
Baseline

0

2

4

6

8

10

12

Cu
rri

cu
lu

m

return

0 5 10 15 20 25
Baseline

0

5

10

15

20

25

Cu
rri

cu
lu

m

cost

0 5000 10000 15000 20000
Baseline

0

2500

5000

7500

10000

12500

15000

17500

20000

Cu
rri

cu
lu

m

regret

CPO
CUP
FOCOPS
OnCRPO
PCPO
PPO
PPOEarlyTerminated
PPOLag
Diagonal
PPO Train

Scatterplot of baseline performance vs. curriculum performance

Figure 3: Plots showing how the algorithms performed with and without the curriculum, with the target task being task 4.
The return and cost are the average of the metric in the final epoch of each repetition and the regret is the average of each
repetition. Since PPO and CPO have only been used for the baseline, their respective curriculum values are considered 0.

parameter tuning to find proper Lagrangian param-
eters for agents without a curriculum, which were
also used for the curriculum version. We included
two more agents with only a baseline version, namely
PPO and CPO. The agents are trained with task 4 as
the target task, as the goal of this experiment is to find
if there are safe RL algorithms that benefit more from
using a curriculum. Since task 4 is a relatively easy
target task, we expect the agents to converge and thus
give proper insights into what a curriculum changes in
terms of their performance. Both types of agents are
trained for 1000 epochs, which means that the cur-
riculum agent trains for 900 epochs on task 4.

Figure 3 shows the results during training of the
experiments. Most agents trained with a curriculum
have a lower regret compared to the baselines, while
the return is about as good. Most of the agents trained
with a curriculum also end up with a lower regret than
the PPO agent, while for the baseline agents only the
CUP and PPOEarlyTerminated versions manage to do
so. The end costs are comparable between the two
versions, but there are two cases where the curriculum
version has a higher cost. However, these costs are ex-
treme for both versions, as an expected cost of 15 is
already three times the cost limit. With all of these
insights, the best-performing algorithms are PPOLag,
FOCOPS, CUP and PPOEarlyTerminated. These four
are used for the other experiments. Note that PPOEar-
lyTerminated cannot have a cost above the cost limit,
as the episode ends when the agent would go above
the limit.

6.2 Adaptive Curriculum

Comparing to Baseline and Static Curriculum.
The agents used in this experiment consist of an adap-
tive curriculum version, a static curriculum version
and a baseline version, which does not use a curricu-

lum, of the algorithms CUP, FOCOPS, PPOLag and
PPOEarlyTerminated. We included two more agents
with only a baseline version, namely PPO and CPO.
The agents are trained on each task in the curriculum
as the target task, except for task 0, resulting in six
subexperiments that each have a different task as a
target task. This means that first task 1 is used as the
target task, where the baseline versions train only on
task 1, while both curriculum versions consider the
whole curriculum to only contain tasks 0 and 1, i.e.
the curriculum up to and including this target task.
Then similarly for task 2 and all tasks up to and in-
cluding the actual target task. This is done to inves-
tigate the difference in performance of the three ver-
sions with different levels of difficulty for the target
task and different lengths of the curriculum.

Figure 4 shows the results of these experiments
for the PPOLag agent on the last three tasks. The
adaptive curriculum version has a lower regret than
the other two versions on all tasks. This is due to
the decrease in the initial cost spike that the baseline
experiences and, to a lesser extent, the static curricu-
lum. The return is slightly lower for both curriculum
versions, compared to the baseline. However, the suc-
cess rate, which indicates the percentage of evaluation
episodes that reached the goal with a cost below the
cost limit, shows that the versions are much closer.

Adaptive Curriculum Task Progression. Due to
the implementation of the adaptive curriculum, the
agent is not guaranteed to reach the target task, as
it may never consider itself ready to do so. Figure 5
shows the task progression of individual agents per al-
gorithm, where it can be seen that most of the PPOLag
and PPOEarlyTerminated agents did eventually reach
the target task, but for CUP and FOCOPS agents this
was not the case. Regardless, patterns can be seen in
the task progression where there are many agents that

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1470

0 500 1000 1500 2000
x1000 Steps

0

5

10

Task 4 Return

0 500 1000 1500 2000
x1000 Steps

0.0

0.5

1.0
Success

0 500 1000 1500 2000
x1000 Steps

0

50

100

Cost

0 500 1000 1500 2000
x1000 Steps

0

5000

10000

15000

Regret

0 1000 2000 3000
x1000 Steps

0

5

10

Task 5

0 1000 2000 3000
x1000 Steps

0.0

0.5

1.0

0 1000 2000 3000
x1000 Steps

0

50

100

0 1000 2000 3000
x1000 Steps

0

10000

20000

0 1000 2000 3000
x1000 Steps

0

5

10

Task T

0 1000 2000 3000
x1000 Steps

0.0

0.1

0.2

0 1000 2000 3000
x1000 Steps

0

100

0 1000 2000 3000
x1000 Steps

0

20000

40000

baseline curriculum adaptive curriculum

Figure 4: Training performance curves of the PPOLag agents, comparing baseline, curriculum and adaptive curriculum
progression. The shaded area indicates the standard error. The vertical grey lines indicate the epochs at which a task change
occurs for the curriculum agents. The horizontal dashed line in the cost plots represents the cost limit.

0 500 1000 1500 2000 2500 3000
x1000 Steps

0

1

2

3

4

5

6

C
ur

re
nt

 T
as

k

CUP

0 500 1000 1500 2000 2500 3000
x1000 Steps

FOCOPS

0 500 1000 1500 2000 2500 3000
x1000 Steps

PPOEarlyTerminated

0 500 1000 1500 2000 2500 3000
x1000 Steps

PPOLag

Figure 5: Task progression of the different safe RL algorithms used with an adaptive curriculum.

switch to the next task at roughly the same time. This
means that it is possible to use such results to create
a better static curriculum, which can guarantee that
agents reach the target task.

7 CONCLUSIONS

In this work, we investigated the impact of a curricu-
lum on the safety regret of a safe RL agent. We pro-
posed an adaptive curriculum that asserts the compe-
tency of each agent and allows them to move on to
more difficult tasks in the curriculum when they have
shown to be safe enough on the current task.

Through empirical evaluation, we concluded that
using a static curriculum reduces safety regret during
training, with minimal performance loss. Our version
of an adaptive curriculum improved on our static cur-
riculum in the same way. This is due to the reduction
in the cost spike near the start of training, which is a
consequence of first training the agents on easier tasks

to understand the basics of the environment.

Future Work. Our approach requires tasks to be
designed beforehand. Therefore, a logical next step
would be to automate task generation. However, it
is not clear how to automatically design new tasks
where the agent will remain safe. Furthermore, the
tasks that we created are focused on changing the
position of hazards. Therefore, investigating curric-
ula that change the starting positions or the cost limit
throughout training could lead to new insights.

REFERENCES

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017).
Constrained policy optimization. In ICML, pages 22–
31. PMLR.

Altman, E. (1998). Constrained Markov decision pro-
cesses with total cost criteria: Lagrangian approach
and dual linear program. Math. Methods Oper. Res.,
48(3):387–417.

Making Reinforcement Learning Safer via Curriculum Learning

1471

Altman, E. (1999). Constrained Markov Decision Pro-
cesses, volume 7. Routledge.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F.,
Schulman, J., and Mané, D. (2016). Concrete prob-
lems in AI safety. CoRR, abs/1606.06565.

Asada, M., Noda, S., Tawaratsumida, S., and Hosoda, K.
(1996). Purposive behavior acquisition for a real
robot by vision-based reinforcement learning. Mach.
Learn., 23(2-3):279–303.

Basu, A., Bhattacharyya, T., and Borkar, V. S. (2008). A
learning algorithm for risk-sensitive cost. Math. Oper.
Res., 33(4):880–898.

Efroni, Y., Mannor, S., and Pirotta, M. (2020). Exploration-
exploitation in constrained MDPs. arXiv preprint
arXiv:2003.02189.

Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M.
(2021). Self-paced context evaluation for contextual
reinforcement learning. In ICML, pages 2948–2958.
PMLR.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. (2018).
Leave no trace: Learning to reset for safe and au-
tonomous reinforcement learning. In ICLR (Poster).
OpenReview.net.

Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018).
Automatic goal generation for reinforcement learning
agents. In ICML, pages 1514–1523. PMLR.

Foglino, F., Christakou, C. C., and Leonetti, M. (2019a). An
optimization framework for task sequencing in cur-
riculum learning. In ICDL-EPIROB, pages 207–214.
IEEE.

Foglino, F., Leonetti, M., Sagratella, S., and Seccia, R.
(2019b). A gray-box approach for curriculum learn-
ing. In WCGO, pages 720–729. Springer.

Kadota, Y., Kurano, M., and Yasuda, M. (2006). Dis-
counted Markov decision processes with utility con-
straints. Comput. Math. Appl., 51(2):279–284.

Klink, P., Abdulsamad, H., Belousov, B., D’Eramo, C.,
Peters, J., and Pajarinen, J. (2021). A probabilis-
tic interpretation of self-paced learning with applica-
tions to reinforcement learning. J. Mach. Learn. Res.,
22:182:1–182:52.

Klink, P., Abdulsamad, H., Belousov, B., and Peters, J.
(2019). Self-paced contextual reinforcement learning.
In CoRL, pages 513–529. PMLR.

Müller, A., Alatur, P., Cevher, V., Ramponi, G., and He, N.
(2024). Truly no-regret learning in constrained MDPs.
In ICML. OpenReview.net.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. (2020). Curriculum learning for
reinforcement learning domains: A framework and
survey. J. Mach. Learn. Res., 21:181:1–181:50.

Narvekar, S., Sinapov, J., Leonetti, M., and Stone, P. (2016).
Source task creation for curriculum learning. In AA-
MAS, pages 566–574. ACM.

Narvekar, S. and Stone, P. (2019). Learning curricu-
lum policies for reinforcement learning. In AA-
MAS, pages 25–33. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Peng, B., MacGlashan, J., Loftin, R. T., Littman, M. L.,
Roberts, D. L., and Taylor, M. E. (2018). Curricu-
lum design for machine learners in sequential deci-
sion tasks. IEEE Trans. Emerg. Top. Comput. Intell.,
2(4):268–277.

Puterman, M. L. (1994). Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series
in Probability and Statistics. Wiley.

Ray, A., Achiam, J., and Amodei, D. (2019). Benchmarking
safe exploration in deep reinforcement learning.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. CoRR, abs/1707.06347.

Simão, T. D., Jansen, N., and Spaan, M. T. J. (2021). Al-
wayssafe: Reinforcement learning without safety con-
straint violations during training. In AAMAS, pages
1226–1235. ACM.

Smith, A. E., Coit, D. W., Baeck, T., Fogel, D., and
Michalewicz, Z. (1997). Penalty functions. Handbook
of evolutionary computation, 97(1).

Sun, H., Xu, Z., Fang, M., Peng, Z., Guo, J., Dai, B., and
Zhou, B. (2021). Safe exploration by solving early
terminated MDP. CoRR, abs/2107.04200.

Tamar, A., Xu, H., and Mannor, S. (2013). Scaling
up robust mdps by reinforcement learning. CoRR,
abs/1306.6189.

Tang, J., Singh, A., Goehausen, N., and Abbeel, P. (2010).
Parameterized maneuver learning for autonomous he-
licopter flight. In ICRA, pages 1142–1148. IEEE.

Turchetta, M., Kolobov, A., Shah, S., Krause, A., and Agar-
wal, A. (2020). Safe reinforcement learning via cur-
riculum induction. In NeurIPS.

Wachi, A., Shen, X., and Sui, Y. (2024). A survey of con-
straint formulations in safe reinforcement learning. In
IJCAI, pages 8262–8271. ijcai.org.

Wu, Y. and Tian, Y. (2017). Training agent for first-person
shooter game with actor-critic curriculum learning. In
ICLR (Poster). OpenReview.net.

Xu, T., Liang, Y., and Lan, G. (2021). CRPO: A new
approach for safe reinforcement learning with con-
vergence guarantee. In ICML, pages 11480–11491.
PMLR.

Yang, L., Ji, J., Dai, J., Zhang, L., Zhou, B., Li, P., Yang,
Y., and Pan, G. (2022). Constrained update projection
approach to safe policy optimization. In NeurIPS.

Yang, Q., Simão, T. D., Jansen, N., Tindemans, S. H., and
Spaan, M. T. J. (2023). Reinforcement learning by
guided safe exploration. In ECAI, pages 2858–2865.
IOS Press.

Yang, T., Rosca, J., Narasimhan, K., and Ramadge, P. J.
(2020). Projection-based constrained policy optimiza-
tion. In ICLR. OpenReview.net.

Zhang, L., Shen, L., Yang, L., Chen, S., Wang, X., Yuan,
B., and Tao, D. (2022). Penalized proximal policy op-
timization for safe reinforcement learning. In IJCAI,
pages 3744–3750. ijcai.org.

Zhang, Y., Vuong, Q., and Ross, K. W. (2020). First order
constrained optimization in policy space. In NeurIPS.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1472

