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Abstract: Federated Learning (FL) enables collaborative training of machine learning models while preserving client
data privacy. However, its conventional client-server paradigm presents two key challenges: (i) communica-
tion efficiency and (ii) model aggregation optimization. Inefficient communication, often caused by transmit-
ting low-impact updates, results in unnecessary overhead, particularly in bandwidth-constrained environments
such as wireless or mobile networks or in scenarios with numerous clients. Furthermore, traditional aggre-
gation strategies lack the adaptability required for stable convergence and optimal performance. This paper
emphasizes the distributed nature of FL clients (agents) and advocates for local, autonomous, and intelligent
strategies to evaluate the significance of their updates—such as using a “distance” metric relative to the global
model. This approach improves communication efficiency by prioritizing impactful updates. Additionally,
the paper proposes an adaptive aggregation method leveraging genetic programming and transfer learning to
dynamically evolve aggregation equations, optimizing the convergence process. By integrating insights from
multi-agent systems, the proposed approach aims to foster more efficient and robust frameworks for decen-
tralized learning.

1 INTRODUCTION

Federated Learning (FL) is a collaborative ma-
chine learning paradigm introduced by Google in
2016 (McMahan et al., 2017). FL is designed to
train models on decentralized data while preserv-
ing privacy. Unlike traditional centralized learning,
which requires transferring data to a central server,
FL enables training to occur locally on client devices,
addressing critical concerns about data confidential-
ity (Kairouz and et al., 2021). By maintaining data
on client devices, FL mitigates privacy risks while
facilitating the training of large-scale machine learn-
ing models. This paradigm has been significantly
adopted in applications including predictive text input
(e.g., GBoard (Hard et al., 2019)), speech recognition
(e.g., Siri (Granqvist et al., 2020)), healthcare diag-
nostics (Rieke et al., 2020), and finance (Liu et al.,
2020; Long et al., 2020).
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FL faces key challenges that limit its scalability
and practical adoption. A major issue arises from
the heterogeneity of client devices and their non-
Independent and Identically Distributed (non-IID)
data distributions. This heterogeneity leads to vari-
able update quality (Li et al., 2020; Nie et al., 2022).
Traditional aggregation methods such as Federated
Averaging (FedAVG) (McMahan et al., 2017), which
rely on weighted averaging, struggle under these con-
ditions, impairing global model generalization, con-
vergence speed, and overall performance.

Communication inefficiency is another critical
limitation. The standard FL pipeline transmits all
client updates to a central server indiscriminately,
leading to excessive bandwidth usage, especially
in large-scale or resource-constrained environments
such as IoT networks (Kontar et al., 2021). Tech-
niques like parameter compression (Konečný et al.,
2017), federated dropout (Bouacida et al., 2021), and
structured updates (Zhang et al., 2024; Konečný et al.,
2017; Wang et al., 2024) offer partial solutions but
often fail to adapt effectively to the dynamic and dis-
tributed nature of FL.
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To address these limitations, this work proposes a
novel paradigm that integrates FL with Multi-Agent
Systems (MAS) modeling equipped with an adaptive
Genetic Programming (GP)-based aggregation strat-
egy.

GP has been introduced by Koza et al. (Koza,
1992) and is particularly effective in optimizing non-
linear functions and generating solutions dynami-
cally. A prominent application of GP is in solving
symbolic regression problems (Augusto and Barbosa,
2000), which involves creating mathematical models
that accurately fit a given set of data points. In the
context of FL, there is a similar need for a mathe-
matical function—the aggregation function—that can
effectively handle diverse data inputs. This resem-
blance to symbolic regression makes GP a powerful
tool for evolving aggregation strategies that are cus-
tomized to accommodate heterogeneous data distri-
butions and varying client capabilities.

Therefore, we envision MAS empowering clients
(agents) to decide when and whether to communicate
with the central server, thereby optimizing bandwidth
usage and aggregation delays. Moreover, the GP-
based strategy dynamically adjusts aggregation equa-
tions to better accommodate diverse client data distri-
butions. Combining MAS for autonomy and commu-
nication efficiency, and GP-based aggregation for ro-
bustness, the proposed framework aims to overcome
key bottlenecks in FL, delivering scalable, resilient,
and personalized learning systems.

The remainder of this paper is structured as fol-
lows: Section 2 outlines the motivations and chal-
lenges driving this work. Section 3 details the pro-
posed paradigm, emphasizing the integration of MAS
and GP-based aggregation. Section 4 presents a
roadmap for implementation and future exploration.
Finally, Section 5 discusses the potential impact and
concludes the paper.

2 MOTIVATIONS

While FL presents a promising approach for dis-
tributed learning, its current implementations face
two critical shortcomings: communication ineffi-
ciency and limited adaptability in aggregation strate-
gies. These issues are particularly pronounced in non-
IID scenarios, where treating clients uniformly often
results in inefficiencies (Wang et al., 2020). Further-
more, transmitting all client updates indiscriminately
imposes substantial communication costs, particu-
larly in bandwidth-constrained environments. Client
selection approaches handle the process server-side,
after receiving the weights, this does not help to im-

prove efficiency (Fu et al., 2023). Existing approaches
to improve communication efficiency, including pa-
rameter compression (Konečný et al., 2017), feder-
ated dropout (Bouacida et al., 2021), and structured
updates (Zhang et al., 2024; Konečný et al., 2017;
Wang et al., 2024), partially mitigate these issues
by reducing the volume of transmitted data. How-
ever, these methods do not empower clients to per-
form local selection of updates, resulting in the trans-
mission of irrelevant data that is later discarded by
the server—introducing unnecessary overhead. Simi-
larly, static aggregation methods like FedAVG fail to
account for the unique characteristics of client data,
particularly in non-IID scenarios (Wang et al., 2020).

FedGR (Zeng et al., 2024) introduces an innova-
tion in FL by using a genetic algorithm for dynamic
client clustering and a relay strategy to train models
within groups. This approach stands out for its abil-
ity to reduce the impact of statistical heterogeneity
by improving the convergence of the overall model.
However, FedGR is limited to a static aggregation
strategy within each group and does not consider dy-
namic customization of aggregation algorithms.

An interesting analysis of aggregation techniques
in Federated Learning has recently been produced (Qi
et al., 2024) which highlights as major problems (i)
statistical heterogeneity of data, (ii) communication
bottlenecks, (iii) security and privacy, (iv) model cus-
tomization, and (v) client evaluation and selection.

This work addresses some of these limitations
by integrating MAS to enable autonomous decision-
making at both the client and server levels. The local
agents assess their “distance” from the global model
to determine whether to transmit updates, while the
server (aggregating agent) dynamically decides when
to distribute aggregated models or skip aggregation
rounds. Combined with a GP-based aggregation strat-
egy, this approach can enhance communication effi-
ciency and ensure adaptability to evolving data distri-
butions, capturing the peculiarities of each client

3 NOVEL PARADIGM

The proposed paradigm integrates a MAS-driven
communication framework with a GP-based adaptive
aggregation strategy, effectively addressing the dual
challenges of communication efficiency and aggre-
gation adaptability. Figure 1 illustrates the enhanced
FL pipeline, incorporating MAS for communication
optimization and GP for dynamic aggregation.

MAS for Communication Efficiency. In the
proposed framework, each client operates as an
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autonomous agent able to assess the relevance of
its updates based on a defined distance metric w.r.t.
the global model. Agents decide independently
whether to transmit updates, thereby reducing unnec-
essary bandwidth consumption. Concurrently, the
central server employs MAS principles to evaluate
when to distribute updated global models, ensuring
synchronization is both timely and efficient. This
decentralized decision-making mechanism enhances
scalability and efficiency, particularly in resource-
constrained environments.

GP-Based Aggregation. Conventional aggregation
techniques (i.e., FedAVG) rely on static equations that
fail to account for the heterogeneity of client data,
particularly in non-IID scenarios. The proposed GP-
based aggregation method dynamically evolves ag-
gregation equations to adapt to the client data distribu-
tions. This adaptive strategy balances local data char-
acteristics with global model performance, yielding a
more robust solution for non-IID environments. Fur-
thermore, by incorporating transfer learning within
the GP-based aggregation framework, the computa-
tional overhead of evolving new equations in each
round is significantly minimized.

By combining these innovations, the proposed
paradigm offers a scalable solution for FL that main-
tains high performance and supports personalized
models, even in complex and heterogeneous data en-
vironments.

4 ROAD MAP

This section outlines a roadmap to address key
challenges in FL and validate the integration of MAS
and GP for scalable, efficient, and decentralized
learning.

Phase 1: Developing the GP-Based Aggregation
Method – This phase focuses on creating a GP-based
technique to evolve aggregation equations tailored
to heterogeneous environments dynamically. A
key aspect is defining the fitness function. Ini-
tially, a single-objective function will be employed,
leveraging metrics such as accuracy, precision, or
mean Average Precision (mAP), depending on the
neural network type. Subsequently, a multi-objective
function will be introduced, incorporating factors like
convergence speed, model execution time, and model
quality to optimize performance comprehensively.

To validate the proposed new aggregation method,
a systematic comparison will be made with major

aggregation methods in the literature, including
FedAvg, Scaffold, MOON, Zeno, Per-FedAvg, Fed-
Prox, FedOpt, FedRS, and FedGR. Moreover, a test
can be carried out with FedGR in combination with a
dynamic aggregation algorithm and compared with
the current results. Comparisons will be based on key
metrics such as global model accuracy, computational
efficiency, robustness to non-IID data, and resilience
to malicious clients. This approach will highlight the
advantages and limitations of each method, providing
a basis for establishing practical guidelines on using
different aggregation strategies in specific scenarios.

Phase 2: Transfer Learning for GP Aggregator –
Although GP could have a significant computational
impact, mainly due to the costs of the fitness function
that they have to evaluate each individual (neural net-
work) and to do so, they have to apply the inference
process and compute metrics; we believe that the
benefits of its ability to dynamically adapt to non-IID
features in the data outweigh these costs. However,
to reduce computational overhead, transfer learning
mechanisms will be integrated into the GP-based
aggregation process. This approach involves two
strategies: (i) performing a single evolution in
the first aggregation round and reusing the same
expression tree across subsequent iterations, thereby
maximizing resource efficiency, and (ii) transferring
the best individual from the previous evolution to
form the new population. The latter strategy offers
two scenarios: either the transferred individual is
supplemented by randomly generated individuals, or
the entire population is derived through mutations of
the selected individual.

Phase 3: MAS for Communication Efficiency
– MAS-based mechanisms will enable autonomous
decision-making for clients and servers, optimizing
communication and synchronization at run time. This
phase also opens avenues for further investigation: (i)
refining MAS to manage large-scale FL deployments
with thousands of clients and (ii) exploring the inte-
gration of evolutionary methods within MAS to cus-
tomize the distance threshold dynamically.

5 DISCUSSION AND
CONCLUSIONS

This paper introduces a novel paradigm for FL, com-
bining MAS-driven communication and aggregation
through GP to address challenges in non-IID environ-
ments. Enabling autonomous decision-making and
dynamic aggregation, we aim to reduce communica-
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Figure 1: MAS integration (communication efficiency) and GP-based aggregation (model quality).

tion overhead, accelerate convergence, improve the
generalization, and enhance personalization.

The impact of this work is threefold: scientif-
ically, it advances FL with scalable and adaptable
mechanisms; practically, it offers robust solutions for
applications in healthcare, finance, and mobile sys-
tems; socially, it promotes improved privacy and fair-
ness in model development.

As a position paper, this work highlights the
value of hybridizing AI techniques to optimize FL
paradigms, paving the way for higher-quality solu-
tions, for greater optimization, and broader real-world
applicability.
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