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Automatically generating paraphrases is crucial for various natural language processing tasks. Current ap-
proaches primarily try to control the surface form of generated paraphrases by resorting to syntactic graph
structures. However, paraphrase generation is rooted in semantics, but there are almost no works trying to
leverage semantic structures as inductive biases for the task of generating paraphrases. We propose SAPG,
a semantically-aware paraphrase generation model, which encodes Abstract Meaning Representation (AMR)
graphs into a pretrained language model using a graph neural network-based encoder. We demonstrate that
SAPG enables the generation of more diverse paraphrases by transforming the input AMR graphs, allow-
ing for control over the output generations’ surface forms rooted in semantics. This approach ensures that
the semantic meaning is preserved, offering flexibility in paraphrase generation without sacrificing fluency or
coherence. Our extensive evaluation on two widely-used paraphrase generation datasets confirms the effec-

tiveness of this method.

1 INTRODUCTION

Humans use natural language to convey information,
mapping an abstract idea to a sentence with a specific
surface form. A paraphrase is an alternative surface
form of the same underlying semantic content. The
ability to automatically identify and generate para-
phrases is of significant interest, with applications in
data augmentation (Iyyer et al., 2018), question an-
swering (Dong et al., 2017), duplicate question detec-
tion (Shah et al., 2018) and more recently on stud-
ies about detecting Al-generated text (Krishna et al.,
2023).

Prior work on paraphrase generation has at-
tempted to include inductive biases to control the gen-
eration, most often using syntactic structure to pro-
mote alternative surface forms (Iyyer et al., 2018;
Chen et al., 2019a; Kumar et al., 2020; Meng et al.,
2021; Shu et al., 2019; Hosking and Lapata, 2021).
Semantic structures are rarely leveraged for the task
of paraphrase generation. The few works that tried
to use semantic structures to improve the quality of
the generated paraphrases (Wang et al., 2019a; Huang
et al., 2022) simply fed semantic information to the
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Figure 1: General approach for SAPG. We process pre-
extracted AMR graphs by extending a pretrained encoder-
decoder model with graph neural networks.

model with the assumption it would enhance para-
phrase quality. On the other hand, our method ac-
tively utilizes semantic structures as control mecha-
nisms, allowing for direct manipulation of the input
semantics to influence and shape the generated out-
put. Semantic structures can be very rich and expres-
sive, notably Abstract Meaning Representations (Ba-
narescu et al., 2013) (AMR), consisting of rooted di-
rected acyclic graphs that model semantic concepts.
Most of the approaches in the literature use pre-
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trained language models (PLMs) (Devlin et al., 2019;
Liu et al., 2020; Radford et al., 2019; Lewis et al.,
2020), as these models have demonstrated enhanced
performance across various tasks and enable efficient
training for downstream applications. However, it is
not clear how the above-mentioned graph-like struc-
tures can be processed by text-to-text PLM models
due to the different structural nature of the expected
input data. One solution is to transform the input
graph into a text sequence, which can be directly fed
into PLMs. Virtually, all recent works on paraphrase
generation have converted auxiliary graph structures
in sequences by top-down linearization, as it was
shown that such linearized graph representation can
be used to fine-tune a PLM and improve text genera-
tion performance (Kale and Rastogi, 2020). The main
drawback of this approach is the weakened graph
structural information (i.e., which and how nodes are
connected). PLMs must infer how edge connections
are specified in the sequence (Song et al., 2018).
Some works successfully used Graph Neural Network
(GNN) encoders to outperform sequential encoders
(Ribeiro et al., 2019, 2021b).

This work presents SAPG, a Semantically-Aware
Paraphrase Generation model that extends PLMs to
leverage AMR graphs generated from the input texts.
This is done by having a dual encoder architecture
which allows embedding the input graph structure
into PLMs using a GNN-based graph encoder (see
Figure 1). This additional module preserves the
graph’s explicit connectivity, which would otherwise
be lost if the graphs were linearized, by utilizing
GNNs instead. The AMR graphs are transformed into
their bipartite form, where relations are promoted to
nodes and concepts are subword tokenized. The fea-
tures of the graph are enriched with the PLM’s con-
textual embeddings of the respective subword tokens.
This information is fused in the decoder using extra
cross-attention layers added to each decoder block.
The added parameters from the graph encoder and
cross-attention layers amount to less than 2% of the
total number of parameters of the PLM. We highlight
the sensitivity of SAPG to changes in the input AMR
graphs while persisting the semantics, effectively al-
lowing for the editing of these input graphs to change
the generations’ surface form and produce more var-
ied paraphrases.

In summary, the contributions of our work are:

* We propose SAPG, a paraphrase generation model
that uses AMR graphs for explicit control of gen-
erated paraphrases.

* We conduct experiments on two popular datasets,
analyze in depth the contribution of each compo-
nent of the approach and analyze the behavior of
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the model under a case study where we found it to
have interesting sensitivity to graph manipulation
that can be exploited to produce variations on the
generated paraphrases.

Finally, we note that while we work with AMR
graphs and for the English language, the approach
is neither AMR nor English-specific. Other types of
graphs can be used with this approach, and as long
as analogous models exist, this approach can be used
with minimal changes for other languages. The code
to reproduce the experiments is available'.

2 RELATED WORK

Virtually all recent works leverage neural methods to
tackle the task of paraphrase generation, and the lat-
est approaches typically employ some conditioning to
control the generations. In controlled text generation,
the control conditions are generally divided into three
different types: (1) Syntactic: represents control over
the structure of the generated text. (2) Lexical: rep-
resents control over the vocabulary and lexicon us-
age. (3) Semantic: generally refers to controlling
the meaning of the text. We also cover the strategies
employed in the literature for Graph-to-Text using
AMR.

Syntactic Control. One approach to control the
syntax of generations is using exemplar sentences to
guide the syntax of the generated paraphrase (Chen
et al., 2019b). An alternative is directly employing
constituency trees for syntax guidance (Iyyer et al.,
2018). Goyal and Durrett (2020) promote syntactic
diversity by conditioning over possible syntactic rear-
rangements of the input.

Lexical Control. To achieve diversity, some works
focused on diverse decoding using heuristics such as
Hamming distance or distinct n-grams to preserve di-
verse options during beam search (Vijayakumar et al.,
2018). Others generate multiple outputs by perturb-
ing latent representations (Park et al., 2019) or by us-
ing distinct generators (Qian et al., 2019). Zeng et al.
(2019) use keywords as lexical guidance for the gen-
eration process.

Semantic Control. For semantic control, Bandel
et al. (2022) used a scalar value computed from pop-
ular semantic similarity measurements and tuned on

Uhttps://github.com/afonso-sousa/sapg



inference time. Wang et al. (2019b) used PropBank-
style semantic annotations to embed semantic infor-
mation into a Transformer model. More recently,
AMR has been used for paraphrase generation as a
means to persist the semantics (Huang et al., 2022).

AMR-to-text Generation. Previous studies have
demonstrated that explicitly encoding graph struc-
tures can improve performance (Song et al., 2018;
Ribeiro et al., 2019; Cai and Lam, 2020; Schmitt
et al., 2021; Zhang et al., 2020) but fine-tuning PLMs
on linearized structured data has been used to great
success in data-to-text generation (Nan et al., 2021;
Kale and Rastogi, 2020; Ribeiro et al., 2021a). Our
work can be seen as integrating the advantage of both
graph structure encoding and PLMs, using a dual en-
coder architecture. Ribeiro et al. (2020a) explored
encoder-decoder PLMs for graph-to-text tasks, show-
ing that PLMs improve significantly with AMR struc-
tures rather than knowledge graphs, and task-specific
pretraining can lead to notable gains. Hoyle et al.
(2021) analyzes how PLMs handle graph lineariza-
tions, finding that models trained on canonical for-
mats struggle to generalize to alternatives that pre-
serve meaning. Ribeiro et al. (2021b) enhance PLMs
by incorporating graph knowledge through added
GNN-based modules in each encoder layer, which is
most similar to our method, as we also adapt PLMs to
process graph structures.

3 PROPOSED APPROACH

We formulate the task of supervised paraphrase gener-
ation as Graph-to-Text generation. Specifically, AMR
graphs are extracted from the source texts and fed into
the model as both textual inputs, linearizing the graph;
and graph inputs, processed by a graph encoder at-
tached to a PLM.

3.1 Architecture

SAPG re-purposes an encoder-decoder PLM using
additional graph information. It uses GNNs to encode
AMR graphs extracted from the input texts. Figure 2
illustrates the proposed architecture. The center and
right part of the Figure represent the encoder and de-
coder of the PLM, respectively (from here on we may
refer to the PLM encoder as the text encoder, con-
trasting with the graph encoder). On the left side, we
have a graph-processing block that starts by extract-
ing an AMR graph from the inputs using an AMR

SAPG: Semantically-Aware Paraphrase Generation with AMR Graphs

parser”. This is a third-party AMR parser that is only
inferred on, not trained. This AMR graph is pro-
cessed by a randomly initialized graph encoder based
on GNNs (in Section 3.2 we provide more details on
the graph features). The representation generated by
the graph encoder is fused in the PLM’s decoder. This
is done by adding extra randomly initialized multi-
head cross-attention layers> to each decoder block, k.
In each decoder block, the added cross-attention layer
attends to both the representation coming from the k"
decoder cross-attention layer as well as the represen-
tation generated by the graph encoder. The rationale
is that the graph encoder computes the refined struc-
tural node representation based on the local node con-
text while the new cross-attention layers incorporate
this information in the PLM without substantially im-
pacting the knowledge learned during pretraining. To
reduce the computational expense, we set the dimen-
sionality of the projection matrices of the added cross-
attention layers to 8 for all experiments.

3.2 Model Inputs

Our model processes two types of inputs in its dual
encoder architecture: the text encoder takes a lin-
earized graph textual representation, and the graph
encoder takes a bipartite graph with subword em-
bedding features.

Text as a Linearized Graph. Referring again to
Figure 2, notice the input embeddings are fed with
the output of the AMR parser. To convert the graph
into a representation that can be processed by the text
encoder, we linearize it. This linearization process is
done by traversing the graph using depth-first search
and appending the nodes as they are visited — using
text makes the model converge into a standard text-to-
text model, discarding the added graph information.

Graph as a Set of Features and Edges. To better
model the graph connectivity, we use GNNs. These
structures allow for information flows between ad-
jacent nodes and the exploration of distinct strate-
gies for neighborhood aggregation to model the struc-
tural information of the AMR graph. We first trans-
form the multi-relational graph into a bipartite graph
(i.e., a transformed version of a labeled graph where
the relations are promoted to new nodes). Formally,
we can represent an AMR graph, which is a rooted,

ZWe use a pretrained AMR parser https:/github.com/
bjascob/amrlib.

3 As we use T5 as PLM, the cross-attention layers follow
the original T5 cross-attention.
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Figure 2: The architecture of our model. Green boxes are parts of a PLM, whereas red boxes are added parts with new
weights. The blue box is a frozen part just to infer from. Inputs and outputs refer to source sentences and target sentences,

respectively.

directed graph where nodes represent concepts and
edges correspond to relations between concepts, as:
Gy = (Y, Ev, R) with concept nodes w € ¥, and la-
beled edges (u,,r,vy) € E,, where r € R _denotes the
relation existing between concepts u,, and v,,. Simi-
lar to Beck et al. (2018), to build the bipartite graph
Gy = (Vp,'Ep) from G, = (W, E,,R), we replace
each labeled edge (u,,,r,vy,) € E, with two unlabeled
edges ¢; = (uy,r) and ey = (r,v,), where relation r
is converted into a new node in v}, and e;, e in
Ep. As node features, we use subword embeddings.
Analogous to PLMs, which typically use vocabular-
ies with subword units Sennrich et al. (2016) to rep-
resent words, we also represent our concept nodes as
subword tokens. Inspired by Ribeiro et al. (2020b,
2021b), we transform each G, into a new token graph
G = (V,, E,), where each subword token from a con-
cept in 1}, becomes a node ¢ € V,. We convert each
edge e € E; into a new set of edges where every re-
sulting subword token from u,, is connected to every
subword token from r (the same process applies to

62).
3.3 Graph Encoder

The architecture of the graph encoder closely fol-
lows the form originally proposed for T5 Raffel et al.
(2019) feed-forward networks, but instead of dense
layers, we use GNNs. Specifically, a GNN layer
followed by a nonlinearity and another GNN layer.
Dropout Srivastava et al. (2014) is used in between
the GNN layers. We do not use layer normalization
Ba et al. (2016) or residual skip connections He et al.
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(2016), as these techniques were originally employed
to improve gradient flow in deep networks, while our
graph encoder is shallow and only fused later on in the
network. We perform a global mean pooling (average
node features across the node dimension) and end up
with another dropout layer.

We refer generally to the GNN layers and have
tried different ones (refer to Section 5.2), but ulti-
mately SAPG uses Graph Convolutional Networks
(GCNs) Kipf and Welling (2017).

4 EXPERIMENTAL SETUP

This section reviews the datasets, models, and respec-
tive training schemes and metrics employed to evalu-
ate our approach. HuggingFace Wolf et al. (2020) is
the main developing tool we use.

4.1 Datasets

We evaluate our model on two datasets:

ParaNMT. ParaNMT-50M (Wieting and Gimpel,
2018) is a dataset collected via back-translation refer-
ring to English sentences. We use a subset proposed
by Chen et al. (2019b) and strip sequences longer
than 20 tokens. The dataset contains roughly 450,000
training pairs of (sentence, paraphrase), 500 pairs for
validation, and 800 pairs for testing. From here on,
we call this subset ParaNMT. It is worth noting that
our approach needs AMR graphs, so we only use en-
tries from which we were able to extract a correct



AMR graph using the pretrained AMR parser. How-
ever, the number of entries which produced erroneous
graphs is negligible, with 1470 for the training set and
1 for the test set — erroneous graphs can have syn-
tactic problems, inconsistent/missing roles, undefined
nodes, dangling edges, etc.

QQP. The original Quora Question Pairs (QQP)*
dataset is built for paraphrase identification with
about 400K sentence pairs. The dataset includes
about 150,000 positive pairs (pairs of paraphrases)
and 250,000 negative pairs (pairs that are not para-
phrases). We keep the positive pairs with a maximum
token length of 30, leaving us with ~140,000 pairs,
from which 3,000 samples are used for evaluation and
3,000 more for testing. This is the subset used by
Kumar et al. (2020). Throughout this document, we
call this subset QQP. The number of erroneous AMR
graphs for this dataset is 12 for the training set and 1
for the validation set.

4.2 Metrics

To probe the semantic retention of the generations, we
measure semantic similarity using SBERT (Reimers
and Gurevych, 2019). Bandel et al. (2022) conducted
a human-judged study that found this metric to have
the lowest coupling between semantic similarity and
linguistic diversity>.

Following recent work (Hosking et al., 2022), we
also use the iBLEU score (Sun and Zhou, 2012) to get
a measure of quality as a trade-off between semantic
preservation and lexicon diversity:

iBLEU = o.- BLEU — (1 — ) - self-BLEU,
BLEU = BLEU-4(hypothesis, reference), (1)
self-BLEU = BLEU-4(hypothesis, input)

This metric measures the fidelity of generated out-
puts to reference paraphrases (using BLEU (Papineni
et al., 2002)) as well as the level of diversity intro-
duced (using self-BLEU, that is, BLEU between hy-
pothesis and input sources). We set o to 0.7, follow-
ing the original paper (Sun and Zhou, 2012).

The iBLEU score is computed corpus-wise. For
SBERT, we used one of the official pre-trained mod-
els®. Because SBERT computes scores per pair, the

“https://quoradata.quora.com/
First-Quora-Dataset- Release- Question-Pairs

5The authors compared SBERT, BLEURT (Sellam
et al., 2020), and BERTScore (Zhang et al., 2019).

Shttps://huggingface.co/sentence-transformers/
paraphrase-mpnet-base-v2
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reported results are averaged, and we also report the
standard deviation of the mean.

4.3 Models

For our experiments, unless explicitly mentioned oth-
erwise, we use as PLM encoder-decoder the large-
version’ of the T5 model Raffel et al. (2019).

4.4 Implementation Details

For training, we followed the setup from Bandel et al.
(2022), training all models with a batch size of 32 and
a learning rate of le-4 for 6 epochs and keeping the
model that achieves better BLEU score in the vali-
dation set. The optimizer was AdamW Loshchilov
and Hutter (2019) with no weight decay and a lin-
ear scheduler with 100 steps for warmup. No model
hyperparameter tuning was performed. At inference
time, for all experiments, we use beam search with a
beam size of 4.

5 RESULTS

In this section, we report on the results achieved for
our experiments and discuss their impact.

5.1 Benchmark Results

Using semantic knowledge sources as inductive bi-
ases for paraphrase generation is not a much-explored
work (for details, refer to Section 2). As such, there
are few works with publicly available source code to
compare. We select two works from the literature to
compare, one for the architectural side and another
for the control strategy. For architecture, we compare
with StructAdapt (Ribeiro et al., 2021b), which also
proposes to encode an AMR graph into a PLM us-
ing GNNs, however, for the task of AMR parsing. As
for the control strategy, we compare it with QCPG
(Bandel et al., 2022), which uses semantic, syntac-
tic, and lexical control codes appended as text to the
input sequence. For a fairer comparison, we reimple-
ment these works, training and evaluating the models
with our training and evaluation setup. Following are
some notable differences from the original works:

» For StructAdapt, the main difference is that we
fully fine-tune the model instead of training just
the adapter weights — also note that this architec-
ture was originally proposed for AMR parsing.

7https://huggingface.co/t5-large
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Table 1: Comparing top-1 results for automatic evaluation
on the test sets of ParaNMT and QQP with works in the
literature. The best results are in bold.

QQP ParaNMT
iBLEUT SBERTT \ iBLEUT SBERTT
Sources as generations 93 9441 +£4.11 \ -17.0 91.85£5.14
StructAdapt 8.3 93.07 £5.76 6.1 89.47 £ 6.8
QCPG 6.2 94.37 + 4.62 6.8 90.99 + 6.31
T5-XL 5.6 94.2 + 4.65 35 90.04 £ 6.26
SAPG 8.8 93.49 £5.26 \ 6.4 89.24 + 691

e For QCPG, we train a T5 model (instead of a
BART) using our training settings and discard the
syntactic control code. Because the codes have to
be set manually at inference time, we use for all
datasets the semantic and lexicon diversity codes
of (50,30), as suggested in the original paper.

Since our focus is on the supervised setting, we also
report a baseline using the inputs as generations, serv-
ing as fluency guidance for the model Bandel et al.
(2022); Hosking et al. (2022). Additionally, we com-
pare with a Large Language Model (LLM) version of
the T5 model, T5 XL8. This model is fine-tuned using
LoRA Hu et al. (2021), with a rank of 16, a scaling
factor of 32, dropout of 5% and the target modules
being the query and value projection matrices.

5.1.1 Top-1 Automatic Evaluation

In Table 1, we show the results for the different afore-
mentioned models. One of the main takeaways is that
SAPG shows better performance than StructAdapt ex-
cept for SBERT on ParaNMT, where it got a slight de-
crease. Nevertheless, this shows that our simple ap-
proach for modeling graph connectivity into a PLM
can achieve comparable/better results than a complex
encoder that requires careful mapping between lin-
earized input and graph connectivity — for example,
StructAdapt breaks if the input has nodes without
edge connections as it maps the text encoded features
as graph features. Another important takeaway is that
if conforming to the gold standard is the main focus,
our solution does not perform better than PLM-only
approaches that take straight-up text as input. This is
somewhat expected as our solution does not use plain
text as input. Especially for supervised learning para-
phrase generation, it is easier for models to map text-
to-text, as these are often similar, and PLMs already
have a good understanding of semantics. It is worth
noting that the LLM — T5 XL - did not perform par-
ticularly well for this task, having the produced gen-
erations very similar to the input texts.

8https://huggingface.co/google/t5-v1_1-x1
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Table 2: Ablation study. Top-1 results for automatic evalua-
tion on the test sets of ParaNMT and QQP. With encoder at-
tention denotes architectures with cross-attention layers on
the encoder, and with decoder attention architectures with
cross-attention layers on the decoder. The colored differ-
ences are reported between the variant and SAPG (green
improves on SAPG, red decreases performance when com-
pared to SAPG).

QQP ParaNMT
iBLEUT SBERT? ‘ iBLEUT SBERT?
SAPG (decoder attention + GCN) 8.8 93.49 ‘ 6.4 89.24
wlo graph encoder 9.6 (+0.8) 9342 (-0.07) | 6.6 (+0.2) 89.55(+0.31)
w/ text input 82(-0.6) 94.35(+0.80) | 8.9 (+2.5)  90.9 (+1.66)
GAT-based encoder 8.7(-0.01) 93.29(-020) | 6.5(+0.1) 89.30 (+0.06)
RGCN-based encoder 9.9(+0.9)  93.51(+0.02) | 6.1(-0.3) 88.54 (-0.70)
w/ encoder attention 92(+0.4) 9349 (0.00) | 6.2(-0.2) 89.22(-0.02)
w/ encoder attention + GAT 92 (+0.4)  93.49(0.00) | 5.6(-0.8) 88.97 (-0.27)
w/ encoder attention + RGCN 9.6 (+0.8)  93.53 (+0.04) | 5.8 (-0.6) 88.82(-0.42)

5.2 Ablation Study

To investigate the effectiveness of the different com-
ponents in SAPG, we further conduct experiments
to compare our model with the following variants
(whose results are shown in Table 2, and some de-
picted in Figure 3):

1. w/o graph encoder. This variant consists just of
the PLM to which we input the linearized graph
representation. There are no added parameters in
this solution. This variant outperforms our solu-
tion in regards to top-1 score (in Section 5.3 we
emphasise some of the advantages of our solution
over this variant).

2. w/ text input. This variant gets as textual input the
raw source text — instead of the linearized graph
in SAPG- but maintains the graph encoder. This
variant is the most performant and, as previously
mentioned, performs the best because of the text
input instead of the graph. However, after some
empirical testing, it seems to completely discard
the graph connectivity fed through the graph en-
coder and converge into a standard text-to-text
fine-tuned PLM. We attribute this behavior to the
PLM being fine-tuned with supervised learning,
making it easier to minimize cross entropy using
only texts. Additionally, the results for ParaNMT
suggest the noisiness of the data to be hindering
the AMR graph quality and, thus, such a high dif-
ference in performance when compared to the lin-
earized graph input.

3. w/ different graph encoders. We test changing
GCN for GAT Veli¢kovié et al. (2018) and RGCN
Schlichtkrull et al. (2018). Note that the latter re-
quires a different graph compilation, where rela-
tions are not nodes nor present in the linearized
graph. These variants perform similarly to GCN,
but are more computationally expensive.
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4. w/ encoder attention. This variant has added
cross-attention layers at each encoder layer in-
stead of at each decoder layer. The performance is
similar, suggesting it has a low impact whether we
fuse representations earlier or later in the model.

5.3 Case Study

To test in-depth some properties that we deem of most
interest in our solution, SAPG, we use the first entry
of the QQP test set and assume the findings to hold for
the other texts. The source is “What are the prospect
of mechanical engineers in future?”, and the respec-
tive AMR graph is:
( prospect-02
:ARGO ( person
:ARGO-0of ( engineer-01
:ARG1l ( mechanics )

)
:ARG1 ( amr-unknown )
:time ( future )

)
5.3.1 Behaviour Under Focus Change

Huang et al. (2023) showed that changing the focus
of an AMR can lead PLMs fed with linearized AMR
graphs as input to produce different surface forms.
We perform a similar experiment to assess the sen-
sitivity of SAPG to different linearization strategies.
To test this feature, for the entry we picked, we com-
piled a different AMR graph for each concept in the
source text where that concept is the focus. Note that
this transformation actually might change the connec-
tivity of the graph (e.g., transforming a : ARGO relation
into a ARGO-of in the opposite direction).

Table 3 shows the results of this experiment.
SAPG shows much more diversity when the focus
is changed when compared to a PLM fine-tuned
with linearized AMR graphs as input. We asso-
ciate this behavior to the actual connectivity change

SAPG: Semantically-Aware Paraphrase Generation with AMR Graphs

Table 3: Focus change experiment on case study sentence.
lin. graph stands for PLM fine-tuned with linearized AMR
graphs as input.

Focus Concept ~ What are the prospect of mechanical engineers in future?

amr-unknown  What is the future of mechanical engineering?

prospect-02 ‘What is the future of mechanical engineering?
lin. graph mec.lmnim ‘What is the future of mechanical eng%neer%ng'.’
engineer-01 What is the future of mechanical engineering?
person ‘What is the future of mechanical engineering?
Suture ‘What is the future of mechanical engineering?

amr-unknown — What are the prospects for mechanical engineering?
prospect-02 ‘What is the scope of mechanical engineering in the future?

SAPG mechanics ‘What are the prospects for mechanical engineering in the future?

engineer-01 What are the prospects for mechanical engineering?
person ‘What are the prospects for mechanical engineering?
Suture ‘What is the future of mechanical engineering?

with the aforementioned transformation like : ARGO to
ARGO-of when mechanics is the focus or :time to
time-of when future is the focus. Our main take-
away is that SAPG is aware of the graph connectivity,
so the added graph encoder is useful — it could other-
wise be said that while training, the model converged
to a solution like the PLM with linearized graph in-
puts, where the graph encoder representations have
minimal contribution towards the final generations.

5.3.2 Using Semantics to Control the Surface
Form

Virtually all approaches in the literature (refer to Sec-
tion 2) that try to promote different surface forms in
the generated paraphrases induce a bias in the form
of syntactic structures. Here, we want to test how
our solution responds to concept changes and how
this affects the generated output. We perform (1) a
branch addition, (2) a branch editing and (3) a branch
removal.

For branch addition, we expanded the concept me-
chanics with the new modifier: vehicle. This entails
adding the branch :mod (v / vehicle) tothe AMR
graph. SAPG generated “What are the prospects for
a mechanical engineer in the field of vehicle engi-
neering?” while the linearized graph model generated
“What is the scope of mechanical engineering in ve-
hicle engineering?”.

For branch editing, we changed the temporal an-
chor from future to yesterday and the concept me-
chanics to eletronics. SAPG generated “What is the
prospectus of electronic engineering on wednesday?”
and the linearized graph model generated “What is the
prospectus for an electronic engineer?”.

For branch removal, we removed the branch that
specifies the person’s role (concepts engineer-01 and
mechanics). SAPG generated “What is the prospect of
people in the future?” and the linearized graph model
generated “What is the prospect for the future?”.

SAPG generated examples more consistent to the
contents of the AMR graph and better semantically
preserving than the linearized graph model for the
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Figure 4: SBERT scores per source length bin on QQP test
set.

three transformations. As far as we know, SAPG is the
first solution for paraphrase generation that allows for
controlling the output surface form rooted in semantic
knowledge.

5.4 Performance Based on Sentence
Length

We try to understand how is the performance of SAPG
bound to the texts length and AMR graphs complex-
ity. To do this, we split the source texts in bins with
steps of 5.

Figure 4 shows the mean SBERT scores on the
QQP test set for each bin. Although we have shown
that the model with just the linearized graph input out-
performs SAPG (refer to Section 5.2), the plot seems
to show that this might be because of the quality of
the AMR. As the complexity of the AMR increases,
so does the potential for noisy inputs, which shows in
the degradation of the performance for source texts of
higher length. Actually, for very small to small-sized
texts (between O and 15 tokens), SAPG outperforms
the linearized graph version on semantic preservation.

5.5 Computational Considerations

As SAPG builds on top of a PLM, it is worth consider-
ing the added computational expense of a solution like
this. SAPG only adds 13M parameters to the TS5 large
model, adding less than 2% of its total number of pa-
rameters (from 738M to 751M). In the datasets we
experimented with, it converged fast, requiring only
one or two epochs to train (under the stopping criteria
we specified in Section 4.4). SAPG’s pipeline starts
by extracting AMR graphs. This extraction takes 424
milliseconds per entry on an NVIDIA Quadro RTX
8000 (averaged over 100 iterations). The batch build-
ing with graphs takes 17 ms, while a text-only batch
build takes <1ms. SAPG takes roughly the same time
to infer as a plain PLM, averaging 554ms on the pre-
viously mentioned GPU. In conclusion, the computa-
tional overhead of our solution is somewhat negligible
when compared to the standard PLM backbone.
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6 CONCLUSION

In this paper, we presented SAPG, a novel
semantically-aware paraphrase generation model that
explicitly models the graph structure of AMR graphs
into PLMs. Results on two popular paraphrase gener-
ation datasets showed that SAPG is competitive when
compared to other baselines and state-of-the-art solu-
tions. Most notably, SAPG allows for changing the
surface form of generated paraphrases by transform-
ing the input AMR graphs, allowing for edits rooted
in semantics, contrary to most current approaches,
which rely on syntactic structures. SAPG also shows
better adherence to the meaning encapsulated in the
AMR graphs, which is arguably not so good for a
model relying solely on the linearized graph as input.

Limitations. Throughout this document, we have
already acknowledged some of the limitations of
SAPG. The main limitation of this work is that it re-
lies on the proper extraction of AMR graphs, which
can affect the overall performance if the AMR parsers
fail to produce accurate or complete representations.
Inaccurate or incomplete AMR graphs may lead to
paraphrases that do not fully preserve the original
meaning or exhibit semantic inconsistencies. More-
over, the computational cost associated with graph-
based methods can be higher compared to traditional
sequence-based approaches. Finally, our approach,
due to its reliance on the AMR parser, may not be
easily employed for specialized domains or languages
other than English, for which the appropriate AMR
parsers may not be available.

Future Work. The limitations we mentioned above
mainly concern the source of additional semantic
knowledge. Trying to overcome these limitations,
we see a future direction of this work as switching
the semantic knowledge structure, in this case, the
AMR graphs, to a more efficient one. For exam-
ple, the pseudo-semantic graphs proposed by Sousa
and Lopes Cardoso (2024) are built from depen-
dency parsing (DP) trees, which parsers are gener-
ally more accurate and efficient when compared with
AMR parsers due to DP trees being more simple in
structure. Additionally, DP parsers are more readily
available in a variety of languages, contrary to AMR,
which is almost English-exclusive.
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