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Abstract: Behavior-driven development (BDD) testing significantly improves communication and collaboration between
developers, testers and business stakeholders, and ensures that software functionality meets business require-
ments. However, the benefits of BDD are often overshadowed by the complexity of writing test cases, making
it difficult for non-technical stakeholders. To address this challenge, we propose BDDTestAIGen, a framework
that uses Large Language Models (LLMs), Natural Language Processing (NLP) techniques, human-in-the-
loop and Agentic AI methods to automate BDD test creation. This approach aims to reduce manual effort and
effectively involve all project stakeholders. By fine-tuning an open-source LLM, we improve domain-specific
customization, data privacy and cost efficiency. Our research shows that small models provide a balance be-
tween computational efficiency and ease of use. Contributions include the innovative integration of NLP and
LLMs into BDD test automation, an adaptable open-source framework, evaluation against industry-relevant
scenarios, and a discussion of the limitations, challenges and future directions in this area.

1 INTRODUCTION

Motivation. Behavior Driven Development (BDD)
testing is an important practice because it promotes
clear communication and collaboration between de-
velopers, testers and business stakeholders and en-
sures that software functionality closely aligns with
business requirements and user needs. With this
method, human-readable test case descriptions can be
written and linked to existing code source databases.

In our research, we found that while BDD aims to
use natural language, the scenarios can still be com-
plex and difficult for non-technical stakeholders to un-
derstand. Non-technical stakeholders may need to be
trained to write and interpret BDD tests effectively,
which can be time and resource consuming. (Smart
and Molak, 2023). This also applies to programmers
who may struggle to combine the possibilities of what
is testable in a large codebase with appropriate inter-
action with the test framework (e.g. steps vs. function
calls in code in Gherkin syntax). With this in mind,
we worked with the local game industry of Amber1

1https://amberstudio.com

and Gameloft2 to understand the issues involved in
the adoption of BDD testing procedures by all stake-
holders involved in project development. This is par-
ticularly motivated by the fact that in the games in-
dustry, the typical ratio of non-programmers (quality
assurance - QA, artists, designers, audio specialists)
to programmers is about 4:1 (Shrestha et al., 2025).
Goals and Innovations. Our vision is that Large
Language Models (LLMs) can significantly improve
BDD testing practice by automating their creation.
This approach could reduce the time and effort re-
quired for manual test creation and improve scalabil-
ity by making it easier to involve all stakeholders of a
project in the process.

With this in mind, we propose BDDTestAIGen, a
framework that uses LLMs, basic natural language
processing (NLP) techniques, and human-in-the-loop
to establish the link between user specification, steps,
and source code implementation in a software prod-
uct. According to our research, this is the first work
that combines the above techniques to support BDD
test generation. The methods used are novel as we
attempt to combine the power of LLMs in reason-

2https://gameloft.com
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ing and generation with agents, internal and exter-
nal tools (Yao et al., 2022), and source code reflec-
tion. First, we justify our contribution to fine-tuning
an open-source LLM within the core of the frame-
work and its advantages compared to relying solely
on external models such as GPT-4 (OpenAI et al.,
2024). Fine-tuning an internal LLM allows organiza-
tions to adapt the models to their needs and improve
consistency with domain-specific knowledge and ter-
minology (Lv et al., 2024). This approach improves
data protection, reduces long-term costs, and provides
more control and flexibility when updating and de-
ploying models. The methods also consider the prac-
ticality of using the tool in production. The goal is
therefore to develop a small open-source model that
can run on both the CPUs and GPUs of end users.
In this sense, during our experiments, we found that
a class 7B/8B model (eight billion parameters) such
as Llama3.1 (Grattafiori et al., 2024) can provide the
trade-off between computational efficiency and ease
of use.
Working Mode. The interaction between users and
the framework takes place via a conversational assis-
tant that works in the following way. The complete
test creation is coordinated step by step, with the hu-
man giving instructions in natural language. The as-
sistant then helps with the correct syntax and consid-
erations as to which available implementation in the
source code of the internal project the natural lan-
guage instruction can refer to, using LLM.

The tool avoids the problems observed in the
previous work (Karpurapu et al., 2024), where the
most common syntax errors concerned the absence
of certain keywords, the wrong order of parameters,
names or even a wrong format. The proposed LLM
can draw conclusions based on the features pro-
cessed with some core NLP techniques and fix these
problems in almost all aspects. In our context, the
problem of missing links (i.e. incorrectly linked step
implementation) is solved using human-in-the-loop,
as the assistant asks for help by informing the user
that it could not find a link to the implementation. In
addition, the user can edit the generated response if
the LLM suggestions are incorrect.

In the following we summarize the contribution of our
work:

• According to our research, this is the first study to
investigate the use of LLMs in combination with
NLP, human-in-the-loop, and Agentic AI tech-
niques to automate BDD test creation in an indus-
trial setting, reducing manual effort and engaging
all project stakeholders more effectively. The con-
cept of Agentic AI (Kapoor et al., 2024) is used to

allow the LLM reason and combine tools (func-
tion) calling iteratively to solve the requests. By
using the human-in-the-loop concept, users have
full control over the generation, with the AI assis-
tant acting as a helper in this process.

• The proposed methods and evaluation examples
were developed following discussions with the in-
dustry to understand the gaps in improving prod-
uct testing. In our case, we used two public games
in the market. According to our observations, the
BDD tests can be written with AI autocorrection,
similar to how LLMs help in software develop-
ment through code autocompletion.

• The proposed framework called BDDTestAIGen
is available as open source at https://github.com/
unibuc-cs/BDDTestingWithLLMs.git. It has a
plugin architecture with scripts to adapt to new
use cases, and domains or to change components
(e.g. the LLM model) as required. A Docker im-
age is also provided for faster evaluation.

• We consider the computational effort that is jus-
tified to use the methods on developer machines.
From this perspective, we evaluate and conclude
that small models (such as Llama3.1 8B), fine-
tuned and combined with various NLP feature
processing and pruning techniques, can provide
the right balance between cost and performance.

The rest of the article is organized as follows. The
next section presents related work in the field and our
connection or innovations to it. A contextual intro-
duction to BDD and the connection to our goals and
methods can be found in Section 3. The architec-
ture and details of our implementation can be found
in Section 4. The evaluation in an industrial prototype
environment is shown in 5. The final section discusses
the conclusions.

2 RELATED WORK

Before the LLM trend, a combination of AI and spe-
cific NLP techniques was used to improve BDD test
generation. The review paper in (Garousi et al., 2020)
discusses how common NLP methods, code infor-
mation extraction, and probabilistic matching were
used to automatically generate executable software
tests from structured English scenario descriptions. A
concrete application of these methods is the work in
(Storer and Bob, 2019). The methods were very in-
spiring, as their use together with LLMs can, in our
experience, increase computational performance.

A parallel but related and insightful work is
(Ouédraogo et al., 2024), in which the authors in-
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vestigate the effectiveness of Large Language Models
(LLMs) in the creation of unit tests. The study evalu-
ates four different LLMs and five prompt engineering
methods, with a total of 216,300 tests performed for
690 Java classes. The results show the promise of
LLMs in automating test creation, but also highlight
the need for improvements in test quality, especially
in minimizing common test problems. We address
these recommendations through human-in-the-loop.

In the area of test case generation, the authors in
(Li and Yuan, 2024) explore the idea of using Large
Language Models (LLMs) for general white-box test
generation and point out their challenges in complex
tasks. To address these issues, the authors propose
a multi-agent system called TestChain that improves
the accuracy of test cases through a ReAct (Yao et al.,
2022) format that allows LLMs to interact with a
Python interpreter. We adopt their technique of us-
ing ReAcT and the live Python interpreter and test
execution, but improve their methods by fine-tuning
a model specifically for BDD cases and incorporating
expert knowledge (humans) into the test generation
loop.

The study in (Karpurapu et al., 2024) investigates
the use of large language models (LLMs) to auto-
mate the generation of acceptance tests in BDD. Us-
ing null and few prompts, the study evaluates LLMs
such as GPT-3.5, GPT-4, Llama-2-13B, and PaLM-
2 and finds that GPT-4 performs excellently in gen-
erating error-free BDD acceptance tests. The study
highlights the effectiveness of few-shot prompts in
improving accuracy through context-internal learning
and provides a comparative analysis of LLMs, high-
lighting their potential to improve collaborative BDD
practices and paving the way for future research in
automated BDD acceptance test generation. The mo-
tivation for our work stems from and continues this
research by fine-tuning an open-source model, com-
bining it with previous techniques from the literature,
and finally giving the human stakeholder full control
over the generation process.

3 BDD METHODOLOGY AND ITS
APPLICATION

Behavior-driven development (BDD) (Irshad et al.,
2021) is a methodology in software development that
aims to foster collaboration between different stake-
holders, including developers, QA teams, and busi-
ness or non-technical participants. It is often used as
part of agile development methods. BDD also proves
to be effective in testing, as shown by various studies
(Silva and Fitzgerald, 2021) and the numerous open-

source or commercial tools available. In this project,
we have used the Behave library3.

The natural language used to describe these sce-
narios is known as Gherkin (dos Santos and Vilain,
2018). An example of a test written in this language
and methodology can be found in Listing 1. Note that
tests can be written both before the implementation
of the functions and after the implementation of the
functions or part of them to evaluate the interaction of
the components according to some requirements.

The use of behavior-driven development (BDD)
and natural language for writing tests in the game de-
velopment industry (where our evaluation took place)
is driven by two key factors:
1. A significant proportion of game development

staff (e.g. QA, designers, producers, etc.) lack
programming experience. Therefore, the use of a
natural language with a comprehensive library of
possible test descriptions is advantageous.

2. Tests must be reusable. The guide library with
the components of the test description language
acts as a bridge between the development team
that provides the required test functions and the
members who implement them.
The example in Listing 1 shows only some fea-

tures of the tests defined in BDD and Gherkin. The
tag keyword, such as @Physics, specifies a category
for the test. It is important to group the tests into cat-
egories for two reasons: a) to have a general filter for
the AI agents and b) for the sampling methods that
decide in which direction more or less computational
resources should be spent on the tests. The general
pattern of a test specification is to define three main
steps:
1. Set the context of the application by using the

Given step. In our example, the state of the ap-
plication to be tested must have a started game in-
stance for the test to be executed. More complex
examples that use a similar context can be speci-
fied with the Background or Outline keywords to
avoid repeating the same contextual setup.

2. Set when the test should start with When step.
This is the trigger for starting the test. In this ex-
ample, we start the test when certain conditions
occur, as shown in the table in Listing 1. A test
can be valid multiple times during runtime.

3. Expected test outcome. Specifies the correct ex-
pected results of the test with the keyword T hen.

Each of the three main steps can contain complex con-
ditions, which are defined in the respective test de-
scription with logical keywords such as Or, And, or

3https://github.com/behave/behave
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Feature: @Physics Simulate a simple car in a racing game. You should consider
engine power , aerodynamics , rolling resistance , grip and braking force. For
simplicity , the engine will provide constant power for the game

Scenario Outline: The car should accelerate to the target speed within some
expected time range.

Given: We start a game instance on default test map AND
the car has <power > kw, weights <weight > kg, has a drag coefficient of <drag

>
When: I accelerate to reach 100 km/h
Then: the time should be within a range of 0.5s around <time >s

Examples:
| power | weight | drag | time | name
| 90 | 1251 | 0.38 | 6.1 | Buzz
| 310 | 2112 | 0.24 | 3.9 | Olaf

Listing 1: An example of a BDD test written using Gherkin syntax. The specification is given in natural language, but each
step definition is closely linked to the implementation (Figure 1). The test first creates a context with a new game on a test
map and then deploys a car with given parameters on a straight road. The car is tested against the time it takes to accelerate
to 100 km/h. This requires complex physics integration mechanisms in the backend that represent the test targets. To reuse
the same test across multiple instances, tables are used in the test methodology, e.g. in the case shown there are two test cases
with the same template. The role of the AI agent and the LLM is to break the tight coupling of the step definitions to the
source code base and allow for a natural language instruction with possible syntax or grammar errors, different parameter
sequences or naming, as shown in Figure 3.

Figure 1: A snapshot from one of the steps implementa-
tion source code in the project where the testing case from
Listing 1 is supposed to run, showing the coupling be-
tween the step definitions and implementation. The step
implementation file in the example connects further to ex-
posed functionality implemented by development side (e.g.,
ObjLib, Car, Map and their related functionalities. Many
well known programming languages can be used to expose
already written functionalities to Python through interoper-
ability libraries.

But. The implementation library for the leaf calls of
the steps is created by the developers in a different
source code file to hide implementation details that
other parties are not interested in. In the example in
Listing 1, a data table is used to reuse the same test
for a parameterized set of contexts, triggers and ex-
pected results. These parameters become input argu-
ments for the source code of the test implementation.

More examples can be found in our repository.

4 METHODS

Overview. The interaction between user and assistant
is handled via a user interface (UI) based on Stream-
lit4, which integrates a routing agent (Smith et al.,
2023), an LLM and a human-in-the-loop mechanism,
Figure 2 provides a detailed technical overview. This
integration aims to improve the adaptability of the
system and the efficiency of decision making. The
reasoning process follows the work in (Yao et al.,
2022), where a ReAcT-type agent and NLP tech-
niques are used to consider the current context (test
state and user request) and then select an action that
can be executed.

4.1 Functionality

The method we propose works in the following way.
The assistant performs the creation of the test step by
step, with the user in full control: rewinding, editing
steps, suggesting a new input for function call param-
eters, changing some commands, etc. A concrete ex-
ample can be found in Figure 3, where the next logical
step to be generated would be a Given type. The user,
who does not know the source code implementation
or the available functions of the project, wants to de-
scribe his request in natural language. The assistant

4https://streamlit.io/
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Figure 2: The overview of the agent architecture that re-
lays messages between reasoning with the fine-tuned LLM
model, acting and processing user interventions. The blue
colored circles represent messages displayed by the agent in
the UI application. The hexagon represents the user inter-
face with which the user can react and interact. The infer-
ential NLP and LLM-based model performs the decision-
making. Depending on the result, the processed information
and decisions are forwarded to the subgraphs, which may
contain one or more tool calls (functions) implemented in
the framework. For example, if the model decides that the
user wants to edit a certain step, it goes through the process
by first asking which step should be edited, then the content
that should be changed in the step description, and so on.
At each point, the model can ask for further explanation or
cancel the previous request if it is not understandable.

will then try to process the request, splitting it into
logical parts as an abstract syntax tree connected to
the source code in the form of function calls and their
corresponding parameters.

More recent studies, such as (Karpurapu et al.,
2024), have shown that LLMs can generate complete
test scenarios with a good acceptance rate if only the
user story is used. Intuitively, this is attributed to the
fact that LLMs are generally fine-tuned using an im-
portant set of data that includes the source code and
the tests. However, our experiments have shown that
while LLMs can generate acceptable tests, internal
knowledge about the project under which the tests

are generated can positively influence performance
(Section 5). To incorporate this knowledge, we use
Retrieval-Augmented Generation (RAG) techniques
to control the generation. In this process, the source
code is first analyzed to extract the existing tests using
a combination of hand-written scripts and reflection
support. For a project P, one of the tools within the
framework can create the structure shown in Equation
1:

Impi := (S,CG,CW,CT )i, Impi ∈ P (1)

Each of the three lists of steps contains details
about the functions called, their positions in the
source code implementation and parameters (e.g.,
Figure 3). As motivated by the study in (Storer and
Bob, 2019), the semantic extraction of the meaning
of each step is done sequentially using two NLP tech-
niques (Mitkov, 2022):

1. Part of Speech Tagging (POS) - which assigns a
part of speech to each word in a text

2. Semantic Role Labeling (SLR) - which assigns se-
mantic roles in the form of predicate arguments
(e.g., who did what, where and how?).

For each step Si ∈ CG|CW |CT , a feature vec-
tor is created from this information using the library
spaCy5. We refer to this function as F(Si). Fi-
nally, the output is converted into an embedding space
(floating numbers) by a sentence conversion model
(Reimers and Gurevych, 2019) model, Fe(Si).

To efficiently store data, support indexing, and
manage continuous updates, a vectorized database us-
ing the Faiss (Douze et al., 2024) library is used. The
similarity of the two steps is determined by a cus-
tomized cosine similarity function. For a natural lan-
guage query Ur (e.g. the user’s step Given in Figure
3) to be matched with the closest step implemented in
the project, the same function Fe(Ur) is applied and
then evaluated based on the entries in the database
using cosine similarity. The variable S represents a
string for the scenario description, CG is a list of
”Given” steps, CW is a list of ”When” steps and CT
is a list of ”Then” steps.

4.2 The Reasoning Model

When modifying or adding a BDD test step T S ∈
{Given,When,T hen}, the process takes as input the
text for it in natural language, as if for a person who
does not know the implementation library or needs to
write the parameters in a specific order, and without
any need for grammatical correctness. For example,
consider the sentence shown in Figure 3:

5https://spacy.io/
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      Project P

.....

RAG 

Vector
database User

User story: ...

Given: A drag of
123, amass of 12345
kg, and an engine
power of 124kw the
Yoda's vehicle has!

BDDTestAIGen

1. Scenario: .....

2. Given: .....
2

1

Please give me
your user story.. 

Now let's setup
the scenario with a
Given step

When, then, further
edits, run test, save..

@given("the car has (?P<engine_power>\d+) kw, weighs (?
P<weight>\d+) kg, has a drag coefficient of (P<drag>[\.\d]+)")

+ query

Closest association

One of the steps from
an exiting
implementation file 

Figure 3: The left-hand side contains the backend services of the framework for processing the functions of the implemen-
tations that are made available to the testing side in a project P in the step implementation files. The source code metadata
is stored, indexed and queried in response to user requests. The center component represents the Assistant component of the
framework, which guides the user in completing a full BDD test. On the right-hand side, after the user has provided a user
story and the assistant has suggested a scenario, the next logical part is to set up the test with a Given step. The user requests
this in natural language, with different word order, synonyms and other propositional changes. The request is transformed
into the embedding space, queried and the closest pairs of steps in the source code are displayed. The user can confirm, edit
or add missing parameters if the assistant cannot assign all functions and parameters correctly.

U Inp
T S =“A drag of 123, amass of 12345 kg, and an

engine power of 124kw the Yoda’s vehicle has!”.
The purpose of this process is to map U Inp

T S to the
exposed functionalities of the project, both in terms
of the functions called and the correct parameters.
The proposed AI agent, based on LLM and NLP
techniques, consists of three main steps:

Step A: Create the feature vector using the F func-
tion described above. After using the POS and SRL
techniques for feature processing, the output of the
user input, U Inp

T S , has the representation in Listing 2:

F(U Inp
T S )={[

FullPhrase0: original raw user input.
Predicate0: "has",
Arguments0: "the Yoda’s vehicle"
Attributes0: "A drag of 123", "a mass

of 12345 kg", "an engine power of
124kw"

]}

Listing 2: Extraction at feature level using Semantic Role
Labeling (SRL) of the example shown in Figure 3.

Step B: Find the closest step that is implemented
in the library and matches the text description. Denote
the output of the operation with one or more function
calls UFunc

T S = { f1, f2, ...} based on a complex expres-
sion, where each of the functions is a concrete func-
tionality exposed by the implementation. This step
is formally described in the Equation 2. The prompt
used by the LLM is shown in Listing 3.

FindStep(U Inp
T S ) = Expr(UF

T S f unc) (2)
Step C: Match the parameters from the natu-

ral language description, U Inp
T S , as closely as possi-

ble to the parameters required by the functions (e.g.
drag=123, mass=12345, engine=124). The metadata
of the exposed functions, i.e. the knowledge of the pa-
rameter names and their types, f params

i , and a possible
comment of the developer f comm

i . Formally, this step
is shown in Equation 3. Listing 4 shows the prompt
used internally.

MatchParams(U Inp
T S ,F = {. . . , f params

i , f comm
i , . . .})

= { f
p j∈params
i = value}i, j (3)

Human-in-the-loop. Note that there is also the
possibility that the AI agent cannot find a correspond-
ing implemented step, is uncertain or does not find all
suitable parameters. In this case, the error is reported
to the user and they are asked for help to edit the gen-
erated step. For example, if the assistant is not sure
which step is the correct one or could not find one
at all, a graphical user interface shows the user some
available options that correspond to the semantically
closest step retrieved from the backend LLM. If the
parameters are difficult to match, a partial match is
displayed along with the missing matches. The user
can see the parameters and comments of the corre-
sponding functions in the graphical user interface and
then edit the agent’s response.

Even if the AI agent is not able to fully map the
step or parameters, the display of the obvious op-
tions and the fact that both programmers and non-
programmers do not have to search large repositories
for exposed functionalities could be an advantage for
productivity and encourage software testing in gen-
eral.

Fine-tuning. The method used is completion-
only training (Parthasarathy et al., 2024) to save the
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From the available Gherkin steps listed below , select the one that comes closest
to the user input step and return it. Do not write any code , just specify the
step found.

Use the Json syntax for the response. Use the following format if a step can be
found:

{{
"found": true ,
"step_found": the step you found

}}
If no available option is OK, then use:
{{

"found": false ,
}}
Do not provide any other information or examples.

### User input features:
{input step to match features}
### Available steps features:
{available steps features}

Listing 3: The template prompt is used to match the input given by the user with the available implementations. There are
two variables in the template that are filled at runtime. First, since the type of Gherkin step being added or edited is known,
the variable available steps f eatures contains only the steps that are available for that particular type. The processed user
input (e.g. the input of 2) is passed via the variable input step to match f eatures. The few examples have been omitted for
reasons of space (available in the repository).

number of tokens injected into the LLM, since the
filled prompts can become large, especially when
considering small models.

The process begins by assembling pairs of ground
truth data consisting of Gherkin step types and all cor-
responding implemented steps from each project P.
For each step type, we ask GPT4 to generate N = 3
variation descriptions (keeping the same semantics
and number of parameters) that resemble a user’s in-
put in natural language. These variations are tested
and sampled similarly to Listing 5. The LLM model
is then fine-tuned to understand the correspondences
between the original and modified versions of the step
descriptions.

5 EVALUATION

5.1 Datasets

The dataset used for fine-tuning and evaluation con-
sists of datasets written by experts (programmers) and
datasets generated synthetically with GPT4. In the
first category, there are 13 open-source GitHub: a) 8
projects already used by (Liu et al., 2024), b) 3 well-
documented projects that we found and referenced in
the repository, c) 2 private projects with tests for Dis-
ney Speedstorm6 and Asphalt7 (these have tests writ-

6https://disneyspeedstorm.com/
7https://www.gameloft.com/game/asphalt-8

ten by experts and were analyzed using the computer
vision methods defined in (Paduraru et al., 2021)).
The numbers of the curated datasets can be found in
Table 1.

Table 1: The number of curated tests in our dataset and the
number of available steps implemented by each kind.

Feature Value
Number of available defined
tests

259

Number of step imple-
mented by type / total

2,682

Given 1911
When 357
Then 414

5.2 Quantitative Evaluation

To evaluate the methods from this point of view, we
use a synthetic generation of correct tests with GPT4,
as shown in Listing 5. We measure the integration
of the processes of the proposed methods (i.e., fea-
ture extraction using NLP techniques, pruning mech-
anisms, and small-size fine-tuned LLM) by how well
they are able to translate the step descriptions ob-
tained by varying the original descriptions into the
same source code implementations.

The results are shown in Table 2. First of all, it
should be noted that GPT4, which is a much larger
model, was able to implement most of the variations
correctly. However, the fine-tuned model with a class
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Given the Gherkin step in the target , your job is to extract the parameters and
assign values to them using the user input.

Do not write any code , but simply specify the values in Json format as in the
following example

// (Note: The following two examples are simplified for explanatory purposes)
Example:
### Input: The plane has a travel speed of 123 km/h and a length of 500 m
### Target: @given(A plane that has a (?P<speed >\d+) km/h, length (?P<size >\d+) m
Response:
{{
"speed" : "123 km/h",
"size" : "500 m"

}}

Another example with template variables (e.g., <variable >) that you need to copy
in the result as below if used:

### Input: The plane has a travel speed of <speed > km/h and a length of <size > m
### Target: @given(A plane that has a (?P<speed >\d+) km/h, length (?P<size >\d+) m
Response:
{{
"speed" : <speed >,
"size" : <size >,

}}

Your task:
### Input: {user input step}
### Target: {target step}

Response: your response
"""

Listing 4: Prompt used to fill in the parameters for the functions called by the step found to match. The variable
user input step is filled with the features of the user input, while target step contains the features of the step found in
the previous step, Listing 3. The second example shows the use of parameters with regular patterns, which, as we found
out in experiments, are inherently known by the standard LLMs pretraining. Using the example of (?P < speed > d+) and
following the Python language representation, speed stands for the name of the group to which the match applies, while d+
matches a decimal number with one or more digits.

size of 8B, which can be deployed on users’ ma-
chines, performed well, matching perfectly in more
than half of the tests. The remaining errors, broken
down by cause, show that the model knows in prin-
ciple how to combine the step descriptions varied by
GPT4 with the original intent (46 failed cases out of
499 tests). These errors are displayed in the GUI,
for example, and LLM suggests the closest versions
where it is unsure.

The remaining errors were parameters matching,
split by either they were wrongly assigned without
reporting, or reported as unsure. One important ob-
servation at this point is that these errors were mostly
caused by the variations of unit measures. A concrete
example is the conversion between kW to H p when
used for the engine power. The implementation func-
tions were expecting the value in kW , but GPT4 cre-
ated variations of values with H p, which it was able
to understand from the parameter names or/and com-
ments. The small-sized model was not able to per-
form the conversion (1H p ∼ 0.7457kW ). Fine-tuning

explicitly for the conversion of types and units could
be addressed in future work to improve the results.
The errors observed suggest that the model can be
useful, but user confirmation is still necessary, Fig-
ure 2 since defects produced by different orders of
parameter values without compilation errors could be
a difficult problem to debug for example.

5.3 Qualitative Evaluation

From this perspective, we tried to assess the extent
to which the AI assistant helps both technical and
non-technical people to create BDD tests. The eval-
uation took place among the developers of the two
announced games, more specifically 7 designers and
artists (non-technical) and 4 software engineers, who
were asked to write 10 tests each in areas where they
should know the high-level design of the product.

In the first group, users were able to write tests,
taking an average of 4.7 iterations for each step (by
an iteration in this case, we mean writing an input, al-
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Table 2: Summary of the evaluation performed on the synthetical generated dataset using GPT4.

Description Count
Num GPT4 synthetically generated tests 1983 out of 2590 expected
Num matched by BDDTestGenAI 1484
Failing cases 499
Reason

Not able to link a step description 46
Not able to match parameters 423

Proposed incorrect order without reporting 87
Reported that it cannot find at least one 336

lowing the AI to generate a full step with implemen-
tation grounding or report issues, and so on until the
user’s final approval). Most of the failures and retries
were due to the variable names not being named cor-
rectly or not being annotated. In principle, this group
felt that the assistant helped them a lot, as they did
not know the source code and did not know what was
behind it, but they knew logically what they wanted
to achieve in natural language. In this sense, the as-
sistant guided them in their efforts by linking or sug-
gesting existing function prototypes and parameters
that they had no idea about.

Similar feedback was reported for the second
group (the technically proficient) with an average of
2.3 iterations for each step. The general conclusion
in this group was that the assistant was more akin
to a contextual code base search, which could poten-
tially increase productivity and the practice of writing
tested software.

Computational effort: During this user-based ex-
periment, we also measured the time it takes the user
to create a step from a natural language description.
We took into account the typical hardware available
to developers in the tested use case, on home com-
puters. The tests were carried out on: a) an NVidia
GPU 4090 RTX, b) an AMD Ryzer 7 7840u CPU. In
the first hardware configuration, the model achieved
108.5 tokens per second, while in the second case it
was around 7.3 tokens per second. The number of to-
kens varied between the stage types, but the average
of tokens used for each input during the experiment
was ∼ 21. This means that the response on a GPU is
almost instantaneous, whereas the user would have to
wait around 3 seconds on the CPU.

5.4 Limitations and Technical
Challenges

One of the biggest challenges in this work was the
question of how to use models with large informa-
tion contexts. To solve this challenge, even though
it is currently only partially solved, we used various
filtering and pruning strategies before invoking the

LLM. For example, each new test was tagged, e.g.
physics and animation. The source code sub-folders
were also tagged (in the two game-related projects) so
that the information sent to the LLM is significantly
filtered before sending the available implementation
steps. By using reflection techniques in programming
languages, the available set of functions, parameters,
and goals was also condensed to present only what is
of interest to the reasoning process of the LLM.

In the course of development, many problems
were also raised on the user side, which have since
been solved. For example, one useful tool not avail-
able in the initial phase was the ability to report that
a certain type of functionality was missing from the
implementation. Thus, the current GUI version con-
tains a path to suggest a new prototype for a step
implementation, using only function names, param-
eters and a general comment. In the test creation pro-
cess, an empty implementation is added using the pro-
posed prototype and is then to be completed during
the project. In this way, the proposed methods ful-
fill the Test-driven development (TDD) (Beck, 2022)
methodology. One important remaining issue is the
conversion of values (as mentioned above in this sec-
tion) from the natural language to the assumed data
types for the parameters of functions, which may need
further fine-tuning. Another problem we have ob-
served is that without a reasonable naming of func-
tions and parameter values, the LLM has almost no
clues to assign them. However, we think that this is a
general problem, not for the analyzed problem, but in
software development.

Some details are not shown in the subgraphs of
Figure 2 for space reasons. It was necessary to add
small low-level tools that the LLM needed to solve the
user requests. For example, a user input needed to be
parsed to find file names (save/execute/load), check
the paths for correctness and then confirm/notify the
user if a problem was found. Without the middle layer
provided by the implemented tools that LLM is aware
of, it was difficult or nearly impossible for the fine-
tuned model to understand some of the user input in
this BDD test area.
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for each test t in Dataset:
Ask GPT 4 to produce 3 variations for each of the three step types
V T = From a total of 27 possible combinations , select a maximum of 10 tests that

are still correctly matched and have the same passed status.
for each sample T in V T :

Simulate a user requesting the same step descriptions as in T
Check whether the steps are correctly linked to the same implementations and
have the same passed status.

Listing 5: The pseudocode used to quantitatively assess the correctness of the methods.

During the experiments, we made an important
observation that helped the LLM guide with the ex-
isting implementation prototypes: The user story de-
scription or any hints that the user might say should
be defined at the beginning of the process. This is il-
lustrated in Listing 1, in the descriptions Feature and
ScenarioOutline.

On a technical level, the framework uses the Hug-
gingface8 version of the Llama3.1 8B model as a ba-
sis for fine-tuning and LangChain Agents9 for agent-
based AI as implementation libraries. For writing
BDD tests, the Gherkin10 language syntax and PyBe-
have11 as a framework were preferred.

6 CONCLUSION

This paper presents a method that combines BDD
testing techniques in software development with the
latest contributions in the field of AI agents and
LLMs. An open-source framework is provided for
further experimentation for both academia and in-
dustry. The experiments conducted so far indicate
that AI-assisted generation of tests with human-in-
the-loop can improve user experience and produc-
tivity and enable the adoption of testing methods
for non-technical stakeholders or simplify the pro-
cess for technical users. Considering the results ob-
tained both synthetically and in experiments with de-
velopers, combined with the computational effort re-
quired and the ability to run on typical user hardware,
we conclude that small, fine-tuned models combined
with different processing and pruning strategies can
be good enough for both productivity and efficiency.

8https://huggingface.co/meta-llama/Llama-3.1-8B
9https://www.langchain.com/agents

10https://cucumber.io/docs/gherkin
11https://pytest-bdd.readthedocs.io
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