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Abstract: In the context of Cyber Physical Energy Systems (CPES), anomaly detection is an important requirement
for dealing with the increasing threats of cyber-attacks. However, privacy or regulatory restrictions might
limit the access of information for performing anomaly detection. This paper discusses different possible
architectures for the development of an anomaly detection observer in CPES, in the context of information
availability. Using an agent-based control use case, these architectures, information availability and their
impact on anomaly detection performance are evaluated. The results shed light on the design of appropriate
architectures for anomaly detection in CPES with the aim of improving the overall robustness of the system.

1 INTRODUCTION

Current energy systems are evolving into Cyber Phys-
ical Energy Systems (CPES), where physical compo-
nents of the power grid are integrated with Informa-
tion and Communication Technology (ICT) systems.
These ICT systems are designed to monitor, control
and optimize the performance (Hasanuzzaman Sha-
won et al., 2019). With the increasing decentraliza-
tion resulting from energy transition, these control
systems must also address decentralized structures.
In this context, Multi-Agent Systems (MAS) are of-
ten applied in CPES (Taleb et al., 2023; Denysiuk
et al., 2020), as these are well suited to implement dis-
tributed system concepts (Ren et al., 2021) and allow
for self-organization, or even self-healing, in safety-
critical applications (Nieße and Tröschel, 2016; De-
hghanpour et al., 2017). However, the strong in-
terdependencies between power and ICT system not
only bring advantages but also lead to new threats
coming from the ICT side, as for example cyber at-
tacks (Yohanandhan et al., 2020; Zhu, 2019). The ne-
cessity to recognize errors and deviations from plan
or operation is therefore becoming more urgent. This
emphasizes the need for anomaly detection, as a pre-
requisite to react to threats and disturbances (Anwar
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and Mahmood, 2014). In order to ensure robustness
against disturbances and attacks in self-organizing
systems, concepts of Organic Computing (OC) can be
applied (Chaaban et al., 2013; Kantert et al., 2017).
Here, an observer/controller architecture is used to
observe and control the system in order to achieve
controlled self-organization, i.e., the self-organization
of the system is given, while it is possible to react in
case of deviations from the desired behavior (Richter
et al., 2006). An observer is proposed, which mea-
sures and quantifies emergent behavior of the sys-
tem (Richter et al., 2006). Thus, the observer can also
perform anomaly detection. However, the observer
performs its task based on the available information
of the system (Richter et al., 2006). Especially in
CPES, some information might not be available to the
observer, as regulatory restrictions or reasons such as
privacy and data protection might limit the access to
information. Depending on the use case, different ob-
server architectures are suitable. However, typically,
just one architecture is implemented in literature: a
centralized or distributed anomaly detection. In par-
ticular, multi-leveled or hierarchical architectures are
only discussed in theory. Tomforde et al. (2011) dis-
cuss different architectures of observers (and con-
trollers) for OC systems, stating that the designer
should choose the architecture based on the system’s
size, complexity and heterogeneity. However, when
applying OC to CPES, the available information also
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needs to be considered when choosing the best suit-
able architecture.

For that reason, this paper discusses architectures
for anomaly detection in CPES, assuming different
levels of information availability. To do so, an imple-
mentation of an agent-based control use case is pre-
sented, considering communication effects on the sys-
tem. The implementation was used to perform exper-
iments with different architectures and thus different
levels of information availability. This allowed the ef-
fects on detection performance to be studied and the
suitability of different architectures to be evaluated.
The contributions of this paper are the following:

• We provide datasets for anomaly detection for an
agent-based control use case in CPES, consider-
ing a cyber attack on the agent system, based on
the analysis presented by Frost and Nieße (2024).
These datasets can serve as a basis for further in-
vestigations into the detection of anomalies and
the influence of cyber attacks on MAS.

• Possible architectures for an observer for CPES
are derived from the literature and discussed.

• Different layers of information that are available
for anomaly detection are addressed.

• In addition, we investigate the impact of the de-
fined architectures and the availability of infor-
mation on the performance of anomaly detection.
The results are also used to evaluate architec-
tures and the suitability of combining these, e.g.,
as multi-leveled architectures. The proposed ar-
chitectures, information layers, and results pro-
vide a basis for a stable and appropriate design
of anomaly detection in CPES.

• A recommendation for the design of an architec-
ture for CPES is made, which can be built upon in
future work for robust detection of anomalies in
CPES, based on given constraints of the respec-
tive use case.

The paper is organized as follows. In section 2, we
present related work regarding anomaly detection ar-
chitectures. Afterward, in section 3, architectures for
CPES are discussed, including the declaration of lev-
els of information available. The details of the imple-
mentation are described in section 4, followed by the
evaluation in section 5. The paper ends with the dis-
cussion in section 6 and the conclusion in section 7.

2 RELATED WORK

In this section, related work regarding architectures
for anomaly detection is discussed. Architectures for

an observer performing anomaly detection can be de-
rived from from OC systems. Richter et al. (2006)
present a general architecture, which can be used in
a centralized, distributed or multi-leveled way. The
different architectures are discussed regarding the af-
fected control parameters and controlled elements.
Tomforde et al. (2011) extend the discussion by pre-
senting the architectures for the observer (and con-
troller): the centralized architecture considers a sin-
gle observer taking into account various components,
a distributed observer is implemented for each com-
ponent and the multi-leveled architecture contains a
highest instance to define goals, while lower layers
convert these into more specific goals. Haehner et al.
(2013) explicitly discuss architectural concepts for
anomaly detection, using OC. The authors discuss
local and cooperative anomaly detection.

For anomaly detection in sensor systems, Erhan
et al. (2021) present the following architectures: cen-
tralized, distributed, collaborative decentralized, or
between fully decentralized and fully centralized, pro-
cessing information immediately.

Tan et al. (2020) discuss typical control struc-
tures for attack detection. The authors distinguish be-
tween a centralized architecture that requires global
information knowledge from all control units, a de-
centralized architecture (no information from other
parts of the system is given), a distributed architec-
ture, which contains knowledge from local measure-
ments and neighbor units (measurements are commu-
nicated) and a hierarchical architecture, in which an
additional secondary detection is centralized as global
information from all essential units is required.

To sum up, previous works consider the architec-
tures for anomaly detection listed in the following.
Some authors also discuss the option for collabora-
tive anomaly detection, which can refer to different
architectures (Erhan et al., 2021).

• Centralized Anomaly Detection. Global infor-
mation knowledge from all control units is con-
sidered (Tan et al., 2020).

• Decentralized Anomaly Detection. This archi-
tecture is implemented separately for each com-
ponent (Tomforde et al., 2011), no information
from other parts of the system is given (Tan et al.,
2020).

• Distributed Anomaly Detection. This archi-
tecture considers knowledge from local measure-
ments and from neighbors (knowledge is commu-
nicated) (Tan et al., 2020).

• Multi-Leveled / Hierarchical Anomaly Detec-
tion. Here, an additional secondary instance is
centralized, considering global information (Tan
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et al., 2020), which defines goals as the highest
instance, while the lower layers convert these into
more specific goals (Tomforde et al., 2011).

However, the aforementioned approaches only
discuss different variations, none of the approaches
implement architectures and investigate their effects.
Anomaly detection methods in CPES are mostly im-
plemented either in a centralized (Turowski et al.,
2022; Fu et al., 2022) or decentralized architec-
ture (Gupta et al., 2021; Ramanan et al., 2022), with-
out discussing other options or comparing architec-
tures. In particular, the option of multi-leveled ar-
chitectures has only been discussed in the presented
literature, but never implemented or evaluated.

In previous work, Frost et al. (2024) compare the
effects of two anomaly detection architectures: cen-
tralized and distributed. The authors discuss the effect
of having insight into the exchanged messages of an
agent-based system. The results show that the chosen
architecture and the available information have a sig-
nificant impact on the performance of anomaly detec-
tion. However, the authors only investigate the effect
of available information partially, only regarding in-
sights into the messages. Additionally, only an exam-
ple of an attack implementation is shown. Overall, the
authors only investigate two architectures. The option
to take into account multi-leveled architectures, con-
sidering available information, is not discussed and is
therefore evaluated in this paper. To do so, the perfor-
mance of multiple architectures is discussed regard-
ing different information available, and combinations
for multi-leveled architectures are derived. The infor-
mation and architectures available for this purpose are
described in the following section.

3 OBSERVER ARCHITECTURES
IN CYBER-PHYSICAL ENERGY
SYSTEMS

In this section, possible architectures for anomaly de-
tection in CPES are discussed. Additionally, different
levels of information availability are presented.

When applying the presented possible architec-
tures for anomaly detection in the literature to CPES,
access to information might be limited. In such de-
centralized systems, due to privacy or data protection,
some information, especially regarding local device-
specific data of a Distributed Energy Resource (DER),
might not be available. The architectures and their
assumptions regarding the information taken into ac-
count can therefore not be applied to the CPES for
all use cases. The assumption on the centralized ar-

chitecture, that global information knowledge from
all units is given, as presented by Tan et al. (2020),
is not always suitable for CPES. This information
might not include specific local information, such as
device-specific data or unit constraints. Instead, it
might be possible that selected information is avail-
able at a central location, while other information
might only be available locally, especially when con-
sidering agent-based systems for distributed control
in CPES. Often, each agent represents a DER or
its flexibility (Ding et al., 2024), for optimization,
agents communicate with each other and exchange in-
formation. However, the available information is not
communicated completely, only selected information,
in order to preserve privacy or communication over-
head (Bremer and Lehnhoff, 2019). This way of op-
timization allows keeping technical details and con-
straints locally (Stark et al., 2024). Because the in-
formation on which the detection is based may be re-
duced, this affects how anomalies are detected.

Thus, in order to perform anomaly detection in
CPES, it is essential to discuss the suitability of cer-
tain architectures depending on the information avail-
able. Regarding the performance of different architec-
tures, several combinations for hierarchical or multi-
leveled architectures can be considered. For these ar-
chitectures, multiple variations are possible, depend-
ing on the number of nodes and information avail-
able. In the literature, multi-leveled approaches add
centralized detection to existing decentralized detec-
tion methods (Tan et al., 2020). When considering
anomaly detection in a distributed system, more vari-
ations can be possible, especially when considering
agent-based control in CPES use cases. For example,
multiple single wind plants in the system might be
controlled by one operator. Therefore, some informa-
tion might be available grouped in one place, e.g., per
unit type. For this reason, we decided to additionally
investigate the architecture of an observer grouped per
unit type. To investigate the influence of different ar-
chitectures, we additionally assume a further grouped
architecture, which considers a number of randomly
chosen units. This results in a total of four different
architectures to be investigated, depicted in Figure 1.

• Centralized anomaly detection (Figure 1a): this
architecture considers data of the whole network.

• Decentralized anomaly detection (Figure 1b):
data of individual units is considered.

• Grouped by unit type (Figure 1c): this architec-
ture considers data of a certain unit type (e.g.,
wind, photovoltaic (PV)).

• Grouped randomly (also Figure 1c): data of a ran-
dom group of units is considered.
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(a) Centralized
anomaly detection

(b) Decentralized
anomaly detection

(c) Grouped anomaly
detection

Figure 1: Architectures for anomaly detection in agent sys-
tems.

Possible multi-leveled or hierarchical architec-
tures can now be built by adding a centralized ob-
server to the decentralized (Figure 2a) or grouped ar-
chitecture (Figure 2a).

(a) Multi-leveled
decentralized

(b) Multi-leveled
grouped

Figure 2: Multi-leveled architectures for anomaly detection
in agent systems.

All architectures can be expanded to include com-
munication between observers. To evaluate different
architectures, their performance must be investigated
given the different information available. To do so,
four levels of information availability are assumed,
depicted in Figure 3 and described in the following.

When considering agent-based control in CPES,
agents communicate with each other to perform the
optimization of a certain task. To do so, messages
are exchanged. However, access to the content of
these messages can not always be assumed. The first
level of information therefore only considers the agent
sending the message and the timestamp, similar to
the investigations in Frost et al. (2024). The second
level additionally considers communication informa-
tion, such as delays of exchanged messages and traf-
fic information. Still, no insight into the message is
given, but information about the arrival and sending

Agent, timestamp, delays,
traffic information, message content,
additional data

Agent, timestamp, delays,
traffic information, message content,
additional data

1
Agent, timestamp, delays,
traffic information, message content,
additional data

2

3

4

Wed Dec 04
2024 15:34:33

Agent, timestamp, delays,
traffic information, message content,
additional data

Figure 3: Levels of information assumed to be available for
the anomaly detection.

of all messages is essential. The third level assumes
that insight into the message is given; the content of
the message is considered. The last level extends the
third level with additional information. This can con-
tain constraints or the current state of the unit, or fore-
cast data regarding weather, power, or load.

In CPES, anomaly detection may require differ-
ent information for different types of attacks. The
first two levels are relevant to detect any kind of at-
tack on the communication behavior, such as Denial-
of-Service (DoS) attacks that cause delays or missing
messages, while this does not apply to attacks that tar-
get the message content.

4 ANOMALIES IN AGENT-BASED
SYSTEMS

In the following, the implementation of the anomaly
detection architectures is presented. To investigate
anomalies in agent-based systems in CPES, we chose
the practical implementation presented in Frost and
Nieße (2024), which is publicly available1. The use
case is self-consumption optimization of a neigh-
borhood grid (energy community), represented by a
MAS, considering redispatch requests from a grid op-
erator. The use case is therefore based on the system
concepts presented by Krueger et al. (2023); Radtke
et al. (2023). Each agent controls a selected DER or
household. Additionally, the implementation contains
a communication simulation, which enables a realis-
tic investigation of the ICT systems effects. The re-
alistic environment allows real-world conditions such
as delayed messages and message failures to be con-
sidered. Anomaly detection can therefore learn such
conditions and be better applied to practical cases.

Selected effects of cyber attacks affecting the
agent system are also considered in the implementa-
tion in Frost and Nieße (2024). For the detection of
anomalies, we refer to the implementation of com-

1https://github.com/Digitalized-Energy-Systems/
communication-incidents-in-cpes
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promised process data, as this incident has particu-
lar relevance for the information layers. It is imple-
mented as the effect of selected cyber attacks, e.g.,
false data injection attacks, which are considered the
most dangerous cyber attacks in smart grids (Amin
et al., 2021), thus representing a particularly threat-
ening incident. Power values in exchanged messages
in the agent system are manipulated to consider com-
promised data, for one generation agent representing
a wind plant, as described in Frost and Nieße (2024).

The datasets consider a day in July 2023 and are
publicly available2. An overview of the datasets is
given in Table 1.

Table 1: Overview of datasets for anomaly detection.

Data Time Messages Anomalies

Normal July 2023 540.000 0%
Compromised July 2023 60.000 1%

To perform anomaly detection, a transformer au-
toencoder was implemented (Vaswani, 2017). Pre-
vious work found that the autoencoder, among oth-
ers, predominantly achieved best results (Frost et al.,
2024) and the transformer autoencoder is considered
as a promising approach due to good performances
in anomaly detection (Xu, 2021). The implementa-
tion of the detector was published, containing details
of the configuration3. For the evaluation of differ-
ent anomaly detection architectures, we refer to those
presented in section 3. The architectures including the
considered data are listed in the following.

• Centralized anomaly detection: data of the whole
network is considered.

• Decentralized anomaly detection: data of only
one component is assumed (here: the manipulated
wind agent is considered).

• Grouped per unit type: data of one unit type is
given (here: wind units are considered).

• Grouped randomly: data of a group of units is
considered. The group was built randomly and
considers wind, PV, battery, and household units.

In the evaluation, the architectures are investigated re-
garding the performance given the information avail-
able, as presented in Figure 3. For the fourth layer,
in which additional information, as unit constraints or
forecast data is added, we consider the constraints of
the unit, i.e., the technical limitations of the power.

2https://zenodo.org/records/14333637
3https://gitlab.com/digitalized-energy-systems/models/

detection-and-prediction-of-communication-incidents-in-
cpes

5 EVALUATION

In this section, the performances of the different
anomaly detection architectures are presented. Al-
though the anomalies are in the performance values
within the messages, not only the information levels
that require access to the messages are analyzed. If
an agent sends manipulated values, other agents re-
act differently, affecting the behavior of others and
the duration of the overall optimization. The com-
promised data therefore also influences other parame-
ters than those only recognizable in the message con-
tent (such as the solution quality). As shown in Frost
and Nieße (2024), there are effects on the optimiza-
tion and transmission duration of the messages. For
this reason, the first two levels of information, as-
suming insight into the messages, are also evaluated
to assess whether the changes in behavior can be de-
tected. For the results, precision, recall, and F1-score
are discussed. For completeness, the specificity of
the anomaly detection performance was also exam-
ined. True negative entries appear easily recognizable
(specificity always above 0.8). However, this can be
explained by the imbalanced dataset, so we focus on
the other metrics for discussion.

Centralized Anomaly Detection. The perfor-
mance of the centralized anomaly detection can be
seen in Table 2 for all information levels. It is visible,
that the centralized architecture does not succeed in
recognizing the anomalies satisfactorily. With no
insight into the messages (levels 1 and 2), the results
are very poor (no metric above 0.7, most below 0.2).
Adding the message content to the detection data
improves the performance, while additionally adding
the constraints does not make much difference (met-
rics between 0.58 and 0.77). Overall, the centralized
architecture does not reliably detect anomalies.

Table 2: Centralized architecture.

Information Level Precision Recall F1-Score

1 (Agent, time) 0.17 0.52 0.26
2 (Delays) 0.10 0.67 0.17
3 (Content) 0.77 0.58 0.66

4 (Constraints) 0.76 0.60 0.68

Decentralized Anomaly Detection The results of
the decentralized anomaly detection are shown in Ta-
ble 3. Here, too, it can be seen that the anomalies
cannot be detected without having the content of the
messages available (only recall above 0.7). Insight
into the messages improves the performance (all met-
rics higher than 0.8). Adding the unit constraints to
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the data again leads to improvements. The decentral-
ized anomaly detection achieves the overall best re-
sults and satisfactory results (all metrics above 0.8).
The high precision is striking; the detected anomalies
appear to be correct. The value for recall is worse;
some anomalies do not appear to have been detected.

Table 3: Decentralized architecture.

Information Level Precision Recall F1-Score

1 (Agent, time) 0.10 0.73 0.12
2 (Delays) 0.15 0.36 0.21
3 (Content) 0.91 0.80 0.85

4 (Constraints) 0.91 0.89 0.90

Anomaly Detection per Unit Type Group. Table 4
shows the results of the anomaly detection performed
on data for one unit type group (wind devices). The
results are, again, very poor without insights into
the messages (only recall above 0.7). However, also
given the content and additional information, the re-
sults are worse than those achieved by the decen-
tralized architecture. It can be concluded that the
joint consideration of units which have similar behav-
ior, since the respective DER have similar conditions,
does not result in any advantages in this case.

Table 4: Grouped unit type.

Information Level Precision Recall F1-Score

1 (Agent, time) 0.13 0.76 0.22
2 (Delays) 0.13 0.76 0.22
3 (Content) 0.92 0.47 0.62

4 (Constraints) 0.92 0.52 0.66

Anomaly Detection for a Random Group of Units.
The results of the anomaly detection performed for
a random group of DER is shown in Table 5. The
results are very similar to those of the grouping by
unit type: insight into messages leads to better re-
sults, however, the architecture performs worse than
the decentralized architecture (F1-score still below
0.7). These results support the thesis that grouping
the systems does not bring any advantages with re-
gard to the detection of anomalies.

Table 5: Grouped randomly.

Information Level Precision Recall F1-Score

1 (Agent, time) 0.23 0.72 0.35
2 (Delays) 0.32 0.70 0.44
3 (Content) 0.86 0.47 0.61

4 (Constraints) 1.0 0.49 0.66

6 DISCUSSION

When comparing the performance, overall, it is no-
ticeable that all architectures achieve very poor results
if no insight into the messages is given. Thus, it can
be assumed that changes in the values (compromised
process data) are not recognizable in the communica-
tion behavior of the agents. These information lev-
els (1 and 2) can still provide added value for attacks
affecting the communication behavior of the agents,
such as DoS attacks. The fact also emphasizes the
relevance of a decentralized architecture in CPES, as
local information cannot be assumed to be guaranteed
for anomaly detection. Overall, the best results are
found by the decentralized anomaly detection. This
type of architecture seems to be the most suitable for
anomalies related to compromised process data. This
can presumably be explained by the fact that the de-
centralized architecture is tailored to the behavior of
a single agent and can therefore presumably learn its
behavior better since only the relevant information re-
quired to detect its compromised data is considered.

The results also show that grouping the agents
(either randomly or by unit type) for anomaly de-
tection does not provide any added value. Commu-
nication between the observers for anomaly detec-
tion randomly or in DER area (neighboring agents)
is therefore not considered particularly promising. In
addition, this exchange would entail a communica-
tion overhead that could have a detrimental effect on
the system (delays, later response times due to in-
creased time to detection). Combining two detection
approaches into a multi-leveled one therefore only
makes sense for centralized and decentralized detec-
tion approaches.

In previous work, anomalies regarding the
communication behavior of agents were investi-
gated (Frost et al., 2024). There, distributed and cen-
tralized architectures were compared. It was found
that none of the architectures was more suitable; some
characteristics of the anomalies were better detected
by the centralized architecture, others vice versa.

Considering the results of the previous work and
this paper, the relevance of multi-leveled or hierarchi-
cal architectures becomes apparent. Different cyber
attacks have different effects on the agent system; in
addition to changes in values and communication be-
havior, agents or communication links fail. To de-
tect multiple types of attacks, architectures can be
combined. Multi-leveled architectures typically con-
tain a centralized observer in addition to, for exam-
ple, the decentralized instance. The centralized ob-
server monitors the entire system, e.g., without hav-
ing insight into the messages, in addition, decentral-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

676



ized anomaly detection is implemented for each node,
where insight into the messages is assumed (at least
level 3). The proposed architecture including the
available information for each observer is shown in
Figure 4. The decentralized observer considers all lo-
cally available information, which may include addi-
tional information such as forecast data or constraints.

Figure 4: Proposed multi-leveled architecture.

The anomalies detected by both observers can
serve as the basis for the reaction. For example, en-
semble learning, which combines the results of dif-
ferent models, could be considered for selecting the
anomalies. Finally, the results of both observers pro-
vide a good basis for a controller to make decisions.
The results can be communicated to a controller (ei-
ther local or central), which can decide based on
the detected anomalies and the information available.
Again, different (controller) architectures need to be
explored. This enables collaborative anomaly detec-
tion while respecting privacy constraints, as local in-
formation does not need to be shared. Furthermore,
no communication overhead is caused, as current val-
ues do not need to be exchanged between observers in
addition to the exchanged messages.

7 CONCLUSION

This paper presents and evaluates different architec-
tures for designing an observer to perform anomaly
detection in CPES. The impact of different available
information on the detection performance is investi-
gated. The results show that compromised data is only
detected when insight into the messages is provided.
This shows the importance of decentralized anomaly
detection, since some information, such as local DER
constraints, may not be available at a central location
in CPES. The need for decentralized anomaly detec-
tion is additionally emphasized by the fact that this
type of architecture outperforms the others. The re-
sults show that access to information must be consid-
ered when choosing an architecture for an observer.
Additionally, the need for multi-leveled architectures

for anomaly detection in CPES is emphasized, as dif-
ferent information is available at different locations.
Our results and findings support a robust observer de-
sign, according to customized and adaptable circum-
stances, thus, addressing the challenges of anomaly
detection in CPES by providing a basis for reliable
anomaly detection. Our findings can be used to imple-
ment a controller, which takes reaction to anomalies,
based on the results of a multi-leveled architecture.
The discussed architectures must also be compared
in terms of controller implementation. Future work
can build on our work to investigate the impact of ar-
chitectures and information access on anomaly pre-
diction, as part of the observer in OC systems is the
prediction of the systems’ behavior. Accurate predic-
tions simplify reacting to detected anomalies, thereby
improving the overall robustness of the system.
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