
A Framework Model for Supporting Transparent Polyglot Persistence
with a Unified API and Extensible for Different Database Types

Fernando de Oliveira Pereira1,3 a, Eduardo Martins Guerra2 b and Reinaldo Roberto Rosa1 c

1National Institute for Space Research (INPE), São José dos Campos/SP, Brazil
2Free University of Bozen-Bolzano - UNIBZ, Bozen-Bolzano, Italy

3National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos/SP, Brazil
{fernando.pereira, reinaldo.rosa}@inpe.br, eduardo.guerra@unibz.it

Keywords: Polyglot Persistence, Information System Integration.

Abstract: This work introduces the Transparent Polyglot Persistence Framework Model (TPPFM) for supporting poly-
glot persistence through a unified API for extension. The framework employs the Esfinge Query Builder as its
basis, restructuring it to provide polyglot functionality in alignment with the proposed framework model. A
real database case study is conducted to demonstrate the viability of the proposed framework and its reference
implementation. The ease of implementation for the developer and the transparency concerning the utilization
of several databases within the same domain model are demonstrated.

1 INTRODUCTION

Today, applications must handle diverse datasets from
the same domain (Khine and Wang, 2019; Eisenhuth
and Jablonski, 2022). For example, in e-Commerce,
multiple structures, including relational databases
for financial data and inventory, document-oriented
databases for product catalogs, graphs for consumer
recommendations, key-value pairs for shopping cart
items, and columnar databases for activity logs, can
coexist. Different data manipulation paradigms exist
for each format.

Each storage format works well in specific sce-
narios. Some are better for short, frequent reads,
while others favor efficient records. Using each type’s
strengths in their ideal situations makes sense. How-
ever, connecting different data types within an ap-
plication is challenging. Thus, modern applications
may require more than classic relational databases for
functional and non-functional requirements (Wiese,
2015; de Araújo et al., 2016).

Polyglot persistence is a strategy that utilizes mul-
tiple database systems within a single application do-
main to handle diverse datasets. This approach opti-
mizes the performance of various components of an
application by capitalizing on the unique capabilities

a https://orcid.org/0009-0006-2360-1281
b https://orcid.org/0009-0006-2894-9076
c https://orcid.org/0000-0002-2962-4322

of their respective database technologies. Using mul-
tiple database technologies in a single application re-
quires careful consideration of the most suitable per-
sistence model for each specific purpose. This strate-
gic approach allows firms to effectively utilize the
most appropriate technologies for their specific re-
quirements, such as SQL databases for structured data
or NoSQL databases for more adaptable or extensive
data storage (Schaarschmidt et al., 2015; Villaça et al.,
2018).

However, implementing polyglot persistence
presents significant questions, particularly in accu-
rately linking data across multiple storage formats
within a single application (Wiese, 2015; Lajam and
Mohammed, 2022). Polyglot persistence presents
challenges in terms of integration and data manage-
ment. Proficiency in multiple database paradigms and
APIs is necessary to access and modify data stored
in different formats, raising concerns about interoper-
ability, referential integrity, and security across multi-
ple storage systems (Srivastava and Shekokar, 2016).

These issues have prompted the proposal of var-
ious solutions, including unified query languages,
middlewares, and multi-model databases (Jiménez-
Peris et al., 2016) (Schaarschmidt et al., 2015) (Lu
et al., 2018). These solutions are examined in section
2 from several developments. These developments
aim to provide the use of several database systems
within a single application. However, developers of-
ten face architectural inefficiencies and an increased

Pereira, F. O., Guerra, E. M. and Rosa, R. R.
A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types.
DOI: 10.5220/0013369300003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 109-120
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

109

development of maintenance. By implementing more
cohesive and clear data access methods, these ad-
vancements have the potential to result in software
solutions that are more resilient and adaptable, highly
suitable for contemporary applications (Villaça et al.,
2018).

There is an increasing need for tools and frame-
works that improve the robustness of polyglot per-
sistence and reduce developer workload. No exist-
ing work offers an extendable approach that employs
a unified extension API for several database types,
remains transparent to the developer, and leverages
the special characteristics of each API without mix-
ing them.

The present research introduces the Transpar-
ent Polyglot Persistence Framework Model, abbre-
viated as TPPFM. This is a conceptual framework
that delineates the approach for establishing polyglot
persistence via a unified and declarative metadata-
driven API. The model’s contributions include defin-
ing an architecture that facilitates a cohesive ex-
tension API and orchestrates polyglot persistence
through database-specific libraries, all while remain-
ing transparent to the developer.

A reference implementation of the model was cre-
ated in a framework called Esfinge Query Builder
(Guerra, 2014, p. 12), which provides support for im-
plementing a transparent persistence layer for classes
in the same domain model that should be persisted in
different types of databases. The framework has an
extensible structure that allows the addition of new
drivers that can support polyglot persistence for dif-
ferent types of databases. A set of tests demonstrated
that the solution worked in four databases of different
types, namely PostgreSQL, MongoDB, Neo4J, and
Cassandra. As a result, the data could persisted in
any combination of them by changing only the meta-
data configuration. Moreover, the framework was in-
tegrated into a virtual lab platform and used to com-
bine data from a relational database of alerts provided
by CEMADEN with data in JSON format provided
by IBGE stored in a MongoDB. This implementation
was used to evaluate the applicability of the solution
for a real-practical case. Modularity analysis was per-
formed on the classes in the evaluation to investigate
the coupling of the classes with the APIs of the spe-
cific databases.

The work is organized as follows: Section 2 shows
related works, Section 3 offers a succinct overview of
the key concepts pertinent to this study, Section 4 con-
ceptually delineates the PPFM, Section 5 illustrates
and explains the model’s implementation, Section 6
introduces the case study, Section 7 analyzes the re-
sults, and Section 8 provides the conclusions.

2 RELATED WORKS

The studies by (Prasad and Avinash, 2014) and (Kaur
and Rani, 2015) delineate systems exhibiting poly-
glot characteristics, where data manipulation occurs
in databases of different types. These works feature
a combination of data stored in relational and non-
relational databases, approached architecturally such
that these data are managed separately in the service
layer, meaning the databases are accessed in isolation
without any abstraction for their correlation.

Another approach is presented in the study by
(Schaarschmidt et al., 2015), which delineates the es-
tablishment of a mediating component between the
service layer and the persistence layer. The term
polyglot persistence mediator (PPM) is defined in the
work in question. It functions as a middleware, serv-
ing as a conduit between the two layers and directing
data to different query mechanisms. The work dis-
cusses polyglot persistence, but does not establish a
correlation between different types of databases; in-
stead, it focuses on a decoupled routing mechanism
among different types of database based on the SLA
rating, one at a time.

The study CloudMdsQL (Kolev et al., 2016) in-
vestigates the creation of a universal language for
querying different types of databases. The authors
propose that the use of a cohesive language serves as
a strategy for polyglot persistence. The operational
procedure entails employing translation components
to transform one query language into another, subse-
quently routing them to the relevant databases. These
studies are in their initial stages and have yielded only
a restricted number of prototypes for specific database
types. The recent study by (El Ahdab et al., 2024)
presents a significant advancement and draws a com-
parison with CloudMdsQL, maintaining a similar ap-
proach utilizing a transformer coupled with multiple
APIs.

Apache Drill (Givre and Rogers, 2018) possesses
the characteristics of a Database Management Sys-
tem (DBMS), but is recognized as a query layer
that allows simultaneous access to multiple database
types. It functions as a tool, enabling polyglot queries
through the integration of different databases using
SQL language. Apache Drill lacks a high-level API
or a designated ORM. Its philosophy is to conceptu-
alize every type of storage as a table, regardless of its
actual nature, by executing queries on the raw data.
Thus, it operates not as an abstract framework but as
a practical tool for concrete implementations.

The research carried out by (Lu et al., 2018) de-
lineates a multi-model database known as the uni-
fied database management system (UDMS), provid-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

110

ing guidance for the development of an integrated sys-
tem for querying and storing data in a multi-model
framework, including relational, document, colum-
nar, graph, and JSON formats, among others, within
a singular management system.

Recent studies by (Holubová et al., 2021) and
(Van Landuyt et al., 2023) illustrate multimodel
database solutions and their operational challenges,
together with comparisons with separate database ap-
proaches, concluding that the optimal choice largely
depends on the type of application.

From the related works above, two horizons be-
come evident. First, when different databases are ac-
cessed simultaneously in the same application, but
separately, directly from the service layer and later
combined. Second, when the data are already com-
bined from different databases in the persistence
layer. Three approaches are identified as exemplified
in the aforementioned work and according to the re-
view article by (Khine and Wang, 2019). They are as
follows: Applied to the Domain; Unified Query Lan-
guage; Framework/Middleware or Multimodel.

In light of these horizons and approaches, there
are no existing works that offer solutions to estab-
lish an API characterized by low coupling, unifor-
mity, and transparency for the developer to access and
correlate different types of databases. The Transpar-
ent Polyglot Persistence Framework Model (TPPFM)
is thus proposed.

3 BACKGROUND

The purpose of this section is to provide a concise
overview of the major concepts that are relevant to
understanding this work. This is an overview of issues
that are directly connected to the topic’s matter, and
these are included in the proposal for the TPPFM.

3.1 Polyglot Persistence Patterns

A pattern is a way of documenting the experience
by capturing successful solutions to recurring prob-
lems. Currently, standards are carefully documented
in many fields of computing and in several areas of
academia and industry. For the documentation of a
pattern, the context of the problem, the forces act-
ing on the problem solver, the logic, and the con-
text that results when applying the solution must be
recorded (Rising, 1998).

Regarding patterns of polyglot persistence, the
patterns identified in the work of Pereira et al., 2023
stand out (Pereira et al., 2023b). In the most ba-
sic identified pattern named ”Independent DAO,” the

client service accesses several independent persis-
tence modules, and the manipulation for data persis-
tence is carried out at the business layer. In the named
pattern ”Integrated Polyglot DAO,” data manipulation
is carried out in an integrated module that combines
various APIs. In the pattern named “DAO Compound
Mediator”, applied in this work, the APIs are inde-
pendent and all persistence manipulation is abstracted
and transparent to the client module. See Figure 1.

Figure 1: Polyglot persistence pattern. Adapted from
(Pereira et al., 2023b).

3.2 Metadata-Based Frameworks

In software engineering, a framework is a fundamen-
tal structure consisting of generic code that offers sup-
port and standard functionalities to create specific ap-
plications. A framework’s architecture is often event-
driven, allowing developers to insert their code within
extension points provided by the framework, often re-
ferred to as ”hooks” or ”customization points”. This
differs from traditional libraries where the developer
calls functions as needed. In a framework, overall
control of the flow of execution is often inverted,
which is known as the ”Inversion of Control” (IoC)
principle or ”Hollywood Principle” (”don’t call us,
we’ll call you”) (Larman, 2012).

Metadata-based frameworks can be defined as
frameworks that utilize metadata to affect the soft-
ware’s behavior. This metadata can be described us-
ing XML configuration files, annotations, or other
kinds of description. The primary concept is that,
rather than explicitly customizing or altering the
source code, the developer provides information

A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types

111

that the framework utilizes to determine the sys-
tem’s behavior (Lima et al., 2023). Some exam-
ples of metadata-based frameworks include Spring-
Data (Java), EsfingeQueryBuilder (Java), and Entity
Framework (C#/.NET).

Regarding the resources used in metadata-based
frameworks, an example in the Java programming
language is the concept of annotation. Annotations
are a programming tool that allows you to associate
metadata with specific elements of source code, such
as classes, methods, or attributes. The compiler can
use annotations to incorporate data during the compi-
lation process, or a framework can utilize them during
execution (Lima et al., 2023).

Annotations allow for more detailed information
about the behavior of source code elements with-
out directly modifying them. Furthermore, they im-
prove the architecture of the code by reducing dupli-
cations, centralizing the logic in one place, and auto-
matically implementing it throughout multiple parts
(Lima et al., 2023).

3.3 Framework Models

Framework models refer to a conceptual structure that
organizes and guides the development of solutions
within a given domain. Abstractly, the framework
model embodies a theoretical structure that dictates
the interaction of software components, the adherence
to standards, and the structuring of solutions to en-
hance efficiency, reuse, and consistency in develop-
ment. In this sense, the framework model establishes
the bridge between theory and practice.

The framework model encapsulates a standard ref-
erence architecture that specifies the organization and
interaction of several components of the system. It
is not a concrete implementation, but a set of prin-
ciples that guides solution design within the specific
domain. Moreover, the framework model needs to im-
part practical knowledge about a specific domain and
codify it in a way that allows its reuse in any con-
text (De Souza et al., 2022).

4 TRANSPARENT POLYGLOT
PERSISTENCE FRAMEWORK
MODEL (TPPFM)

The concepts of separation of concerns, single re-
sponsibility, and dependency inversion provide devel-
opers with guidance on structuring modular, scalable,
and adaptable code. Taking into account those de-
sign principles, this section describes the proposed

TPPFM in this work.

4.1 Main Structure

Figure 2: TPPFM - Main strucuture.

The TPPFM has the structure shown in Figure 2
and is inspired by the DAO CompoundMediator poly-
glot persistence pattern, which can be seen in Figure
1. The service object of the business layer is man-
aged by a dynamic proxy that contains an instance of
QueryExecutor, tasked with executing queries in the
persistence layer, and MethodParser, which interprets
the method names to convert them into queries. In
the polyglot scenario, the persistence layer contains
the MediatorQueryExecutor, which encapsulates dis-
tinct instances of QueryExecutor for several types of
databases.

The proposed framework model assigns the re-
sponsibility of aggregating polyglot queries to Me-
diatorQueryExecutor. Starting with a unified lan-
guage, specifically ORM (object relation mapping),
ODM (object document mapping), other Object Map-
pings, and Internal DSL (Mangal, 2024), while as-
signing the particularities of each database to des-
ignated QueryExecutor’s, denoted in the model as
PriExecutor and SecExecutor instances.

4.2 Dynamic Behavior

Figure 3 provides a detailed description of the primary
flow described by the TPPFM. A dynamic proxy is
used to pass an instance of the service across, which
enables the methods of the service to be invoked in a
natural manner without requiring any modifications
to the business layer. With regard to QueryExecu-
tor and MethodParser, it is the responsibility of the
proxy to generate instances of the various implemen-
tations that are dynamically accessible. During the

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

112

Figure 3: TPPFM - Main flow behavior.

process of invoking a method, the MediatorQueryEx-
ecutor not only delegates the execution of the method
to the available implementations, but also the aggre-
gation. Then it returns the polyglot query result to the
requesting service. The aggregation originates from
the primary entity, for whom the dynamic proxy was
created, and subsequently extends to the secondary
entity, which is the one being associated.

5 REFERENCE
IMPLEMENTATION

The purpose of the reference implementation is to
demonstrate the feasibility of TPPFM. This work uti-
lizes the Esfinge Query Builder as a reference imple-
mentation. The Esfinge Query Builder is currently
in development, initially described in (Guerra, 2014),
and provides a fast and efficient means to create a per-
sistent layer.

5.1 About Esfinge Query Builder

The Esfinge Query Builder is a framework that accel-
erates the development of persistence layers by utiliz-
ing method names to deduce database queries. The
primary advantage lies in the simplicity of the inter-
face, as it specifies methods in alignment with the
query parameters, enabling automatic query genera-
tion at runtime (GUERRA et al., 2017).

The framework operates independently of persis-
tent technology and currently includes extensions for
JDBC, JPA, Cassandra, MongoDB, and Neo4J. In ad-
dition to fundamental searches, it facilitates the ex-
ecution of CRUD capabilities, including the saving,

deletion, and listing of records. The framework uti-
lizes internal DSL (domain-specific language) (Man-
gal, 2024), which enables the use of ”domain terms”
in methods to express queries, thereby improving ex-
pressiveness and readability.

This set of features aligns with the TPPFM by es-
tablishing a basis for implementation. The Esfinge
Query Builder is capable of operating with a single
database at a time. The proposed work improves
the Esfinge Query Builder and redesigns it to oper-
ate concurrently with several databases in a polyglot
approach.

5.2 TPPFM Implementation - General
View

The Esfinge Query Builder was restructured to meet
the TPPFM, taking advantage of its characteristics al-
ready adherent to the model, being readjusted to op-
erate with multiple databases in order to retrieve in-
formation from the same domain that is in databases
of different types.

Prior to this restructure, Esfinge Query Builder
permitted the utilization of only a single database at
once, rendering the simultaneous usage of multiple
database types unfeasible. The rewriting of the frame-
work to incorporate TPPFM enabled its ability to in-
terface with several diverse databases concurrently
through a standardized API among entities within the
same domain.

For illustration, consider a basic user registration
process in which users are stored in a PostgreSQL
database. Additionally, note that there exists a Mon-
goDB database that stores user profiles, which are
semi-structured data retaining access permissions and

A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types

113

specific configurations for application functionalities
accessible to the user.

To transparently obtain this information from a
unified API, we can utilize the framework demon-
strated in the code in Listing 1, Listing 2, Listing 3,
and Listing 4.

The User class in Listing 1 is a mapped en-
tity following the JPA specification using Hibernate
ORM (Tudose et al., 2023). It contains some spe-
cific TPPFM annotations, which are @Persistence-
Type, @PolyglotOneToOne, and @PolyglotJoin. The
class Profile in the Listing 2 was mapped by Morphia
ODM (Scherzinger and Sidortschuck, 2020), and con-
tains the annotation @PersistenceType. The interface
ExampleDAO in the Listing 3 contains the annotation
@TargetEntity. Finally, the Main class in Listing 4
that invokes and obtains a dynamic proxy for an in-
stance of ExampleDAO does not contain specific an-
notations. All the specific annotations used here and
the others in the framework are detailed in section 5.3.

1 //omitted code
2 import javax.persistence.Entity;
3 import javax.persistence.Id;
4 import javax.persistence.Transient;
5 @Entity
6 @PersistenceType(value = "JPA1", secondary = "MONGODB"

↪→)
7 public class User {
8 @Id
9 private Integer id;

10 private String login;
11 private String password;
12 private ObjectId profileId;
13 @Transient
14 @PolyglotOneToOne(referencedEntity = Profile.class)
15 @PolyglotJoin(name = "profileId",

↪→referencedAttributeName = "id")
16 private Profile profile;
17 //getters and setters
18 }

Listing 1: User class.

1 //omitted code
2 import dev.morphia.annotations.Entity;
3 import dev.morphia.annotations.Id;
4 @Entity
5 @PersistenceType("MONGODB")
6 public class Profile {
7 @Id
8 private ObjectId id;
9 private String configs;

10 private String permissions;
11 //getters and setters
12 }

Listing 2: Profile class.

1 //omitted code
2 @TargetEntity(User.class)
3 public interface ExampleDAO extends Repository <User > {
4 List <User > getUserByLogin(String login);
5 //omitted code
6 }

Listing 3: ExampleDAO interface.

1 //omitted code
2 public class Main {
3 public static void main(String[] args) {

4 var example = QueryBuilder.create(ExampleDAO.class
↪→);

5 var user = example.getUserByName("John");
6 System.out.println(user);
7 }
8 }

Listing 4: Main class - business layer.

In this example case, when executing exam-
ple.getUserByLogin(”john”), the user object will
contain data from both the PostgreSQL database and
the MongoDB database filtered by the user’s login
(Listing 4, lines 5-6). The access is transparent to the
business layer, and the delegation of queries and ag-
gregation is performed in the persistence layer with-
out strong coupling.

5.3 TPPFM Implementation - Internal
Structure

The Esfinge Query Builder framework is divided into
modules and has been updated to support the poly-
glot approach of TPPFM. It contains extension points
that utilize the Java Service Provider Interface (SPI)
functionality, allowing the discovery and use of ser-
vice implementations at runtime. The main module
is called Esfinge Query Builder Core. This module
contains the main machinery of the framework. Other
modules extend and use the main module to invoke
concrete implementations for each type of database.

The evolution, to the TPPFM, demanded the cre-
ation of annotations, as cited in subsection 5.2. Next,
an explanation about the usefulness of all the notes
available for the polyglot context.

• @TargetEntity - defines the main entity for the
interface for which the dynamic proxy is created;

• @PersistenceType - defines the type of persis-
tence assigned to each entity being manipulated;

• @QueryExecutorType - extension annotation
that defines with which type of persistence a spe-
cific implementation of QueryExecutor is operat-
ing;

• @PolyglotJoin - specifies a polyglot relation-
ship within the primary entity, indicating the field
name that references the secondary entity, or oth-
erwise;

• @PolyglotOneToOne - denotes the one-to-one
relationship type, signifying that for each instance
of the primary entity, there exists a singular corre-
sponding instance of the secondary entity. It can
be delineated from left to right or from right to
left; that is, there may be a primary field that links
an identifier to the secondary, or vice versa;

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

114

• @PolglotOneToMany - establishes the one-to-
many relationship, indicating that for each in-
stance of the main entity, there are several corre-
sponding instances of the secondary object;
The Esfinge Query Builder Core, which maps

to the TPPFM, creates the dynamic proxy from the
QueryBuilder class and provides some hotspots, such
as the QueryExecutor and MethodParser interfaces.
The QueryBuilder class sets up a list of available im-
plementations for each interface and creates an in-
stance of MediatorQueryExecutor, which, in turn,
contains 2 attributes that define the PriExecutor (im-
plementation of persistence for the primary entity -
e.g.: JPA) and SecExecutor (implementation of per-
sistence for the secondary, e.g.: MongoDB).

The identification of the primary entity is deter-
mined by the attribute of named “value” obtained
from the @TargetEntity annotation of the class for
which the dynamic proxy is generated. We retrieve
the persistence type from @PersistenceType. So, the
operations are first done on the primary entity, then on
the secondary one, and finally on both entities simul-
taneously, based on the defined polyglot relationship,
as shown in the model’s Figure 3.

The modules are configured with SPI and can be
seen from Listing 5 with the module-info file of the
Esfinge Query Builder JPA, and Listing 6 with the
module-info.java file of the Esfinge Query Builder
MongoDB. In this way, the main module obtains spe-
cific implementations for the interfaces at run-time
according to the dependencies injected into the client
project. As seen in the module-info.java files, all con-
tain implementations available for the special Repos-
itory interface, which has also become polyglot by
providing polyglot operations for CRUD.

1 module querybuilder.jpaone {
2 requires transitive querybuilder.core;
3 requires java.persistence;
4 exports ef.qb.jpa1;
5 opens ef.qb.jpa1;
6 uses ef.qb.jpa1.EntityManagerProvider;
7 provides ef.qb.core.Repository with
8 ef.qb.jpa1.JPARepository;
9 provides ef.qb.core.executor.QueryExecutor with

10 ef.qb.jpa1.JPAQueryExecutor;
11 }

Listing 5: Esfinge Query Builder JPA - module-info.

1 module querybuilder.mongodb {
2 requires transitive querybuilder.core;
3 requires morphia;
4 //omitted code
5 exports ef.qb.mongodb;
6 opens ef.qb.mongodb;
7 uses ef.qb.mongodb.DatastoreProvider;
8 provides ef.qb.core.Repository with
9 ef.qb.mongodb.MongoDBRepository;

10 provides ef.qb.core.executor.QueryExecutor with
11 ef.qb.mongodb.MongoDBQueryExecutor;
12 //omitted code
13 }

Listing 6: Esfinge Query Builder MongoDB - module-info.

This approach allows for the integration of addi-
tional database implementations as dependencies with
little coupling, improving maintainability, and align-
ing with the pattern depicted in Figure 1 in DAO Com-
pound Mediator.

5.4 TPPFM Tests

The examples presented in section 5.2 and the
module-info files in section 5.3 have been taken from
MongoDB and JPA implementations. It is crucial to
emphasize that TPPFM underwent implementation
testing with various cases, including PostgreSQL
and MongoDB, PostgreSQL and Cassandra, as
well as MongoDB and Cassandra. These tests
demonstrate that the proposed mechanism func-
tions effectively in various database types and can
seamlessly correlate them, thereby improving the
capabilities of Esfinge Query Builder CORE. The
tests are accessible at the following link: https:
//github.com/EsfingeFramework/querybuilder/tree/
master/PolyglotDemo/PolyglotDemoDataGenerator.

6 CASE STUDY

We developed a case study to implement the TPPFM
in a polyglot setting using real data. To achieve
this, it was crucial to evaluate the utilization of an-
notations, illustrate the relationship between classes
and utilized frameworks through the Design Structure
Matrix (DSM) (Eppinger, 2012), and confirm the fea-
sibility of the TPPFM.

6.1 Method

The selection of case studies involved the identifica-
tion of databases of different types that contain data
within the same application domain. The authors
used two databases provided by CEMADEN (Na-
tional Centre for Monitoring and Early Warning of
Natural Disasters). It is a Brazilian government or-
ganization that monitors in real time and distributes
alerts about the probability of natural disasters, such
as landslides, flash floods, and floods.

To validate the proposed framework, we se-
lected databases from CEMADEN for their ability to
demonstrate a heterogeneous environment compris-
ing both relational and NoSQL databases. This choice
was made because we need to recreate a real-life sit-
uation where multiple persistence models exist at the
same time. This will allow us to test how well the
framework works with others and in real-life situa-
tions.

A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types

115

The authors developed the case study’s source
code in Java and integrated it into the CEMADEN
software ecosystem, allowing access to real-time-
generated data. We added Esfinge Virtual Lab (ex-
plained in section 6.2) to the CEMADEN software
ecosystem and uploaded JAR modules to make it eas-
ier for the integration of study materials and pro-
duce insightful results for CEMADEN scientists us-
ing databases.

6.2 Esfinge Virtual Lab

The Esfinge Virtual Lab tool has been used for the
front-end of the case study. It is open-source and uses
substantially the Esfinge query builder. It has been
updated to take into account TPPFM, enabling a poly-
glot approach for the present work.

The Esfinge Virtual Lab is detailed in a com-
prehensive way in the publication by (Pereira et al.,
2023a) and can be found at https://github.com/
EsfingeFramework/virtual-lab/releases. It is a virtual
laboratory featuring a metadata-driven API for the
development of dynamic software components. The
platform, developed in Java, seeks to streamline sys-
tem prototype, enabling developers to focus on busi-
ness concepts rather than information retrieval or in-
terface programming. The Esfinge Virtual Lab em-
ploys declarative programming techniques to facili-
tate the fast creation of data visualizations, includ-
ing tables, charts, and maps, with minimal coding re-
quirements. The components, encapsulated as JAR
files, can be dynamically loaded and retrieved, facili-
tating code reuse. For the case study presented here, it
is important to understand the following annotations
that were used.

• @ServiceDAO - defines the access configurations
for the database of the main entities and provides
data access services;

• @PolyglotConfig - defines the access configura-
tions for the secondary entities’ database (devel-
oped in the Esfing VirtualLab framework due to
the case study);

• @ServiceClass - defines a control class that can
contain available service methods;

• @ServiceMethod - defines that a method will be
made available as a service that can be invoked;

• @Inject - allows injecting a service or data class
into another service class. Example: injected data
access class;

• @BarChartReturn - returns the result of the ser-
vice method as a bar chart;

• @TableReturn - returns the result of the service
method as a data table.

6.3 Context

The case study was formulated with regard to the
realm of natural disasters. Two databases were pro-
vided at CEMADEN. A relational database utilizing
PostgreSQL and a NoSQL database utilizing Mon-
goDB.

The relational database stored alert data. An alert
includes a creation date, a termination date, details on
the probable natural disaster, the severity rating, and
the city location. In the case of CEMADEN, notifica-
tions are sent by cities, which include a unique identi-
fication code established by IBGE (Brazilian Institute
of Geography and Statistics).

The NoSql database comprises data from the
BATER (Statistical Territorial Base of Risk Areas),
in verbatim transcription, Statistical Territorial Base
of Risk Areas (Instituto Brasileiro de Geografia e Es-
tatı́stica (IBGE), 2018). The BATER technique is
comprehensive and encompasses numerous specific
topics relevant to censitary statistics and natural disas-
ters. For the purposes of this case study, it is adequate
to recognize that a BATER delineates a geographical
area within a city, intersecting risk area delimitation
data with census sectors to estimate, with varying de-
grees of precision, the probable number of individuals
exposed to natural disasters.

The BATER data do not cover all Brazilian cities
or all risk regions, comprising 183 variables about
residents, predominantly quantitative, categorized by
gender, age, and other factors. It encompasses 135
attributes of households, including property owner-
ship status and urban services obtained, among others.
Furthermore, not all variables possess values for ev-
ery existing BATER. This illustrates a versatile struc-
ture of the data and the utilization of a non-relational
database.

The alert data are operational, which means that
they are integral to the daily operations of CE-
MADEN. The BATER data are finely organized
datasets that offer significant insights about Brazilian
cities within the researched context, utilized by CE-
MADEN predominantly for research endeavors and,
to a lesser degree, for operational applications. How-
ever, there is no mechanism for correlated data within
the same domain in a manner that is feasible for de-
velopers and capable of generating configurable and
dynamic services that address both the research and
operational requirements of end users.

Consequently, the suggested case study seeks to
fulfill this identified requirement. In this context, an

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

116

Alert is the primary entity, and an Alert possesses a
list of Bater’s. The variable investigated was the to-
tal number of individuals present in a Bater. Conse-
quently, it may be feasible to determine the number
of individuals possibly at risk within the city by ag-
gregating the population figures from all the Bater’s
in that area.

6.4 Implementations

The implementation of the case study required the
creation of four Java classes, as illustrated in the di-
agram in Figure 4. The class AlertService utilizes
a dynamic proxy to inject an instance of AlertDAO.
AlertDAO includes service methods that access data
purely through method declarations, using a declara-
tive API. In AlertDAO, the annotation @TargetEntity
designates Alert as the primary entity. Alert is an-
notated with @PersistenceType, indicating the persis-
tence type for the primary and secondary entities. In
the scenario of the case, Bater is utilized as the sec-
ondary entity, associated with Alert through @Poly-
glotOneToMany. The ibgecode attribute in Alert con-
tains the same value as the citycode in Bater, allowing
for the association to be made.

Figure 4: Class diagram from case study.

6.5 Results

6.5.1 Feasibility Results

The feasibility results are illustrated in Figure 5.
The focus is on the visualization in tabular and bar
chart formats corresponding to the two service meth-
ods provided in AlertService, namely listData and

getChart. A list of alerts is presented that indicates
the probable number of vulnerable individuals in Rio
Grande do Sul, Brazil, during the period from April
1, 2024, to July 1, 2024. A bar graph illustrates the
progression of alerts in relation to the probable num-
ber of vulnerable individuals, taking into account the
alert creation date and its expiration.

This case study specifically examined the period
during which numerous alerts spread to the popula-
tion, which ultimately resulted in significant catastro-
phes in the Rio Grande do Sul region due to excessive
rainfall over several days.

6.5.2 Implementation Analysis

Concerning the association of classes with frame-
works, Table 1 delineates the number of annotations
assigned to each class, with EQB representing Esfinge
Query Builder, JPA denoting Java Persistence API,
MOR indicating Morphia ODM, EVL referring to Es-
finge Virtual Lab, and POL for classes using poly-
glot annotations. This shows high modularity and low
coupling of the solution.

Table 1: Number of annotations used from each framework.

JPA MOR EQB POL EVL
AlertService 0 0 0 0 6
AlertDAO 0 0 2 1 3
Alert 5 0 0 3 0
Bater 0 3 0 1 0

From the TPPFM perspective, observe that the
AlertService class, which represents the business
layer, lacks any polyglot annotations, allowing the de-
veloper to concentrate solely on the business logic.
In the persistence layer, the majority of polyglot an-
notations are found in the Alert class, which rep-
resent the primary entity, denoting the persistence
type (@PersistenceType) and the association anno-
tations (@PolyglotOneToMany and @PolyglotJoin).
In the AlertaDAO class, it is necessary to specify
only the target primary entity (@TargetEntity). In the
Bater class, only persistence type requires declaration
(@PersistenceType).

Figure 6 shows the DSM corresponding to the four
classes created. We constructed the DSM using the
Esfinge Virtual Lab packages, Esfinge Query Builder
CORE packages, Esfinge Query Builder JPA pack-
ages, and Esfinge Query Builder MongoDB packages.
From the perspective of coupling, focus on the col-
orful rectangles highlighted in the figure. The pur-
ple area delineates the dependencies for Esfinge Vir-
tual Lab, specifically, the service specification and the
DAO annotations for the front-end. However, the pri-
mary goal of this work is to focus on the elements in-

A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types

117

Figure 5: Table with a list of alerts and probable number of vulnerable individuals (*left). Bar chart showing the evolution of
alerts versus probable number of vulnerable individuals (*right).

Figure 6: Case Study - Dependency Structure Matrix.

dicated by the green rectangles labeled A to D. These
are, in reality, the dependencies of the TPPFM imple-
mentation. In A, there is a dependency on AlertDAO
for the Repository interface. From B to D, we have
only annotations. In B, we have @TargetEntity for
AlertDAO. In C, utilize @PersistenceType, @Poly-
glotOneToMany, and @PolyglotJoin for Alert. In D
@PersistenceType for Bater. The framework exhibits
high modularity, since applications rely just on meta-
data rather than concrete implementations.

7 DISCUSSIONS

7.1 Case Study Conclusions

The case study effectively illustrated the operation of
the reference implementation for TPPFM. The imple-
mentation used real data. Some difficulties merit con-
sideration. The CEMADEN relational data model is
extensively normalized and includes multiple tables,
significantly increasing the difficulty of mapping. For

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

118

the case study, the authors opted to develop an Alert
View, which allowed the study to be carried out with-
out compromising the coherence of the data.

The Esfinge VirtualLab facilitated the fast gener-
ation of visualizations for front-end development. It
internally incorporates the Esfinge Query Builder, and
the utilization of the @ServiceDAO and @Polyglot-
Config annotations facilitates fast setting of database
access.

In general, the case study may be developed with
minimal source code, which is advantageous for the
framework given its significant internal complexity.
The advantages of this design can enhance the devel-
oper experience due to minimal integration between
frameworks, a unified API, enhanced maintainability,
and autonomy.

7.2 Limitations

The case study has limitations, including the testing
of only two types of databases and the absence of
performance analysis. A study involving two distinct
database types is adequate to validate the framework’s
operation, as the particular implementations do not di-
rectly influence the Esfinge Query Builder CORE; in-
stead, they serve as extensions. However, the frame-
work was designed to allow polyglot operation with
a maximum of two, independent of their type, simul-
taneously. Nevertheless, instances involving three or
more databases within the same topic are infrequent
in the literature, prompting the authors to use this ap-
proach.

8 CONCLUSIONS

The research work delineated the definition of the
TPPFM, establishing a conceptual framework as a
foundation for the transparent implementation of
polyglot persistence for developers. Using the Esfinge
Query Builder as a reference framework, it was feasi-
ble to evolve it for polyglot functionality alongside its
existing capabilities that correspond to the requested
work.

A case study was created using real databases that
illustrated the operation of the framework. The in-
corporation of Esfinge VirtualLab facilitated the fast
acquisition of data visualization that connected infor-
mation across PostgreSQL and MongoDB databases
within a unified domain model, enabling seamless
polyglot operations through various ORM mappings.
The framework features a cohesive declarative API
that abstracts the utilization of diverse APIs from sev-
eral databases.

The results indicated that the framework promotes
development with minimal coding and substantial
modularity. Future endeavors will focus on creat-
ing performance assessments and, crucially, execut-
ing experiments to evaluate the developer’s experi-
ence, yielding suggestions for enhancing the frame-
work and broadening its capabilities.

REFERENCES

de Araújo, A. M. C., Times, V. C., and da Silva, M. U.
(2016). Polyehr: A framework for polyglot persis-
tence of the electronic health record. In Proceed-
ings on the International Conference on Internet Com-
puting (ICOMP), page 71. The Steering Committee
of The World Congress in Computer Science, Com-
puter

De Souza, W. S., Pereira, F. O., Albuquerque, V. G., Mel-
egati, J., and Guerra, E. (2022). A framework model
to support a/b tests at the class and component level.
In 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 860–
865, Los Alamitos, CA, USA. IEEE.

Eisenhuth, P. and Jablonski, S. (2022). Knowledge-based
recommendation for polyglot persistence. In CDMS@
VLDB.

El Ahdab, L., Megdiche, I., Péninou, A., and Teste, O.
(2024). Unified models and framework for querying
distributed data across polystores. In International
Conference on Research Challenges in Information
Science, pages 3–18. Springer.

Eppinger, S. (2012). Design Structure Matrix Methods and
Applications. MIT Press.

Givre, C. and Rogers, P. (2018). Learning Apache Drill:
Query and Analyze Distributed Data Sources with
SQL. ” O’Reilly Media, Inc.”.

Guerra, E. (2014). Designing a framework with test-driven
development: A journey. IEEE software, 31(1):9–14.

GUERRA, E. M., BATISTA, J. A., and NASCIMENTO,
L. W. T. (2017). Esfinge query builder - frame-
work de acesso a dados para diferentes paradigmas
de banco. In CBSoft VIII Congresso de Software
Brasileiro, pages 65–72, Porto Alegre, RS, Brazil. So-
ciedade Brasileira de Computação (SBC).

Holubová, I., Contos, P., and Svoboda, M. (2021). Multi-
model data modeling and representation: State of the
art and research challenges. In Proceedings of the 25th
International Database Engineering & Applications
Symposium, pages 242–251.

Instituto Brasileiro de Geografia e Estatı́stica (IBGE)
(2018). População em Áreas de Risco no Brasil.
IBGE, Rio de Janeiro.

Jiménez-Peris, R., Patino-Martinez, M., Brondino, I., and
Vianello, V. (2016). Transactional processing for
polyglot persistence. In 2016 30th International Con-
ference on Advanced Information Networking and Ap-
plications Workshops (WAINA), pages 150–152, Pis-
cataway, NJ, USA. IEEE, IEEE.

A Framework Model for Supporting Transparent Polyglot Persistence with a Unified API and Extensible for Different Database Types

119

Kaur, K. and Rani, R. (2015). Managing data in health-
care information systems: many models, one solution.
Computer, 48(3):52–59.

Khine, P. P. and Wang, Z. (2019). A review of polyglot per-
sistence in the big data world. Information, 10(4):141.

Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris,
R., Pau, R., and Pereira, J. (2016). Cloudmdsql:
querying heterogeneous cloud data stores with a com-
mon language. Distributed and parallel databases,
34(4):463–503.

Lajam, O. and Mohammed, S. (2022). Revisiting polyglot
persistence: From principles to practice. International
Journal of Advanced Computer Science and Applica-
tions, 13(5).

Larman, C. (2012). Applying UML and patterns: an intro-
duction to object oriented analysis and design and in-
terative development. Pearson Education India, Delhi,
India.

Lima, P., Pereira, N. S., Gomes, E., Guerra, E., and
Meirelles, P. (2023). Annotation visualizer: A soft-
ware visualization tool for code annotations. Software
Impacts, 16:100491.

Lu, J., Liu, Z. H., Xu, P., and Zhang, C. (2018). Udbms:
road to unification for multi-model data management.
In International Conference on Conceptual Model-
ing, pages 285–294, Cham, Switzerland. Springer,
Springer.

Mangal, H. (2024). Cpsl: A domain-specific language for
modelling the behaviour of cyber-physical systems.
B.S. thesis, University of Twente.

Pereira, F., França, D., Paschoal, V., Nardes, M., Rosa,
R. R., and Guerra, E. (2023a). Esfinge virtual lab—a
virtual laboratory platform with a metadata-based api
and based on dynamic component. IEEE Access,
11:143167–143181.

Pereira, F., Guerra, E., and Rosa, R. R. (2023b). Patterns
for polyglot persistence layer. In Proceedings of the
29th Conference on Pattern Languages of Programs,
PLoP ’22, USA. The Hillside Group.

Prasad, S. and Avinash, S. (2014). Application of polyglot
persistence to enhance performance of the energy data
management systems. In 2014 International Confer-
ence on Advances in Electronics Computers and Com-
munications, pages 1–6. IEEE.

Rising, L. (1998). The patterns handbook: Techniques,
strategies, and applications, volume 13. Cambridge
University Press.

Schaarschmidt, M., Gessert, F., and Ritter, N. (2015). To-
wards automated polyglot persistence. Datenbanksys-
teme für Business, Technologie und Web (BTW 2015),
241:73–82.

Scherzinger, S. and Sidortschuck, S. (2020). An empirical
study on the design and evolution of nosql database
schemas. In Conceptual Modeling: 39th Interna-
tional Conference, ER 2020, Vienna, Austria, Novem-
ber 3–6, 2020, Proceedings 39, pages 441–455, Vi-
enna, Austria. Springer, SpringLink.

Srivastava, K. and Shekokar, N. (2016). A polyglot persis-
tence approach for e-commerce business model. In

2016 International Conference on Information Sci-
ence (ICIS), pages 7–11. IEEE.

Tudose, C., Bauer, C., and King, G. (2023). Java per-
sistence with spring data and hibernate. Simon and
Schuster, New York, NY, USA.

Van Landuyt, D., Benaouda, J., Reniers, V., Rafique, A.,
and Joosen, W. (2023). A comparative performance
evaluation of multi-model nosql databases and poly-
glot persistence. In Proceedings of the 38th ACM/SI-
GAPP Symposium on Applied Computing, pages 286–
293.

Villaça, L. H., Azevedo, L. G., and Baião, F. (2018). Query
strategies on polyglot persistence in microservices. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pages 1725–1732, Pau, France.
ACM.

Wiese, L. (2015). Polyglot database architectures= poly-
glot challenges. In LWA, pages 422–426, Göttingen,
Germany. University of Göttingen.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

120

