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Abstract: Time series forecasting with machine learning is critical across various fields, with Ensemble models and Neu-
ral Networks commonly used to predict future values. LSTM and Transformers architecture excel in modeling
complex patterns, while Random Forest has shown strong performance in univariate time series forecasting.
With the advent of Large Language Models (LLMs), new opportunities arise for their application in time series
prediction. This study compares the forecasting performance of Gemini 1.5 PRO against Random Forest and
LSTM using 40 time series from the Retail and Mobility domains, totaling 65,940 time units, evaluated with
SMAPE. Results indicate that Gemini 1.5 PRO outperforms LSTM by approximately 4% in Retail and 6.5%
in Mobility, though it underperforms Random Forest by 5.5% in Retail and 1% in Mobility. In addition to
this comparative analysis, the article contributes a novel prompt template designed specifically for time series
forecasting, providing a practical tool for future research and applications.

1 INTRODUCTION

Time series forecasting is a fundamental task in var-
ious fields, including economics, finance, logistics,
and healthcare. Machine learning models, such as en-
sembles and neural networks, have been widely em-
ployed to capture temporal patterns and predict fu-
ture values based on historical data (Lim and Zohren,
2021). Neural network architectures, such as LSTM
(Long Short-Term Memory) and Transformers, are
known for their ability to model complex and non-
linear patterns in time series, while ensemble-based
machine learning methods, such as Random Forest,
have shown robust performance, especially in univari-
ate forecasting problems (Kane et al., 2014) (Freitas
et al., 2023).

With the advent of Large Language Models
(LLMs), new possibilities have emerged for time se-
ries forecasting. These models, originally designed
for natural language processing tasks, have demon-
strated versatility in a variety of applications, includ-
ing computer vision (Wang et al., 2024), information
extraction (Goel et al., 2023) (Almeida and Caminha,
2024), code generation (Gu, 2023), dataset generation
(Silva et al., 2024) (Karl et al., 2024) and time series
analysis (Jin et al., 2023a). The ability of these mod-
els to capture complex patterns in large volumes of
data suggests untapped potential for their application

in time series forecasting.
This paper investigates the effectiveness of a state-

of-the-art LLM, specifically Gemini 1.5 PRO, in uni-
variate time series forecasting, comparing its perfor-
mance with two traditional models: Random Forest
and LSTM. The comparison is made using 40 time
series from two distinct domains: Retail and Mobil-
ity, covering a total of 65,940 time units. A large ex-
periment with 1,200 predictions was conducted, ana-
lyzing 13,680 time units across both domains. The
metric chosen for evaluation is SMAPE (Symmet-
ric Mean Absolute Percentage Error), widely used to
measure accuracy in time series forecasting.

The results of this research reveal that Gemini
1.5 PRO outperforms LSTM by approximately 4%
in the Retail domain and 6.5% in the Mobility do-
main. However, the LLM model underperforms Ran-
dom Forest, with a difference of 5.5% in Retail and
1% in Mobility. In addition to the comparative eval-
uation, this study contributes to developing a prompt
template that facilitates time series forecasting, offer-
ing a practical tool for future research and applica-
tions.

This article is organized as follows: Section 2
presents the related works, reviewing key works and
recent advances in applying LLMs to time series fore-
casting. Section 3 details the methodology used, in-
cluding the description of the datasets, the forecasting
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models employed, and the prompt specifically devel-
oped for LLMs. Section 4 discusses the results of the
experiments, comparing the performance of Gemini
1.5 PRO with traditional models. Section 4 also offers
a critical analysis of the results, highlighting the main
contributions of this study and the observed limita-
tions. Finally, Section 5 concludes the paper, suggest-
ing future directions for research that seek to explore
and expand the use of LLMs in time series forecast-
ing.

2 RELATED WORK

LLMs benefit various applications, such as in com-
puter vision and natural language processing (Jin
et al., 2023a). In (Jin et al., 2023b), it is shown that al-
though time series forecasting has not yet reached the
same advances as these more prominent areas, time
series forecasting can benefit from LLMs in certain
applications and modeling approaches. In this con-
text, we will highlight some of the key works in the
state of the art.

In (Jin et al., 2023b), a reprogramming framework
is proposed to adapt LLMs for time series forecasting
while keeping the model intact. The central idea is
to reprogram the input time series into text represen-
tations, including declarative sections, that are more
naturally suited to the capabilities of language mod-
els. One of the main advantages pointed out by the
authors is that the framework naturally aligns with the
language models’ strengths.

The work by (Liu et al., 2024a) presents a frame-
work that aligns multivariate time series data with
pre-trained LLMs by generating a single data input
for a Transformer model (Vaswani et al., 2017), which
performs the time series prediction. As presented
in (Zeng et al., 2023), Transformer models, with
their powerful self-attention mechanism, can cause
the loss of temporal information. When working di-
rectly with time series data, this can lead to disorder
in the data, which may result in performance issues.
Thus, the framework proposed by (Liu et al., 2024a)
aims to solve this problem, improving the model’s
performance compared to other strategies and reduc-
ing model inference time.

(Liu et al., 2024b) proposes the Spatial-Temporal
Large Language Model (ST-LLM) for traffic forecast-
ing. Traffic forecasting is a time series task that aims
to predict future traffic characteristics based on his-
torical data, a crucial component of intelligent trans-
portation systems. The main idea of the approach
is to use the timesteps as an input token in a spatio-
temporal network layer, focusing on spatial locations

and temporal patterns. The model was evaluated on
real-world traffic data and showed prominent results.

This article differs from others by exploring, in an
unprecedented way, the application of a Large Lan-
guage Model (LLM) in the task of univariate time se-
ries forecasting. While previous works have focused
on frameworks that reprogram LLMs to adapt to tem-
poral forecasting or on approaches that integrate tradi-
tional models with LLMs, our research adopts a direct
approach, using an LLM for time series forecasting
without the need for structural modifications or com-
binations with other models. Furthermore, we have
developed a specific prompt to guide the LLM in the
forecasting process, contributing a tool that can be
reused in different scenarios and with future LLMs.
This approach allows for a comparative analysis be-
tween the LLM and traditional methods such as Ran-
dom Forest and LSTM, providing new insights into
the potential and limitations of LLMs in this area.

3 METHOLOGY

3.1 Dataset

The first dataset comprises time series of product
sales from a retail store, specifically in the supermar-
ket sector, located in Fortaleza-CE. Information was
obtained on sales of twenty products from the A curve
(items with the greatest contribution to the store’s rev-
enue) over the period from January 2, 2017, to April
30, 2019, totaling approximately 850 days. The sales
of the products, by units or kilograms, were aggre-
gated by day for each of the products analyzed, and
the final time series were constructed. The product
identifiers were anonymized. In this article, we used
the data from January 2, 2017, to January 2, 2019,
as the training set, while the test data covered the pe-
riod from January 3, 2019, to March 3, 2019. Figure
1(B) illustrates a daily sales time series for one of the
A-curve products over a sample of 200 days.

The second dataset consists of time series of the
number of passengers boarding the twenty most used
bus lines in Fortaleza’s public transportation system
(Ceará). Passengers in the bus system use a smart
card with a user identifier, and each time this card is
used, a boarding record is made. The data was pro-
vided by the Fortaleza City Hall and has been used
in other articles, in compliance with the General Data
Protection Law (LGPD) (Caminha and Furtado, 2017;
Ponte et al., 2018; Bomfim et al., 2020; Ponte et al.,
2021). In this article, the training data covers the pe-
riod from March 1, 2018, to June 4, 2018, while the
test data spans a week (168 hours), from June 5, 2018,
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Figure 1: Examples of time series. (A) Number of passengers on a bus route during the first 200 hours. (B) Sales data of a
product over 200 days.

to June 11, 2018. This generated twenty time series,
each with more than 2,280 hours of boardings in the
training set and 168 hours in the test set. Figure 1(A)
illustrates a time series of hourly boardings for a bus
line, detailing the seasonal patterns that occur in the
vehicles over a sample of around 9 days (200 hours).

The retail domain data exhibits more complex and
varied seasonal patterns compared to the mobility do-
main data. Retail sales undergo significant variations
due to factors such as promotions, seasonal events,
and supply-demand fluctuations, which are not fully
captured in the dataset used in this study. This re-
sults in distinct seasonal patterns in each time series,
where certain products may experience unpredictable
sales spikes, depending on promotional campaigns or
market changes. On the other hand, the mobility data,
which records the number of passengers boarding bus
lines, shows more regular seasonal patterns, with pre-
dictable variations based on factors such as weekdays
and times of the day. Although some lines are bus-
ier on weekends or have higher demand on specific
weekdays, the variation within each series is rela-
tively low, making the temporal patterns more homo-
geneous and less complex to model.

3.2 Modeling and Model Training

The sliding windows technique was used in the mod-
eling process for the time series forecasting problem
(Chu, 1995) for the Random Forest and LSTM mod-
els. The sliding windows technique involves dividing
the time series into smaller, fixed-size segments (w).
The term "sliding" refers to the process of shifting the
window to the right along the series by a certain step
size (p), allowing for the construction of a training
dataset.

Sliding windows serve as a mechanism to trans-

form the time series into a labeled dataset, where each
window contains a set of observations from the past
of the time series, which are considered as the input
for the forecasting models. The observation imme-
diately after the end of the window is defined as the
target value to be predicted, given the previous win-
dow. This technique is particularly suited for super-
vised regression-based machine learning methods for
time series forecasting.

Figure 2 illustrates the process of generating input
and output examples used to train AI models. A daily
time series, shown in green as an example, is trans-
formed into a supervised dataset. A window of size
w is applied, generating the first input sample with w
values, representing the features that the models must
learn. In addition to the information from the window,
a time embedding is concatenated, providing tempo-
ral information about the target variable, such as the
time of day (specifically for mobility series), the day
of the week, the day of the month, and the day of the
year. These features allow the models to learn tempo-
ral dependencies from past observations, helping to
predict future values. The day immediately after the
window represents the target variable to be predicted.
The window is then shifted p steps to the right to gen-
erate new samples for the dataset, repeating the pro-
cess across the entire series. Depending on w and p,
there may be data overlap, reinforcing the discovery
of patterns and increasing the number of training sam-
ples. The final part of the flow in Figure 2 illustrates
the training process of machine learning models from
the labeled data generated in the previous steps.

For the retail time series, a window size of w = 90
(approximately three months) was used, while for the
urban mobility time series, the window size was de-
fined as w = 168 (exactly one week). These values
were chosen because they cover a sufficient period to
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Figure 2: Construction of examples using the concept of sliding windows.

capture the main seasonal patterns in the series, ensur-
ing that the most significant variations are reflected in
the modeled examples.

The models used were an ensemble model (Ran-
dom Forest) and a neural network (LSTM). In Ran-
dom Forest (Breiman, 2001), default parameters from
Scikit-learn (Pedregosa et al., 2011) were used. For
the LSTM (Hochreiter and Schmidhuber, 1997), the
Tensorflow implementation (Abadi et al., 2016) was
used, with the following parameters: neurons = 200,
batch_size = 32, ReLU activation function, epochs =
200, 20% validation, and the Adam optimizer with a
learning rate of 0.0001.

The choice of Random Forest and LSTM models
for time series forecasting in this research is justified
by the nature of the analyzed time series, which are
univariate and do not have a large time span. Ran-
dom Forest is known for its robustness in univariate
problems, especially when dealing with short time
series with relatively simple seasonal patterns (Fre-
itas et al., 2023). LSTM is widely used to capture
short- and medium-term temporal dependencies and
patterns, being effective in time series with moder-
ately complex structures (Sagheer and Kotb, 2019).
The use of Transformers, although powerful, would
not be indicated in this context because these models
are more appropriate for time series involving large
amounts of time data or multiple characteristics that
vary simultaneously (multivariate series) with com-
plex seasonal patterns (Zeng et al., 2023). Since the

time series used in this research do not have these
characteristics, applying Transformers would be un-
necessary and potentially less efficient, thus justify-
ing the choice of simpler models better suited to the
available data.

3.3 Developed Prompt

In this study, the modeling process for time series
forecasting using LLMs differs significantly from the
approach used with models like LSTM and Random
Forest, where the sliding windows concept is essen-
tial. In the case of LLMs, it does not make sense
to use a window-based approach, as the model oper-
ates on the entire sequence of data provided at once,
without the need to fragment the data into temporal
blocks. Instead, the modeling is guided by an elabo-
rate prompt that instructs the model to make predic-
tions based on the patterns and trends captured in the
data.

Figure 3 presents the prompt used in this study to
perform time series forecasts. This prompt was de-
signed to leverage the capabilities of an LLM, guid-
ing it to focus on the most relevant aspects of the time
series to generate the forecast. Below, we detail each
element of the prompt and explain its function:

• Variable h: Represents the number of days (or an-
other time unit, as defined by the time_step vari-
able) to be predicted, that is, it defines the forecast
horizon that the model must consider when gener-
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ating future values;

• Variable time_step: Indicates the time unit of the
provided data, which can be hours, days, weeks,
months, etc. This variable helps the model under-
stand the data’s granularity and adjust its analy-
sis to accurately capture the relevant seasonal pat-
terns and trends for that periodicity;

• Variable training_data: Contains the time series
that will be used for forecasting. This time se-
ries is provided up to the limit that, in other mod-
els (LSTM and Random Forest), would be consid-
ered the end of the training set, excluding the test
data. This way, the LLM has access only to the
information that would be available in a real fore-
casting scenario, similar to the process performed
with other machine learning models;

• Variable context: Provides additional information
about the time period corresponding to certain po-
sitions in the value vector, such as the day of
the week. This temporal contextualization plays
a role similar to the modeling window used in
LSTM and Random Forest, helping the model
capture seasonal variations and specific patterns
when generating forecasts. Examples of the con-
tent of the context variable include:

For data with a time step in hours:

• Day 0: positions 432 to 455 (Monday);
• Day 1: positions 576 to 599 (Sunday);
• Day 2: positions 696 to 719 (Friday).

For data with a time step in days:

• position 0 - (Monday);
• position 1 - (Tuesday);
• position 2 - (Wednesday).

The designed prompt was structured to ensure that
the LLM focuses on predicting the sequence of future
values without generating code, explanations, or any
additional content that could interfere with the accu-
racy and efficiency of the forecasting process. The
model is instructed to provide exclusively a vector
containing the predicted values, starting immediately
after the last data provided.

This specific prompt design aims to exploit
LLMs’ ability to capture complex patterns, such as
trends and seasonality, holistically, without the need
to segment the time series into multiple windows.
This approach is especially useful for language mod-
els, which have strong generalization potential and
can identify global patterns in a single pass through
the data without relying on traditional time series
modeling techniques.

Context
You are a time series forecasting assistant tasked with
analyzing data from a specific time series.
The time series has data for {h} consecutive periods.
Each entry in the time series represents the incidence
of an event occurring every {time_step}.
Objective
Your goal is to forecast the incidence of an event for
the next {h} {time_step}, taking into account not only
the previous periods but also the overall context.
To do this accurately, consider:

• Seasonal Patterns: Recurring peaks and troughs
occurring at a certain periodicity.

• Trends: Rising or falling trends in the time series.

Output Rules:
After analyzing the provided data and understand-
ing the patterns, generate a forecast for the next {h}
{time_step}, with the following rules:

• The output should be a list containing only the
predicted values, without any additional explana-
tion or introductory text.

• Under no circumstances generate code;

• Under no circumstances generate an explanation
of what you did;

• Provide only and exclusively a vector containing
the requested number of numbers.

• The forecast should start immediately after the
last data provided.

Example Output for N={h}:
{data_prompt[:h]}
Additional Instructions:

• Weekly Patterns: Use the provided data to under-
stand seasonal patterns, such as incidence peaks at
certain times.

• Day of the Week: The day of the week also influ-
ences the occurrence of events.

• Duration of an Event: The provided time se-
ries represents the occurrence of an event every
{time_step}.

Time series to be analyzed:
{training_data}
Context for the time period to be considered in the
forecast:
{context}
Generate a vector with {h} positions (N={h}) predict-
ing the sequence numbers:

Figure 3: Definition of the prompt used for time series
forecasts. The information appearing in braces represents
variables that are replaced whenever a new series forecast is
required.
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3.4 Execution Environment of the
Experiments

The Google API 1 was used to perform the infer-
ences with Gemini 1.5 PRO, always using a temper-
ature equal to one. To train and forecast with LSTM
and Random Forest, Python 3.11 was used, with Pan-
das 2.0.3 and Numpy 1.25.0 for data manipulation,
and Tensorflow 2.11.1 and Scikit-Learn 1.3.0, respec-
tively, for model creation.

3.5 Evaluation

The evaluation of the results was carried out us-
ing the Symmetric Mean Absolute Percentage Error
(SMAPE) (Makridakis, 1993), a metric chosen be-
cause it is percentage-based, which is particularly
relevant given that the retail dataset contains differ-
ent units (e.g., products sold by unit and by weight).
Furthermore, SMAPE is a geometric mean measure,
making it ideal for comparing the performance of
multiple models across a large number of forecasts,
as highlighted in (Kreinovich et al., 2014). SMAPE
is calculated as shown in Equation 1:

SMAPE =
1
h

h

∑

i=1

∣yi− ŷi∣

∣yi∣+∣ŷi∣
2

×100 (1)

where ŷi represents the predicted value, yi is the ob-
served actual value, and h is the total number of fore-
casted time units in the forecasting horizon.

For each of the 40 time series studied, ten fore-
casts were made for each evaluated model, with h= 60
for the retail series and h = 168 for mobility. For each
forecast, the respective SMAPE was calculated, and
the average SMAPE for each series was subsequently
obtained. In addition, the Standard Error of the Mean
(SEM) was calculated (Altman and Bland, 2005), as
shown in Equation 2:

SEM =
σ
√

n
(2)

where n is the total number of forecasts made, which
in this study is always n = 10.

4 RESULTS AND DISCUSSION

The forecasting results for the 40 time series from the
Retail and Mobility domains, using the models Gem-
ini 1.5 PRO, LSTM, and Random Forest, are pre-
sented in Table 1. The SMAPE (Symmetric Mean

1https://cloud.google.com/vertex-ai/generative-
ai/docs/model-reference/gemini?hl=pt-br

Absolute Percentage Error) values and their respec-
tive standard errors (SEM) allow for the evaluation of
the forecasting accuracy for each individual time se-
ries.

In the Retail domain, the Random Forest model
demonstrated superiority in most of the time series,
with an average SMAPE of 36.22%, being the best
or tied (considering SEM) with the best model in 15
out of the 20 analyzed time series. The LSTM model,
on the other hand, presented an average SMAPE of
45.85%, while Gemini 1.5 PRO obtained a value of
41.80%.

Analyzing the individual time series, the Gemini
1.5 PRO model outperformed or tied with the other
models in seven time series (ids 3, 14, 15, 16, 18,
19, 20). The LSTM model, although it had a lower
performance in most of the time series, stood out in
three series (ids 3, 13, 19), where it tied with Gemini
1.5 PRO, and in two specific series (ids 3 and 19), it
slightly outperformed Random Forest.

In the Mobility domain, the model performances
were more balanced. Gemini 1.5 PRO achieved an
average SMAPE of 20.60%, LSTM reached 27.03%,
while Random Forest had an average SMAPE of
19.67%. Notably, Gemini 1.5 PRO outperformed or
tied with the other models in 11 out of 20 time series
(ids 4, 5, 9, 10, 12, 13, 15, 16, 17, 18, 19).

The results obtained in this study demonstrate that
the Large Language Model (LLM) Gemini 1.5 PRO
showed promising performance when compared to
traditional machine learning models, such as Random
Forest and LSTM, in the task of time series forecast-
ing. In several time series, especially in the Mobil-
ity domain, the LLM outperformed traditional algo-
rithms, which is particularly interesting considering
that the model used only its intrinsic language capa-
bilities to capture and infer seasonal patterns.

This result suggests that, although LLMs like
Gemini 1.5 PRO were not originally designed for time
series forecasting, their ability to model complex pat-
terns in varied data can be successfully explored un-
der certain conditions. The LLM’s capacity to gen-
eralize information and identify hidden patterns in
the data, which is crucial for natural language un-
derstanding, can also be useful in specific forecasting
scenarios, as evidenced by the results obtained with
the Mobility time series.

However, the worse results observed in the Retail
domain indicate that there are still significant chal-
lenges to be overcome for the effective application of
LLMs in this area. The Retail time series, with their
more complex and diverse patterns, seem to demand
a level of specialization that LLMs cannot yet fully
achieve. The difficulty of the LLM in dealing with the
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Table 1: SMAPE values obtained in the experiments.

Retail Mobility
id Gemini LSTM RF id Gemini LSTM RF
1 55,59 ± 1,28 50,70 ± 0,02 33,69 ± 0,12 1 15,96 ± 0,73 12,23 ± 0,25 30,56 ± 2,84
2 50,53 ± 0,97 46,92 ± 0,07 39,48 ± 0,14 2 17,75 ± 0,14 25,39 ± 0,87 11,49 ± 0,04
3 46,41 ± 1,70 43,51 ± 1,20 45,94 ± 0,29 3 16,27 ± 0,55 14,34 ± 0,28 21,42 ± 0,59
4 18,80 ± 0,68 52,01 ± 0,52 13,97 ± 0,07 4 17,15 ± 2,16 36,89 ± 0,72 16,10 ± 0,56
5 85,45 ± 1,93 85,78 ± 0,06 70,13 ± 0,34 5 12,55 ± 1,47 21,65 ± 0,46 10,61 ± 0,50
6 43,83 ± 0,70 39,04 ± 0,07 22,56 ± 0,17 6 29,28 ± 0,13 28,17 ± 1,01 17,29 ± 2,40
7 45,64 ± 0,56 47,98 ± 0,73 35,88 ± 0,15 7 19,36 ± 0,35 20,68 ± 0,86 9,39 ± 0,05
8 30,77 ± 1,75 33,54 ± 0,79 24,84 ± 1,02 8 50,63 ± 0,70 18,78 ± 0,77 14,62 ± 0,54
9 37,21 ± 0,54 32,91 ± 0,04 30,41 ± 0,17 9 24,82 ± 1,05 26,50 ± 0,30 25,34 ± 0,52
10 45,12 ± 2,56 41,69 ± 0,16 32,52 ± 0,19 10 14,66 ± 0,55 31,03 ± 1,04 14,94 ± 0,06
11 36,83 ± 0,50 31,59 ± 0,02 30,56 ± 0,19 11 23,52 ± 0,86 32,24 ± 0,73 15,81 ± 0,07
12 21,89 ± 0,61 20,89 ± 0,47 18,91 ± 0,24 12 15,48 ± 0,35 24,90 ± 0,42 21,06 ± 0,40
13 36,55 ± 0,55 34,15 ± 0,06 35,01 ± 0,19 13 13,41 ± 0,82 40,97 ± 1,35 19,85 ± 1,07
14 22,95 ± 0,51 35,14 ± 0,82 26,92 ± 0,40 14 26,03 ± 0,76 23,02 ± 0,53 26,31 ± 2,24
15 33,22 ± 0,91 57,61 ± 2,00 33,23 ± 0,25 15 16,36 ± 0,25 30,19 ± 0,72 22,04 ± 0,39
16 27,55 ± 0,40 49,14 ± 0,46 29,79 ± 0,15 16 15,01 ± 0,55 25,45 ± 0,60 26,63 ± 0,53
17 31,90 ± 0,63 37,18 ± 0,09 25,92 ± 0,17 17 19,76 ± 0,36 26,61 ± 0,35 28,95 ± 2,86
18 61,79 ± 1,02 70,64 ± 0,84 62,21 ± 0,41 18 13,90 ± 0,95 39,67 ± 1,43 15,64 ± 0,70
19 29,08 ± 0,29 29,12 ± 0,65 37,59 ± 0,62 19 23,47 ± 0,69 25,94 ± 0,38 30,32 ± 0,29
20 74,85 ± 0,86 77,49 ± 0,44 74,91 ± 0,20 20 26,64 ± 1,13 35,92 ± 1,18 15,03 ± 0,14
µ 41,80 45,85 36,22 µ 20,60 27,03 19,67

variability and complexity of these time series points
to the need for model improvements or possibly the
integration of complementary techniques that can bet-
ter handle these data characteristics.

One of the contributions of this study is the de-
velopment of a specific prompt for time series fore-
casting, which can be reused in different LLMs as
new models are released. This allows researchers and
practitioners to evaluate the evolution of LLMs in the
task of time series forecasting over time, providing a
practical tool to track and explore the growing poten-
tial of these models in varied scenarios.

5 CONCLUSIONS

This study investigated the effectiveness of a Large
Language Model (LLM) in the task of time series
forecasting, comparing its performance with tradi-
tional machine learning models such as Random For-
est and LSTM. The results showed that, while the
LLM used, Gemini 1.5 PRO, demonstrated promis-
ing performance, especially in the time series from
the Mobility domain, its performance was inferior to
traditional methods in the Retail domain, where the
time series presented more complex and diverse pat-
terns.

One of the main contributions of this work is the
development of a specific prompt for time series fore-
casting, which can be reused in future studies with
different LLMs. This prompt allows for continuous
evaluation of LLMs’ evolution as new models are re-

leased, offering a solid foundation for future compar-
isons.

For future work, we propose evaluating open-
source LLMs in the task of time series forecasting.
The use of open-source models will provide greater
flexibility in customization and experimentation, in
addition to allowing direct comparisons with propri-
etary models such as Gemini 1.5 PRO. This investi-
gation may reveal the potential of open-source LLMs
to capture complex temporal patterns and generalize
to different forecasting contexts.

Additionally, it is essential to expand the evalua-
tion to include larger and more complex time series,
which could provide a more comprehensive view of
the performance of LLMs. By including these series,
it will be possible to compare the results with state-
of-the-art models specifically designed to handle such
challenges, such as Transformers. This comparison
will be crucial to determine whether LLMs can effec-
tively compete with highly specialized models in sce-
narios where the complexity and variability of time
series are significant.
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