
Interpreting Workflow Architectures by LLMs

Michal Töpfer a, Tomáš Bureš b, František Plášil c and Petr Hnětynka d
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Abstract: In this paper, we focus on how reliably can a Large Lanuage Model (LLM) interpret a software architecture,
namely a workflow architecture (WA). Even though our initial experiments show that an LLM can answer
specific questions about a WA, it is unclear how correct its answers are. To this end, we propose a methodology
to assess whether an LLM can correctly interpret a WA specification. Based on the conjecture that the LLM
needs to correctly answer low-abstraction level questions to answer questions at a higher abstraction level
properly, we define a set of test patterns, each of them providing a template for low-abstraction level questions,
together with a metric for evaluating the correctness of LLM’s answers. We posit that having this metric
will allow us not only to establish which LLM model works the best with WAs, but also to determine what
their concrete syntax and concepts are suitable to strengthen the correctness of LLM’s interpretability of WA
specifications. We demonstrate the methodology on the workflow specification language developed for a
currently running Horizon Europe project.

1 INTRODUCTION

Large language models (LLMs) are being explored in
many disciplines. This is also true for software archi-
tecture design, where LLMs are starting to be explored
to guide, review, and generate software architectures.

In software architectures, as in other fields, a prob-
lem with LLMs is the reliability of their answers. In
our experiments, we have seen that LLMs may provide
very accurate answers that are almost completely hal-
lucinated just from the names of components. This typ-
ically happens in cases when the architecture follows
some well-established reference architecture rules.

It is not just the choice of a particular LLM that de-
termines the correctness of answers, but it also matters
how the LLM is queried and how the information given
to it is represented. In the case of software architec-
tures, the key information given to the LLM is software
architecture specification—the obvious representative
here being textual specification in an architecture de-
scription language (ADL).

We posit that if we could determine the correctness
of an LLM’s answers given the concrete syntax of the
ADL, its semantics (including features like component
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nesting, different control/data-flow mechanisms, etc.),
and the selection and form of mandatory metadata
(e.g., component names, description of component
behavior), we could design an LLM-friendly ADL,
which would strike the trade-off between its expres-
siveness and its correct interpretability by the LLM.

As the first step in this endeavor, we focus on the
problem of how to determine the correctness of an
LLM’s answers given a certain ADL. In this paper, we
narrow this goal to a particular class of software archi-
tectures, namely workflow architectures (WAs). These
are typically represented as an oriented graph of tasks
and operators (e.g., branching, fork/join) bound by con-
trol and data flow links. Examples include languages
such as BPMN1. We aim to target the above-mentioned
problem by addressing the following research ques-
tions.

(RQ0): How to validate that an LLM can correctly
interpret WAs and is not just hallucinating
its answers?

(RQ1): How to measure the correctness of its inter-
pretation?

To answer these questions, we outline a method-
ology for testing the quality (correctness) of LLM’s
interpretation of WAs.

The methodology is based on a set of parameter-

1https://www.bpmn.org/
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ized patterns for creating low-abstraction-level ques-
tions from which particular test questions will be de-
rived for a specific workflow ADL. The idea of us-
ing these patterns stems from the conjecture that suc-
cessful answering of these questions is a necessary
condition for reliably answering questions at a higher
abstraction level (such as recommending a task from a
repository to enhance the workflow’s functionality in
a desired way). Technically, we structure the patterns
into categories reflecting key facets of the workflow
specification (structure, behavior, basic functionality).

The structure of the paper is as follows. Sect. 2
shows a running example. In Sect. 3, the methodology
is presented. Sect. 4 presents results and a related
discussion. Sect. 5 summarizes the related work and
Sect. 6 concludes the paper.

2 RUNNING EXAMPLE

To give a realistic grounding to our methodology, we
demonstrate it on the workflow ADL (WADL further
on) developed in the Horizon Europe project Extrem-
eXP2, which focuses on modeling experiments via
workflows.

Figure 1 shows a simple workflow BinaryClassi-
fication for training a classifier, specified as a graph
(right) and WADL (left). Since we believe the basics
of a WADL specification are easy to grasp, we only
briefly comment on its key concepts.

Each workflow is defined by a block that starts
with the workflow keyword followed by the workflow
name. Within an individual workflow, the core entities
are task, data, and flow links.

A task is defined by the task keyword (a round-
corner rectangle in the graphical notation) and repre-
sents an action to be performed. A task can be either
primitive (executable file, service, etc.—as TrainTest-
Split on line 7) or is accomplished by a sub-workflow
like ModelTraining (line 10).

The data (the data keyword, grey rectangles with a
folded corner) serve as inputs and outputs of tasks and
also of whole workflows.

By flow links, both control flow and data flow are
defined (when a property relates to both of these con-
cepts, we simply refer to a flow). A control flow (sim-
ple/solid arrows) defines the order in which the tasks
are executed. It can contain branches via conditional
links (an arrow plus question mark followed by a con-
dition (as in line 21); an arrow starting with a diamond
in graphical notation). There are other possibilities for
more complex branching (such as parallel branching,

2https://extremexp.eu/

for simplicity omitted in the example). The sequence
of actions in a control flow is its trace. Finally, a data
flow (double arrows in WADL and dashed arrows in
graphical notation) defines where data are produced
and consumed.

3 METHODOLOGY

To address both research questions, we designate a set
of test instances for evaluating whether the LLM cor-
rectly interprets a WA specification in an ADL. Test in-
stances are generated from test patterns, each testing a
particular semantical aspect of the ADL (test instances’
variability is supported by test patterns’ parametriza-
tion).

The key elements of a test pattern are (i) a partic-
ular WA specified in an ADL, (ii) a question to LLM
about WA, and (iii) a metric to evaluate the correctness
of LLM’s response (typically a reference answer).

3.1 Test Patterns

We devised the test patterns by systematically ana-
lyzing entities in the workflow meta-model developed
within the ExtremeXP project. As mentioned in Sect. 1
we group the test patterns into the following three cat-
egories (listed by their increasing complexity): Struc-
ture (Sect. 3.1.1), Behavior (Sect. 3.1.2), Basic func-
tionality (Sect. 3.1.3).

Even though their list is formally neither exhaus-
tive nor complete, it currently reflects the main con-
cerns we have encountered so far when experimenting
with WADL and LLMs.

The following sections provide an overview and
examples of the test patterns and Table 1 lists all the
patterns. More details can be found in the replication
package3.

3.1.1 Structure

In this category, we focus on tasks, flow links, special
link types (e.g., conditional control flow links), depen-
dencies, and hierarchical structure in/of workflows.

For example, by applying a test pattern of this
category, one can verify whether an LLM is able to
correctly say if a specific task follows directly af-
ter another in a control flow specification (like Train-
TestSplit and BinaryClassificationTraining – line 20 in
Figure 1) or whether specific tasks are involved in a
loop (BinaryClassificationTraining and BinaryClassifi-
cationEvaluation – line 20 and 21).

3 https://github.com/smartarch/extremexp-llm/
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1 // file BinaryClassification.wadl
2 workflow BinaryClassification {
3 description "Training of a binary classification ML model with the given

hyperparameters.";
4 // tasks
5 task TrainTestSplit {
6 description "Splits data...";
7 implementation "file://split.py";
8 param test_size = 0.2;
9 }

10 task BinaryClassificationTraining {
11 subworkflow ModelTraining;
12 }
13 task BinaryClassificationEvaluation {...}
14 // data
15 data HyperParameters;
16 data InputData; data TrainingData; data TestData;
17 data MLModel; data MLModelMetrics;
18
19 // control flow
20 START −> TrainTestSplit −> BinaryClassificationTraining −>

BinaryClassificationEvaluation;
21 BinaryClassificationEvaluation ?−> BinaryClassificationTraining

{ condition.../*retraining necessary*/; }
22 BinaryClassificationEvaluation ?−> END

{ condition... /*otherwise*/; }
23
24 // data flow
25 InputData −−> TrainTestSplit −−> TrainingData −−>

BinaryClassificationTraining −−> MLModel −−>
BinaryClassificationEvaluation −−> MLModelMetrics;

26 HyperParameters −−> HyperParameters;
27 TrainTestSplit −−> TestData −−> BinaryClassificationEvaluation;
28 }
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 // file ModelTraining.wadl
31 workflow ModelTraining {
32 description "..."
33 // tasks
34 task FeatureExtraction {...}
35 task ModelInit {...}
36 task ModelFitting {...}
37 // data
38 data Hyperparameters;
39 data TrainingData; data TrainingFeatures;
40 data UntrainedMLModel; data MLModel;
41
42 // control flow
43 START −> FeatureExtraction −> ModelInit −> ModelFitting −> END;
44
45 // data flow
46 TrainingData −−> FeatureExtraction −−> TrainingFeatures −−> ModelFitting

−−> MLModel;
47 HyperParameters −−> ModelInit;
48 HyperParameters −−> ModelFitting;
49 ModelInit −−> UntrainedMLModel −−> ModelFitting;
50 }

Figure 1: An excerpt of a workflow specification—WADL and graph.

3.1.2 Behavior

In this category, we focus on task execution order,
conditional flow links, and traces.

For example, by applying a test pattern of this cate-
gory, one can verify that the LLM can assess whether a
loop in a workflow may end (as if the loop in Figure 1
ends when retraining necessary on line 21 is false) or
whether a conditional branch could be taken.

3.1.3 Basic Functionality

In this category, we focus on task functionality, work-
flow functionality, and semantical order of tasks.

For example, using a test pattern of this category
one can verify that the LLM is able to spot mistakes
in the task order (e.g., whether the order of tasks Bina-
ryClassificationTraining and BinaryClassificationEvalu-
ation was mistakenly swapped in Figure 1).
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Table 1: List of test patterns (grouped by category).

Category and
Sub-category

Pattern name

St
ru

ct
ur

e

Tasks
List of tasks
List of tasks with a property (filter tasks)

Flow
links

Link existence
Task after task
Next tasks in flow
Flow cycle
Flow start detection
Flow end detection
Missing link (flow is not continuous)

Special
link types

Link existence with a property
List of links with a property (filter links)

Links
operators

Operator existence (e.g., fork, join)
Parallel tasks (block) existence
List tasks in a parallel (fork-join) block
Parallel tasks to a specific task
List all parallel tasks
List tasks in an operator block (other than simple fork-join)

Depen-
dencies

Dependency existence (in a flow)
List of dependencies (in a flow)
Data production (which task produces specific data)

Hierar-
chical
structure

Task hierarchy
List of composite tasks
List of nested tasks
Infinite recursion in references

B
eh

av
io

r

Task
order

Are given tasks in correct order (corresponding to control flow)? (without conditional flow)
Are all tasks in correct order? (without conditional flow)
Determine task order (i.e., topological sort; without conditional flow)

Condi-
tional
(control)
flow

Is conditional flow mutually exclusive
Are given tasks in correct order? (with conditional flow)
Are all tasks in correct order? (with conditional flow)
Next task in conditional flow
Determine task order (i.e., topological sort; with conditional flow)
Is loop infinite?
Loop end condition

Traces
Can trace of tasks occur with initial situation
Does task run in every situation?

B
as

ic
fu

nc
tio

na
lit

y

Tasks
function-
ality

Describe task functionality (based on name, parameters, links, etc.)
Inconsistent task name and description
Inconsistent task name and other entities (e.g., data, linked tasks)
Meaning (functionality) of tasks (e.g., task performs an operation that is not directly men-
tioned in its name)

Workflow
function-
ality

Describe workflow functionality
Inconsistent workflow name and description
Inconsistent descriptions of workflow and tasks

Task
order

Semantically incorrect order of tasks
Meaning (functionality) of preceding tasks
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3.2 Test Pattern Examples

In this section, we present three “representative” test
patterns, each belonging to one of the three categories.

3.2.1 List of Tasks

Category: Structure
Rationale: In a workflow, can the LLM list the tasks

with a given property?
Parameters: P,N,T,W

P: property of the tasks (e.g., task has a parameter),
N: number of tasks satisfying P,
T : total number of tasks,
W : workflow name

Architecture: Workflow W with N tasks satisfying P
and (T −N) tasks not satisfying P.

Question: List all tasks in workflow W that satisfy P.
Reference Answer: A set of N tasks satisfying P
Evaluation Metric: Jaccard index of the LLM’s an-

swer set and the reference answer set4

Example of Instance:
Architecture: Figure 1,
Question: “List all tasks in workflow BinaryClassifi-
cation that are realized by a sub-workflow.”,
Reference Answer: { BinaryClassificationTraining }

3.2.2 Mutually Exclusive Conditional Flow

Category: Behavior
Rationale: Can the LLM interpret conditional flow?
Parameters: F,W,T0,T1,T2,C

F : flow link type (control flow or data flow),
W : workflow name,
T0,T1,T2: tasks in the workflow,
C: condition for conditional link (in flow F)

Architecture: Workflow W with tasks T0, T1, T2 (and
possibly other), conditional link in flow F between
T0 and T1 with condition C, conditional link in flow
F between T0 and T2 with condition ¬C.

Question: Are conditional links in flow F from task
T0 mutually exclusive?

Reference Answer: yes
Evaluation Metric: correctness (1 if LLM’s answer

is correct, 0 otherwise)
Example of Instance:

Architecture: Figure 1,
Question: “Are conditional control flow links

4The Jaccard index is defined as the size of the inter-
section divided by the size of the union of the sets. This
penalizes both missing items in the LLM’s response and
items that should not appear there.

from task BinaryClassificationEvaluation mutually
exclusive?”
Reference Answer: yes (conditions “retraining
necessary” (line 21) and “otherwise” (line 22) are
mutually exclusive)

A similar pattern with the same question and reference
answer “no” exists to also cover negative examples
(links that are not mutually exclusive).

3.2.3 Inconsistent Task’s Name and Its
Description

Category: Basic functionality
Rationale: Can the LLM detect inconsistency in a

task name and task description?
Parameters: W,T,DT

W : workflow name,
T : task name,
DT : task description that is inconsistent with name T

Architecture: Workflow W with task T that has a
description DT .

Question: Identify tasks with inconsistency of their
names and descriptions in W and present a list of
them.

Reference Answer: The description of task T does
not correspond to its name (exact formulation might
depend on the test instance).

Evaluation Metric: ROUGE-1 recall5 or BERT-
Score6

Example of Instance:
Architecture: Task BinaryClassificationTraining
(line 10) with description “Training of a regression
ML model” (not shown in Figure 1)
Question: “Identify tasks with inconsistency of their
names and descriptions in BinaryClassification and
present a list of them.”
Reference Answer: “BinaryClassificationTraining: the
task’s description Training of a regression ML model
is inconsistent with its name indicating training of a
binary classification model.”

4 RESULTS

To assess the viability of our methodology, we applied
it to workflows from the ExtremeXP Horizon Europe

5The ROUGE metric (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004) determines the word overlap
of the reference answer and the LLM output.

6BERTScore (Zhang et al., 2020) computes the cosine
similarity of word embeddings (that capture the meaning of
words)

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

612



project (a snippet is in Figure 1). For the initial evalua-
tion, we instantiated only a subset of the test patterns,
totaling 25 test instances (Table 2).

As part of the contribution, we developed a tool
based on the LangChain Python framework7 that al-
lows to run the experiments automatically. The tool
takes a list of instantiated patterns and constructs
prompts from them, queries the LLMs (via the OpenAI
API platform8), and evaluates the answers. Implemen-
tation, experiment setup, instantiated patterns, and raw
results are available in the replication package3.

4.1 Experiment Setup

For experiments, we used two LLMs: GPT-4o (ver-
sion gpt-4o-2024-05-13) and GPT-4 Turbo (gpt-4-0125-
preview). We evaluated how well these LLMs interpret
WADL when employing three variants of its expres-
siveness: In the first one, each (sub)workflow is speci-
fied in a separate file. Since a workflow can be derived
from (import) another workflow, it may be necessary
to import more than one file to specify the workflow
(With imports WADL). The second variant is simpli-
fied by inlining the importing effect (Inlined WADL).
All sub-workflows are inlined in the third variant (No
sub-workflows WADL).

For GPT-4o, we applied two modes of presenting
the WADL specifications to the LLM: 1. In the up-front
mode, all relevant WADL specifications are presented
in the initial prompt, while 2. in agent mode, the LLM
has to ask for the WADL specifications (sub-work-
flows) it needs. For GPT-4 Turbo, we only tested the
agent mode. For more details, refer to Section 4.2.

The experiment was carried out by prompting the
test instances to an LLM one at a time and then scoring
the LLM’s response by the pattern’s metric.

4.2 Prompt Construction

During the evaluation, each test instance was treated as
a separate LLM conversation, so they did not influence
each other. The prompt encompassing a test instance
of any test pattern consisted of four parts:
1. A basic description of the WADL expressiveness

variant,
2. Reference to the workflow in agent mode, or WADL

specifications in up-front mode (see below),
3. Instructions to the LLM (see below),
4. Question.

In terms of reference to the workflow in agent
mode, we do not include the workflow specifications

7https://python.langchain.com/
8https://platform.openai.com/

directly in the prompt. Rather, the LLM can request
to read the workflow specification files it needs (via
function calling9). We chose this approach because we
wanted to see whether the LLM was able to figure out
which further information was necessary (a workflow
may contain references to other workflows).

In the up-front mode, we include the complete
WADL specifications of all relevant workflows and
sub-workflows in the initial prompt (instead of just
providing a reference).

We instruct the LLM to think step by step (as rec-
ommended in the literature, e.g., by (Kojima et al.,
2023), and known as the chain of thought) and write
a short explanation before giving the final answer. In
the agent mode, we also instruct to use function calls
(tools) to obtain the required WADL specifications. In
addition, we instruct to provide the answer in a specific
form, e.g., the answer has to be “yes” or “no”.

A prompt formulation is illustrated in Figure 2 and
others are in the replication package3.

4.3 Summary of Results

The results are summarized in Table 2 showing the
average scores of the test instances for each pattern
considered. Since LLM responses are stochastic, the
prompting of each test instance was done five times.
Thus, the table summarizes each score by mean. The
“total” scores are averaging the scores of test instances
in each pattern category.

Observing the scores and manually evaluating the
actual LLM’s responses, we have concluded that both
LLMs interpret test instances mostly correctly in the
Structure and Behavior categories. The differences in
scores between the two LLMs are minor and are mostly
due to the stochasticity of the answers. As the number
of test instances is rather small (work in progress),
a few incorrect answers can noticeably influence the
final score.

In the Basic functionality category, it appears that
GPT-4o outperforms GPT-4 Turbo. However, note that
the scores are not equal to 1, even for correct answers
(when checked manually). The differences are due
to the sensitivity of the ROUGE metric (Lin, 2004)
to the exact formulation of the answers. In short, the
ROUGE-1 metric counts how many words from the
reference answer appeared in the LLM’s answer, so
a correct LLM’s answer formulated using different
words will not necessarily get a perfect score. By
manually checking the answers of both GPT-4o and
GPT-4 Turbo, we noticed that both LLMs usually an-
swer correctly, so we attribute the differences in score

9https://platform.openai.com/docs/guides/
function-calling
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Table 2: Summary of the evaluation results for three WADL expressiveness variants. GPT-4o results in agent mode are in black,
GPT-4 Turbo in blue, and GPT-4o in up-front mode in teal (note that for the No sub-workflows variant, it does not make sense
to differentiate between agent and up-front modes as there is always only one WADL specification file). The scores show the
mean of five repetitions of each test instance.

Pattern
category

Pattern name Instance
count

With imports
WADL Score

Inlined WADL
Score

No sub-workflows
WADL Score

Structure

List of tasks 5 0.85 0.85 0.95 1.00 1.00 1.00 1.00 1.00
Links in flow 4 0.95 0.95 1.00 0.95 1.00 1.00 0.95 0.85
Task after task 4 0.75 0.60 0.95 0.85 0.75 1.00 0.70 0.60
Next tasks in flow 4 0.95 1.00 0.80 0.90 1.00 0.88 0.78 1.00
Flow cycle 4 0.80 0.85 1.00 1.00 1.00 1.00 0.70 1.00
Total 21 0.86 0.85 0.94 0.94 0.95 0.98 0.83 0.90

Behavior
Mutually exclusive
conditional flow

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Total 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Basic
functionality

Inconsistent task name
and description

1 0.52 0.36 0.45 0.56 0.31 0.48 0.55 0.32

Inconsistent descriptions 1 0.34 0.22 0.42 0.43 0.26 0.39 0.47 0.23
Total 2 0.43 0.29 0.44 0.50 0.29 0.43 0.51 0.28

mainly to the GPT-4o formulating its answers closer
to our reference ones. To address the issue, we ex-
perimented with the BERTScore metric (Zhang et al.,
2020), which uses word embeddings to capture the
meaning of words and should therefore be less sensi-
tive to the exact wording of the answers. However, we
still could not differentiate correct and incorrect an-
swers more accurately. Therefore, we plan to conduct
further research and experiment with other metrics.

We noticed that GPT-4o performs worse than GPT-
4 Turbo in the No sub-workflows WADL variant in the
questions that require answering only within the scope
of a particular task (corresponding to a sub-workflow
in other variants); for instance, this is the case in the
Flow cycle pattern for which GPT-4o scored 0.7 while
GPT-4 Turbo scored 1.0. We figured out that (newer)
GPT-4o did not correctly interpret the instruction to
work only within the scope inside the task—it incor-
rectly considered also the task itself. We suspect this
was because we originally “fine-tuned” the instructions
for GPT-4 Turbo. Altering the prompt formulation to
clarify the instruction might be necessary for other
LLMs (including GPT-4o).

Even though the differences between the results of
the WADL expressiveness variants are minor, in the
Import variant, the LLMs score worse in the Structure
category by obviously tending to miss the information
obtained via the importing effect (as shown in example
in Figure 3), especially in the agent mode as the LLM
has to explicitly ask for the WADL specification of the
base workflow. In the up-front mode, the differences
are not that significant.

Interestingly, presenting all the WADL specifica-
tions to the LLM up front can also hinder the results.
For instance, in the Next tasks in flow pattern, the
LLM in up-front mode scores worse because when the
sought next task represents a sub-workflow, it looks
inside it and answers with the first task from it instead
of just returning the name of the task itself. In the
agent mode, it would have to first ask for the WADL
specification of the sub-workflow to obtain the task
inside.

From these results, we conclude that our method-
ology is viable for evaluating the ability of LLMs to
interpret WAs.

4.4 Discussion and Interesting
Observations

In this section, we comment on two interesting obser-
vations based on the results.

4.4.1 Sensitivity to Prompt Formulation

As published elsewhere, it is desirable to formulate
the prompt as exactly as possible. Specifically, e.g.,
when the question asks to “list all tasks that have a
parameter”, the LLMs sometimes list tasks that de-
pend on the Hyperparameters data object. However,
when the question is formulated more precisely by
adding “(specified via the ‘param’ keyword)”, we get
the desired answers.

As another example, consider two patterns that
target the same workflow feature but by differently
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Your goal is to help the user with analyzing results of
an experiment and suggest improvements to the exper-
iment itself. The experiment is defined by a workflow,
which is an activity diagram consisting of several tasks
with a data flow among them. Each of the tasks can be
composed of a subworkflow and you can use tools to
obtain the specification of the subworkflow.

The workflow is specified using a DSL:
arrows "->" represent control flow
arrows with question mark "?->" represent conditional
control flow
dashed arrows "–>" represent data flow

A workflow can be derived from another workflow, which
is denoted by the "from" keyword. When working with a
derived workflow, always obtain the specification of the
base workflow as it is necessary to fully understand the
derived workflow.

Use the available tools if you need specification of a
workflow or a task. Always gather all the necessary
information before submitting your final answer. Think
step by step. First, reason about the question and write
a short explanation of your answer. Then, on a separate
line, write "Final answer:" followed by your final answer
to the question. Your final answer must be a comma
separated list of values.

List all tasks in workflow ’package2.MainWork-

flow’ . Do not list tasks nested inside other tasks.

Figure 2: Example of prompting a test instance of the List
of tasks test pattern (Sect. 3.2.1) in the agent mode. In
compliance with Sect. 4.2, the prompt starts with the WADL
variant description, followed by the instructions to the LLM
(highlighted in pink), and the question (yellow) with the
workflow reference (green) inside it.

formulated questions—Links in flow asks if there “is
a control flow link” between two tasks, and Task after
task asks whether a task “follows directly after” an-
other task (a more detailed description of the patterns
is available in the replication package3). The results
are better for the Links in flow pattern in all WADL
expressiveness variants clearly showing that dissimi-
larly formulated questions about the same feature can
result in different scores.

4.4.2 Semantically Incorrect Test Instances

We noticed that among the Structure test instances, per-
formance was worse when the WADL specification in
a prompt was semantically incorrect. For instance, this
happened in the case of the prompt with a specification
where ModelEvaluation proceeded before ModelTraining
(in the control flow the evaluation should be obviously
after training). When the prompt question was: “Does
task ‘Training’ follow directly after ‘Evaluation’ in the

control flow?”, the answers were (incorrectly) nega-
tive for all WADL variants. The LLM gave illogical
answers, such as: “... ModelTraining does not follow di-
rectly after ModelEvaluation ... Instead, ModelEvaluation
precedes ModelTraining...”

4.5 Threats to Validity

The threats to validity are mostly related to the fact
that LLMs are sensitive to the exact formulation of the
questions asked.

A limitation is that the exact formulation of test
patterns and test instances must be tailored to a par-
ticular ADL since ADLs may differ in the concepts
they define (e.g., “sub-workflow” does not exist in all
the WADL variants we tested). Thus, the difference
in results between two particular ADLs may be due
to specific formulations of basically similar questions
and not to a different quality of interpretation of the
ADLs.

Similarly, the formulation, specifically the clarity
of the instructions, can influence the results of differ-
ent LLMs (as we noticed in the Flow cycle pattern). It
is necessary to be careful not to “fine-tune” the ques-
tions to one particular LLM but to find a trade-off that
fits all the tested LLMs. Otherwise, the differences
among scores of different LLMs could be due to the
formulation of the questions and not to different levels
of interpreting WAs by these LLMs.

Another threat is that we only used two LLMs, so
the results do not refer to the performance of other
LLMs available elsewhere. Nevertheless, the main
goal of this paper is to provide a methodology to mea-
sure the quality of LLMs interpretation, the flexibility
of our experimental framework is achieved by employ-
ing the LangChain abstractions so that swapping to
another LLM requires updating only a few lines of our
code.

5 RELATED WORK

The related areas of work for our paper are the evalua-
tion of LLMs and the use of LLMs to design a software
architecture.

To facilitate the evaluation of LLMs, there are a
number of frameworks that allow grouping of evalua-
tion datasets and performing a large number of evalua-
tion tasks, such as Language Model Evaluation Har-
ness (Sutawika et al., 2024) and Holistic Evaluation
of Language Models (Liang et al., 2023). There are
also several different metrics used in evaluations as
summarized by (Ip, 2024), including purely statistical
scores (e.g., word overlap between LLM outputs and
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PROMPT TO LLM: see Figure 2

LLM ASKS FOR WORKFLOW VIA FUNCTION CALL:
workflow_specification(package=’package2’,
workflow=’MainWorkflow’)

ANSWER TO LLM BY THE FUNCTION OUTPUT:
package package2;

workflow MainWorkflow from package1.Workflow1 {
configure task Task3 {

implementation "file://implementation_B.py";
}

configure task Task4 {
subworkflow SubWorkflow;

}

configure task Task1 {
configure tasks Task6 {

configure task Task8 {
implementation "file://implementation_E.exe";

}

configure task Task9 {
implementation "file://implementation_F.exe";

}
}

}
}
LLM RESPONSE:
To list all tasks in the workflow ’package2.MainWorkflow’
without including tasks nested inside other tasks, we need
to consider the structure of the workflow. This workflow is
derived from ’package1.Workflow1’, and it has been
customized by adding or configuring new tasks. However,
the question specifically asks not to list tasks nested inside
other tasks, meaning we only focus on the top−level tasks
directly under ’package2.MainWorkflow’.

From the provided workflow specification, we see that
’package2.MainWorkflow’ directly configures or mentions
the following tasks: Task3, Task4, and Task1. It’s important
to note that Task1 has nested tasks (Task6, Task8, Task9),
but these are not to be listed as per the instructions.

Final answer: Task3, Task4, Task1

CORRECT ANSWER:
Task1, Task2, Task3, Task4

SCORE: 0.75

Figure 3: Example of an LLM response to the prompt in Figure 2. The LLM first requests the WADL specification of the
workflow in question and then answers in the desired format. While the LLM correctly omits tasks 6, 8 and 9 which are nested
inside other tasks, it does not obtain the specification of package1.Workflow1 which is imported into the workflow in question
(via the from keyword). It thus misses Task 2 (defined in the imported workflow) in its final answer.

expected outputs), and model-based scores that use an-
other ML model for their computation. An especially
interesting metric is G-Eval (Liu et al., 2023), which
uses another LLM to rate the answers of the evaluated
LLM (known as the LLM-as-a-judge approach). An
interesting approach to evaluating LLMs is Chatbot
Arena (Zheng et al., 2023). It is a crowd-sourcing plat-
form where users prompt questions to two anonymous
LLMs and are then asked to pick the LLM with the
best response. LLMs are rated using the Elo rating
system based on the results of the “duel”.

The data sets mentioned above often focus on a
broad evaluation of LLMs on a wide range of tasks.
There are also data sets focused on tasks related to
software engineering, such as DevBench (Li et al.,
2024) focusing on software development (including
software design, implementation, and testing). Never-
theless, as LLMs have gained widespread usage only
very recently, there have been not many works on
employing LLMs during software architecture design.
(Ahmad et al., 2023) show a case study of using LLM
(ChatGPT in particular) during the design of software
architecture. The paper presents a process of interac-
tion of a software architect with LLM, but any actual
evaluation of the process, the effectiveness of LLM,
etc. is left to future work. (Dhar et al., 2024) analyze

the effectiveness of LLMs in generating architectural
design decisions. They give an LLM a context of the
required decision and ask to make a decision. They
compare several LLMs and approaches to asking them
and conclude that LLM generates design decisions but
does not attain human-level correctness. The context
they give to the LLM is human-written requirements,
while we use WADL to capture a WA.

Several works are focused on evaluating how well
LLMs understand graphs (Fatemi et al., 2023; Wang
et al., 2024; Guo et al., 2023). Even though they do
not target software architectures, they are relevant by
evaluating encodings of non-textual data for LLMs.
They employ a similar approach to ours—creating a
set of test instance questions and testing how well an
LLM can answer the questions with different encod-
ings of the graph structure (a graph encoding usually
represents the nodes by integers and explicitly lists
the edges). They also experimented with different
encodings, such as giving nodes English names and
edges represented by “friendship”. In contrast, we
use an external DSL (WADL) to represent workflow
architectures.
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6 CONCLUSION

In the paper, we have outlined a methodology for test-
ing the quality of interpretation of workflow architec-
tures by LLMs. Stemming from the conjecture that
LLM should correctly answer low-abstraction-level
questions to respond to those at a higher level of ab-
straction reliably, it introduces a set of test patterns,
intended to generate a series of low-abstraction queries
testing the reliability of LLM answers. Although the
presented list of test patterns is not exhaustive, the
initial results indicate that this approach is viable.

The main lessons learned from the results were as
follows.

• LLMs can reasonably interpret workflow archi-
tectures to answer questions about their structure,
behavior, and basic functionality.

• The answers of LLMs are subject to aleatoric
uncertainty—the LLM can give different results to
the same question. However, taking the majority
vote (of 5 repetitions in our case) gives a correct
answer to almost all of our test instances (22–24
correct out of 25 instances depending on the LLM
and WADL variant).

• The “problematic” test instances differ among the
LLMs and WADL variants. The answers tend to be
worse when the workflow is semantically incorrect
(Sect. 4.4.2), and in the case of Import WADL
variant (only in the agent mode, e.g., List of tasks
pattern in Table 2).

• It is necessary to formulate the questions as clearly
and accurately as possible (Sect. 4.4.1).

• Instructing the LLM to reason about the question
before answering it improves the results. (Kojima
et al., 2023)

• The ROUGE (Lin, 2004) and BERTScore (Zhang
et al., 2020) metrics are not good enough to evalu-
ate open-ended questions.
In the future, we plan to extend the methodology

by instantiating more test patterns and by identifying
a better evaluation metric for the Basic functionality
category, and apply it to questions at a higher abstrac-
tion level, such as recommending a task fitting into the
given workflow architecture.
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