
Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods

Kinari Nishiura1 a, Atsuya Matsutomo2 and Akito Monden3 b

1Faculty of Information and Human Sciences, Kyoto Institute of Technology, Kyoto, Japan
2School of Engineering, Okayama University, Okayama, Japan

3Graduate Scho Okayama, Japan
k-nishiura@kit.ac.jp, pqll69dj@s.okayama-u.ac.jp, monden@okayama-u.ac.jp

Keywords: Java, Naming Bug, ChatGPT, Large Language Models, Machine Learning.

Abstract: In Java programming, large-scale and complex functions are realized by combining multiple methods. When
method names do not match their functionality, readability decreases, making maintenance challenging. Al-
though several machine learning models have been proposed to detect such naming bugs, they require exten-
sive training data, limiting user accessibility. Recently, large language models (LLMs) like ChatGPT have
gained popularity and show potential for code comprehension tasks. This study evaluates the performance of
ChatGPT in detecting naming bugs using the same datasets as in previous machine learning studies. We evalu-
ated detection accuracy through traditional methods, various prompt adjustments, and more direct approaches.
The results indicate that, while ChatGPT does not surpass traditional models, it can match their accuracy with
appropriately structured prompts, requiring no additional training.

1 INTRODUCTION

In software development, large-scale and complex
functions are typically realized by combining multi-
ple processing units. In Java programming specif-
ically, methods and classes represent the smallest
units that implement specific functionalities. De-
velopers have the flexibility to name methods and
classes freely; however, the names of methods are
particularly expected to intuitively reflect their behav-
ior(McConnell, 2004). While method names do not
influence function execution, they are crucial for code
readability and serve as valuable cues for understand-
ing the code, especially when reviewed by other de-
velopers(Boswell and Foucher, 2011; Martin, 2008).
When method names fail to align with their behav-
ior, reducing readability, this issue is referred to as
a ”naming bug”(Høst and Østvold, 2009), and it re-
quires correction.

Several methods for detecting naming bugs have
been proposed. Liu et al.(Liu et al., 2019) intro-
duced a technique utilizing Doc2Vec, Word2Vec, and
CNN models. Minehisa et al. proposed methods us-
ing Doc2Vec and Sent2Vec(Minehisa et al., 2021), as
well as approaches based on machine learning models

a https://orcid.org/0009-0007-7168-1500
b https://orcid.org/0000-0003-4295-207X

leveraging Transformer architectures(Minehisa et al.,
2022). However, these approaches require collecting
appropriate training data and training models, which
can pose challenges for easy implementation by users.

Recently, the proliferation of AI services powered
by pre-trained large language models (LLMs), such as
ChatGPT1, has attracted significant attention. These
services enable users to interact with AI trained on
a vast corpus of web-based knowledge through in-
puts known as prompts. The notable strengths of pre-
trained models include their advanced comprehension
and adaptability across various use cases. Leverag-
ing these capabilities, such models can also inter-
pret source code written in programming languages,
suggesting the potential to detect naming bugs with
prompts specifically designed for code analysis.

In this study, we evaluate ChatGPT’s performance
in detecting naming bugs using the same dataset
employed in previous research focused on machine
learning-based detection(Liu et al., 2019; Minehisa
et al., 2021; Minehisa et al., 2022). Our experiments
target method-level data extracted from 430 open-
source software projects, utilizing GPT-3.5 Turbo and
GPT-4o mini via a web API. We evaluate not only
with the detection criteria established in prior studies
but also by modifying the input information and em-

1https://openai.com/chatgpt

128
Nishiura, K., Matsutomo, A. and Monden, A.
Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods.
DOI: 10.5220/0013354400003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 128-136
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

ploying more direct detection strategies. The results
indicate that, while ChatGPT does not significantly
outperform existing machine learning models, it can
achieve comparable detection performance depend-
ing on how the input information is structured. This
means that by using ChatGPT, each user can build a
machine learning model and rationally save the time
and effort required to collect training data and per-
form training in the task of naming bug detection.

The structure of the paper is as follows. Section
2 reviews the related work referenced in this study.
Section 3 details the experimental setup. Section 4
shows the experimental results. Section 5 conducts
additional experiments based on the results of the ex-
periment and deepen the discussion. Section 6 dis-
cusses threats to validity. Finally, Section 7 concludes
the paper.

2 RELATED WORK

Several methods utilizing machine learning models
have been proposed for detecting naming bugs. Liu
et al.(Liu et al., 2019) introduced an approach that
combines natural language processing and machine
learning techniques to automatically evaluate method
names using Doc2Vec, Word2Vec, and CNN. Mine-
hisa et al.(Minehisa et al., 2021) reported that re-
placing the combination of Word2Vec and CNN with
the more lightweight Sent2Vec model could achieve
nearly equivalent performance. Additionally, Mine-
hisa et al.(Minehisa et al., 2022) proposed a method
where a Transformer-based estimation model predicts
method names based on the method’s content and ver-
ifies whether the predicted names match the actual
ones.

In these methods, the detection of naming bugs
is not performed as a direct binary classification task
to determine whether a method name is appropri-
ate. Instead, the models infer a method name from
the method’s Abstract Syntax Tree (AST) and assess
whether the inferred name’s prefix matches the ac-
tual method name’s prefix. For example, if a method
named getReadTimeout has its prefix inferred as get
by the model based on the given AST, the method
name getReadTimeout is considered free of naming
bugs. Conversely, if the model infers a different pre-
fix (e.g., set or write), getReadTimeout would be
identified as having a naming bug.

Our experiment partially follows this method of
judgement.

3 EXPERIMENT DESIGN

3.1 Overview

Through evaluation experiments using a dataset con-
taining actual naming bugs, we compared and as-
sessed the accuracy of the proposed method, tradi-
tional methods for naming bug detection, and detec-
tion using ChatGPT. The comparative methods in-
clude three prior approaches: the method by Liu
et al. using Doc2Vec, Word2Vec, and CNN (Liu
et al., 2019); the approach by Minehisa et al.
using Sent2Vec (Minehisa et al., 2021); and the
Transformer-based method by Minehisa et al. (Mine-
hisa et al., 2022). For naming bug detection using
ChatGPT, in addition to employing the same detec-
tion approach as the traditional methods, a total of six
different detection patterns were tested.

This experiment utilized the same dataset and
evaluation metrics as in previous research (Minehisa
et al., 2022). Consequently, the detection accuracies
of the traditional methods were taken directly from
the reported results of previous research (Minehisa
et al., 2022). Details on the frameworks and param-
eters of these machine learning models can be found
in the original papers. The dataset consisted of Java
method data collected from 430 open-source software
projects. Detailed descriptions of the detection pat-
terns using ChatGPT and the dataset are provided in
Sections 3.2 and 3.3, respectively.

Two versions of ChatGPT models were used:
GPT-3.5 Turbo and GPT-4o mini. GPT-3.5 Turbo
is accessible to general users for free via ChatGPT,
while GPT-4o mini, although more advanced than
GPT-3.5, offers higher speed and lower costs, making
it suitable for this experiment. The experiments were
conducted in October 2024, specifically referencing
gpt-3.5-turbo-0125 and gpt-4o-mini-2024-07-18. The
automation of ChatGPT interactions was achieved us-
ing a Python library through the Web API, with the
library openai 1.52.1 used for implementation.

3.2 Use of ChatGPT

In this experiment, we evaluate not only the case
where the pre-trained model from previous studies
is simply replaced with ChatGPT, but also scenarios
where the input information to the model is modified
or where the evaluation method itself is changed. The
six patterns for using ChatGPT to detect naming bugs
in this experiment are outlined below, along with ab-
breviations for each pattern used in the experiments.

ex1A: The method content is represented by an
AST-analyzed token sequence, and the original

Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods

129

Prompt� �
You are a genius mastering the Java language. Please output only a

one-line answer to the question below with no introduction, no expla-
nation, no embellishments, only code.
I will show you the flattened token sequence of a Java method’s AST
with node information, and the method name with the first word hid-
den.
Please propose a perfect method name that anyone can understand,

keeping in mind ”what kind of processing is performed” and ”what
kind of value is returned. Please output only your proposed method
name. No reason is required.

[Method name]

***ReadTimeout

[AST]

ReturnStatement return ThisExpression this VariableName inte-

gerVar� �
Figure 1: Example of prompt for ex1A.

method name’s prefix is concealed. ChatGPT
is tasked with suggesting the most appropriate
method name, and a naming bug is detected if the
suggested name’s prefix does not match the origi-
nal. This method follows the exact evaluation ap-
proach used in previous studies.

ex1J: In addition to hiding the original method
name’s prefix, the method content is provided as
Java source code instead of an AST-analyzed to-
ken sequence. The method name in the source
code is concealed.

ex2A: Only the AST-analyzed token sequence of
the method content is provided, and ChatGPT is
tasked with suggesting the appropriate method
name, without providing the original method
name.

ex2J: Only the Java source code of the method con-
tent is given, and ChatGPT is tasked with suggest-
ing the appropriate method name. The method
name in the source code is concealed.

ex3A: Instead of suggesting a method name, both the
original method name and the AST-analyzed to-
ken sequence of the method content are provided,
and ChatGPT is asked to directly assess whether
the method name is appropriate.

ex3J: Both the original method name and the Java
source code of the method content are provided,
and ChatGPT is asked to directly assess whether
the method name is appropriate.

In this study, the instructions given to ChatGPT
are referred to as ”prompts.” An example of the
prompt used in ex1A is shown in Figure 1. This
prompt consists of three paragraphs followed by a

Table 1: Variations in the second paragraph of the prompt
used in each experiment.

ex sentences
ex1A I will show you the flattened token se-

quence of a Java method’s AST with node
information, and the method name with
the first word hidden.

ex1J I will show you a Java method source code
without method name, and the method
name with the first word hidden.

ex2A I will show you only I will show you
the flattened token sequence of a Java
method’s AST with node information.

ex2J I will show you a Java method source
code. The method name is hidden.

ex3A I will show you the method name, and
the flattened token sequence of a Java
method’s AST with node information.

ex3J I will show you the method name, and the
Java method source code without method
name.

Table 2: Variations in the third paragraph of the prompt used
in each experiment.

ex sentences
ex1, ex2 Please propose a perfect method name

that anyone can understand, keeping in
mind ”what kind of processing is per-
formed” and ”what kind of value is re-
turned. Please output only your pro-
posed method name. No reason is re-
quired.

ex3 Please determine if the method name
is clear enough for everyone to un-
derstand, keeping in mind ”what kind
of processing is performed” and ”what
kind of value is returned.” Please out-
put only ”Yes” or ”No”. No reason is
required.

method name and its corresponding Abstract Syn-
tax Tree (AST). The first paragraph specifies the ex-
pected behavior from ChatGPT. It has been reported
that providing clear and specific roles and instructions
in prompts generally leads to better results (Bsharat
et al., 2024), which we followed in this study. The
second paragraph describes the method information
given to ChatGPT, while the third paragraph requests
the output from ChatGPT.

The second and third paragraphs of the prompt are
modified for each experiment, from ex1A to ex3J, as
needed. Variations of the second paragraph are sum-
marized in Table 1, while the variations of the third

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

130

paragraph are shown in Table 2. Additionally, the
method information provided after the sentences must
be appropriately adjusted for each experiment.

3.3 Datasets

To evaluate the detection accuracy of the proposed
method, we used the same dataset2 as in Liu et al.’s
prior research (Liu et al., 2019). This dataset was also
used in the studies by Minehisa et al. (Minehisa et al.,
2021)(Minehisa et al., 2022).

The dataset comprises a total of 2,119,218 meth-
ods extracted using a proprietary algorithm from
430 open-source Java projects. In previous studies,
2,116,413 of these methods were used as training
data, while 2,805 were designated as test data. For
our experiment, since we leveraged ChatGPT, which
has already been pre-trained on extensive web-based
data, we only used the test data for evaluation. Out of
this test data, only 1,268 methods could be matched
correctly with their method names and corresponding
Java source code from the published dataset. Among
these, 635 were labeled as containing naming bugs,
and 633 were labeled as bug-free.

The method for constructing the dataset as de-
scribed in Liu et al.’s study(Liu et al., 2019) is out-
lined below. First, all methods from the 430 open-
source projects were collected, excluding: (1) Main
methods, (2) Constructors, (3) Empty methods (ab-
stract methods or methods with no operations), (4)
Methods with names containing ”example,” ”sam-
ple,” or ”template,” (5) Methods whose names do
not include alphabetic characters (e.g., methods using
only underscores).

Methods with more than 95 tokens after AST
transformation were excluded due to model limita-
tions, resulting in the final dataset of 2,119,218 meth-
ods. Subsequently, GitHub commit histories of the
projects were analyzed to identify methods meeting
the following criteria as candidates for naming bugs:

Criterion 1:
The commit involved a change where only the
method name was modified, without altering the
method’s body.

Criterion 2:
The reason for the name change was not to correct
a typographical error.

Criterion 3:
The method’s content and name remained un-
changed after the renaming commit until the time
of data collection.

2https://github.com/TruX-DTF/debug-method-
name/tree/master/Data/TestData

Methods meeting Criterion 1 were expected to
represent cases where a suboptimal name was cor-
rected to an appropriate one. Criterion 2 aimed to
remove noise, while Criterion 3 ensured the consis-
tency of the data. This process yielded 2,805 meth-
ods as test data. Commit history analysis provided
the names before and after the renaming, and visual
inspection by the authors of the original study (Liu
et al., 2019) confirmed whether the initial names con-
stituted naming bugs. As a result, 1,403 methods were
labeled as containing naming bugs, while 1,402 were
labeled as bug-free.

Next, we describe the matching process between
method names and Java source code. While the
published dataset maintained sequential order for the
original and revised method names, tokenized ASTs,
and labels, it did not do so for the Java source
code. Given that the source code contained the up-
dated method names, we performed a straightforward
matching procedure, restricting the linkage to meth-
ods with unique names within the dataset. This ap-
proach resulted in 1,268 matched test data points,
which were used in our experiment.

3.4 Evaluation Metrics

Following prior research, the evaluation metrics for
naming bug detection include accuracy, precision, re-
call, and F1-score. The formulas for these metrics are
shown in Table 3. The confusion matrix used for de-
riving these metrics is presented in Table 4.

The criteria for determining naming bugs vary de-
pending on the specific approach used with ChatGPT.
When employing the method similar to previous stud-
ies, where an appropriate method name is predicted
and evaluated based on prefix matching, the compari-
son baseline depends on the labels in the test data. For
test data labeled as containing naming bugs, the pre-
dicted method name is compared to the pre-correction
name. For data labeled as bug-free, the comparison is
made with the post-correction name. This approach
aligns with the methodology of existing research for
consistency in evaluation. In the method where Chat-
GPT directly judges the presence of naming bugs, the
results provided by ChatGPT are used without further
transformation.

Given that ChatGPT’s responses can exhibit vari-
ability, its heuristic nature must be considered. To
mitigate this variability, naming bug detection for
each method was conducted independently three
times, with the majority outcome being taken as the
final result.

Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods

131

Table 3: Evaluation metrics formula.

Accuracy =
T P+T N

T P+FP+T N +FN
(1)

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1 =
2× recall × precision

recall + precision
(4)

Table 4: Confusion matrix.

Judged as
naming bug

Judged as
not naming bug

Naming bug True Positive
TP

False Negative
FN

Not naming bug False Positive
FP

True Negative
TN

4 EXPERIMENT RESULTS

The results of the experiment are shown in Table 5,
with the best results in each metric highlighted in
bold. The highest scores were observed as follows:
accuracy and precision with GPT-4o mini in ex2J, re-
call with GPT-3.5 Turbo in ex1A, and F1-score with
GPT-3.5 Turbo in ex2A.

Firstly, there was minimal difference in F1-scores
between GPT-3.5 Turbo and GPT-4o mini for most
of the ChatGPT usage methods. The exception is
when determining naming bugs directly from given
method name and AST token sequences, where GPT-
3.5 Turbo showed a significantly lower performance.
This was primarily due to GPT-3.5 Turbo in this case
often predicting almost all cases as bug-free, resulting
in very low recall. In contrast, GPT-4o mini exhibited
consistent performance whether given AST tokens or
Java source code, suggesting greater robustness.

Next, the method of directly asking ChatGPT to
detect naming bugs (ex3) yielded a lower F1-score
compared to the method of generating a suggested
method name and comparing its prefix to the actual
name. This indicates that using ChatGPT for naming
bug detection is more effective when following the
methodology of previous research, where an appro-
priate method name is proposed based on the method
content and compared for prefix differences.

When comparing the information provided with
ChatGPT, there was little difference between using
AST token sequences and Java source code (except
for ex3). Given the ease of providing raw Java source
code, this approach is more practical. Additionally,
there was no significant difference between provid-
ing the actual method name with the hidden prefix
(ex1) and not providing any method name information
(ex2). This result implies that given partial method
names do not introduce noise, but also hints related to
method names are not particularly necessary.

In summary, using ChatGPT to directly judge
naming bugs is less effective. Using GPT-3.5 Turbo
for ex1A (providing AST token sequences and a hid-
den prefix) slightly lowered the F1-score compared to
other cases, but overall, most approaches yielded sim-
ilar performances.

Next, we will compare the accuracy of the pro-
posed model with that of previous studies. The
highest accuracy reported was by Minehisa et al.’s
Transformer-based approach among previous studies,
with an F1-score of 0.679(Minehisa et al., 2022). The
direct judgment method (ex3) performed worse than
this, while the prefix comparison methods (ex1 and
ex2) occasionally surpassed this score but did not
show significant overall differences. ChatGPT out-
performed non-Transformer prior methods, indicating
that while it may not exceed the most advanced mod-
els without fine-tuning, it can achieve comparable re-
sults with straightforward data input.

This suggests that using ChatGPT for naming bug
detection offers substantial convenience, as it does
not require specialized training, skillsets, or extensive
data collection by each user. Ordinary programmers
can utilize ChatGPT for effective naming bug detec-
tion without deep expertise.

Our experiment showed that for each method,
three independent trials were conducted, with the ma-
jority result used as the final outcome. An analy-
sis of the consistency across trials, shown in Table
6, revealed that GPT-4o mini exhibited higher con-
sistency compared to GPT-3.5 Turbo. Consistency
was lowest for ex3, while ex1 and ex2 with GPT-
4o mini had approximately 90% consistency. This
indicates that while ChatGPT responses have inher-
ent randomness, GPT-4o mini used with prefix com-
parison shows strong result consistency, reducing the
need for multiple trials.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

132

Table 5: Experiment results.

Accuracy Precision Recall F1-score

Doc2Vec, Word2Vec, and CNN(Liu et al., 2019) 0.482 0.489 0.775 0.599
Sent2Vec(Minehisa et al., 2021) 0.531 0.519 0.843 0.643
Transformer(Minehisa et al., 2022) 0.582 0.551 0.884 0.679

ex1A 3.5 Turbo 0.506 0.502 0.967 0.661
4o mini 0.584 0.553 0.863 0.674

ex1J 3.5 Turbo 0.599 0.563 0.878 0.686
4o mini 0.605 0.574 0.809 0.671

ex2A 3.5 Turbo 0.573 0.541 0.940 0.687
4o mini 0.603 0.567 0.869 0.686

ex2J 3.5 Turbo 0.618 0.582 0.826 0.683
4o mini 0.619 0.584 0.821 0.683

ex3A 3.5 Turbo 0.498 0.492 0.152 0.232
4o mini 0.509 0.507 0.594 0.547

ex3J 3.5 Turbo 0.501 0.500 0.423 0.459
4o mini 0.512 0.509 0.646 0.569

Table 6: The percentage of times ChatGPT gave the same
answer all three times.

GPT 3.5 Turbo GPT 4o mini

ex1A 90.9% 92.4%
ex1J 88.2% 94.0%
ex2A 89.4% 89.7%
ex2J 93.3% 95.2%
ex3A 64.6% 80.4%
ex3J 63.6% 85.3%

5 ADDITIONAL EXPERIMENTS
AND DISCUSSIONS

This section explores additional analyses and experi-
ments conducted following the previous experimental
results.

5.1 Detection Accuracy Evaluation
Limited to Methods with Verb
Prefixes

A manual inspection of the method names suggested
by ChatGPT revealed that nearly all of them had pre-
fixes that were verbs. This aligns with the common
best practice that method names should start with
verbs. However, upon reviewing the original method
names in the dataset, there was a noticeable number of
cases where the prefixes were not verbs. This discrep-
ancy in prefix type between the suggested and original
method names could potentially lower the detection

Table 7: Naming bug detection accuracy by ChatGPT 4o
mini for methods with verb-based prefixes.

Accuracy Precision Recall F1-score

ex1A 0.544 0.460 0.726 0.563
ex1J 0.586 0.491 0.634 0.553
ex2A 0.574 0.483 0.743 0.585
ex2J 0.603 0.508 0.653 0.571
ex3A 0.451 0.364 0.479 0.414
ex3J 0.436 0.364 0.528 0.431

accuracy for ex1 and ex2. Therefore, we evaluated
the accuracy specifically for methods whose original
prefixes were verbs.

To identify the part of speech, we used the natural
language processing library spaCy3. We filtered out
methods whose prefixes were not verbs (”VERB”) or
auxiliary verbs (”AUX”). This left us with 748 meth-
ods, of which 303 were labeled as containing naming
bugs and 445 were labeled as bug-free.

The naming bug detection accuracy only for these
methods, using GPT-4o mini, is shown in Table 7.
Compared to Table 5, contrary to our expectations,
indicating that restricting the evaluation to methods
with verb prefixes led to a decline in detection per-
formance. The main reason appears to be that, for
methods with verb prefixes, ChatGPT’s predictions
were split more evenly between positive (naming bug
present) and negative (no naming bug) outcomes. In
contrast, when evaluating other methods, most were
predicted as positive, leading to very high recall and
consequently higher F1-scores. This analysis sug-
gests that even for ChatGPT, detecting naming bugs

3https://spacy.io

Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods

133

Table 8: Naming bug detection accuracy using semantic
similarity of prefixes by ChatGPT 4o mini.

Accuracy Precision Recall F1-score

ex1A 0.606 0.580 0.760 0.658
ex1J 0.602 0.588 0.673 0.628
ex2A 0.615 0.588 0.765 0.665
ex2J 0.614 0.598 0.695 0.643

in method names with verb prefixes is more challeng-
ing.

5.2 Evaluation of Detection Accuracy
Based on Semantic Similarity of
Prefixes

In the experiments described in Section 3, ex1 and ex2
used exact matches of method name prefixes to deter-
mine naming bugs. However, due to the existence of
synonyms in English, prefixes that do not match ex-
actly might still be semantically similar, potentially
leading to false positives in naming bug detection.
Examples of such synonymous prefixes include get
and obtain, start and begin, or run and execute.

To address this, we evaluated detection accuracy
considering semantic similarity in prefixes. While
several natural language processing techniques can
be employed for synonym detection, we chose a
straightforward approach using ChatGPT for this
task. Specifically, we used the GPT 4o mini model
and performed a single judgment for each compari-
son.

The results of using semantic synonym detection
for ex1 and ex2 (where ChatGPT 4o mini was used to
propose method names) are shown in Table 8. Com-
pared to Table 5, precision slightly increased, but re-
call and F1-score decreased slightly, resulting in a de-
tection performance significantly lower than that of
Minehisa et al.’s method.

This suggests that considering semantic similar-
ity when detecting naming bugs using prefix matching
does not improve accuracy. One possible explanation
is that ChatGPT’s synonym detection may not be en-
tirely reliable, which calls for more robust synonym
detection techniques in future research.

5.3 Evaluation of Detection Accuracy
with Stricter Criteria for ChatGPT

In the experiments of Section 3, ex3 involved asking
ChatGPT whether a method name was ”clear enough
for everyone to understand,” and naming bugs were
identified based on negative responses. While this

Table 9: Naming bug detection accuracy of ChatGPT 4o
mini with modified prompt criteria.

Accuracy Precision Recall F1-score

ex3A 0.539 0.647 0.171 0.270
ex3J 0.735 0.874 0.548 0.674

criterion was somewhat suitable, it included a subjec-
tive element that could make the guidance ambigu-
ous, particularly when assessing edge cases or ”mid-
dle layer.”

To address this, we refined the prompt to enforce
stricter criteria for determining naming bugs, focus-
ing on detecting method names that were clearly in-
appropriate. For this purpose, the third sentence of
the prompts for ex3A and ex3J was modified as fol-
lows: “Please judge whether the method name given
is clearly inappropriate. Please output only ‘Yes’ or
‘No’ in one line. No reason is required.” This was
conducted using the GPT 4o mini model with a single
assessment per method.

The results are shown in Table 9. The data re-
veals a significant decrease in accuracy when AST to-
ken sequences were provided, whereas the accuracy
improved when Java source code was used as input.
Compared to the method by Minehisa et al., the F1-
score became comparable, and accuracy and precision
were considerably higher.

This indicates that, although prior to the prompt
modification, ex3 showed significantly lower accu-
racy than the existing method, adjusting the prompt
to detect only clearly inappropriate names achieved
comparable accuracy to established approaches. This
suggests that users can rely on ChatGPT for naming
bug detection without performing indirect and labor-
intensive analyses like proposing method names and
comparing prefixes, enhancing convenience.

One possible reason for the improvement in ac-
curacy is that ChatGPT’s judgement for the ‘middle
layer’, which is not completely appropriate but also
not completely inappropriate, did not match the la-
belling of the authors of the previous study. They
judged that many of the ‘middle layer’ were not nam-
ing bugs, and the improved prompts also provide the
same judgement criteria.

However, recall was still much lower than that of
existing methods, implying that if comprehensive de-
tection is a priority, existing approaches remain more
suitable. The reason for the drastic drop in accuracy
when AST token sequences were used remains un-
clear and may warrant further investigation.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

134

6 THREATS TO VALIDITY

Potential threats to the validity of this study include
the following:

First, we compared our results with the detection
accuracy reported in previous work(Minehisa et al.,
2022) without conducting replication experiments of
prior methods due to time constraints. While the pre-
vious research evaluated a total of 2,805 test data
points, our study was limited to 1,268 test cases that
could be aligned with corresponding source code.
This discrepancy in the evaluation dataset could po-
tentially affect the detection accuracy. Future work
should include replicating the prior methods and eval-
uating them using the exact same dataset to ensure a
fair comparison.

Second, the test data used in this study were la-
beled by the authors of prior research(Liu et al., 2019)
to indicate the presence or absence of naming bugs.
The accuracy of these labels cannot be guaranteed.
Additionally, the criteria for determining naming bugs
that we provided to ChatGPT may differ from those
used in the original labeling. Re-labeling the data
ourselves and aligning the labeling criteria with those
used for ChatGPT would enable a more equitable
comparison.

Lastly, due to time and resource constraints, only
GPT 3.5 Turbo and GPT 4o mini were used as Chat-
GPT models. Higher-performing models, such as
more advanced versions of GPT-4, may yield im-
proved results. Exploring other generative AI services
could also be beneficial. However, given the simplic-
ity of the tasks assigned in this study, it is possible
that the use of more advanced models would not sig-
nificantly affect the accuracy.

7 CONCLUSION

In this study, we used ChatGPT to detect naming
bugs and compared the detection accuracy with that
of conventional methods. In the experiment, the same
evaluation data as in previous research was used, and
in addition to the same detection method as in the
conventional method, we also evaluated cases where
the input was changed and cases where direct binary
classification was performed. In addition, both the
3.5 Turbo and the 4o mini ChatGPT models were
used. As a result, it was found that ChatGPT does
not greatly exceed the detection performance of exist-
ing machine learning models, but that it has detection
performance equivalent to existing methods without
special training, depending on how the information is
given. There was no difference in the ChatGPT mod-

els used, and there was also no significant difference
between the cases where the token sequences were
given to ChatGPT after AST analysis, as in the pre-
vious study, and the cases where the Java source code
was given as is. When ChatGPT was given method
names and processing content to directly detect nam-
ing bugs, it was found to perform at the same level as
previous research when given Java source code and
prompted to detect bugs using stricter criteria.

As a result, using ChatGPT to detect naming bugs
is effective in increasing developer convenience, and
it is possible that naming bugs can be pointed out and
fixed more easily.

Future issues include more detailed evaluation of
existing methods and expanding the naming bug data
used for evaluation. More specifically, comparisons
with recent related research(Wang et al., 2024) that
was not included in this experiment, and comparisons
with other methods that focus on the generation of
method names, are important issues for the future. It
is also possible to consider evaluating other LLMs or
expanding the evaluation to other programming lan-
guages besides Java.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS KAKENHI
Grant number JP23K16863 and JP20H05706.

REFERENCES

Boswell, D. and Foucher, T. (2011). The Art of Readable
Code: Simple and Practical Techniques for Writing
Better Code. Oreilly & Associates.

Bsharat, S. M., Myrzakhan, A., and Shen, Z. (2024). Prin-
cipled instructions are all you need for questioning
llama-1/2, gpt-3.5/4.

Høst, E. W. and Østvold, B. M. (2009). Debugging method
names. In Proceedings of the 23rd European Con-
ference on ECOOP 2009 — Object-Oriented Pro-
gramming, Genoa, page 294–317, Berlin, Heidelberg.
Springer-Verlag.

Liu, K., Kim, D., Bissyandé, T., Taeyoung, K., Kim, K.,
Koyuncu, A., Kim, S., and Le Traon, Y. (2019).
Learning to spot and refactor inconsistent method
names. In in Proc. 41st Int’l Conf. Softw. Eng., pages
1–12.

Martin, R. C. (2008). Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall.

McConnell, S. (2004). Code Complete, Second Edition. Mi-
crosoft Press, USA.

Minehisa, T., Aman, H., and Kawahara, M. (2022). Naming
bug detection using transformer-based method name

Evaluating ChatGPT’s Ability to Detect Naming Bugs in Java Methods

135

suggestion. Conputer Software (in Japanese), pages
17–23.

Minehisa, T., Aman, H., Yokogawa, T., and Kawahara,
M. (2021). A comparative study of vectorization
approaches for detecting inconsistent method names.
Computer and Information Science 2021—Summer,
985:125–144.

Wang, T., Zhang, Y., Jiang, L., Tang, Y., Li, G., and Liu, H.
(2024). Deep learning based identification of incon-
sistent method names: How far are we? Empirical
Software Engineering, 30.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

136

