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Abstract: This article discusses the growing complexity of data warehousing systems and the need for enhanced frame-
works that can effectively manage simultaneously metadata and knowledge. While the Common Warehouse
Metamodel (CWM) provides a standardized method for metadata management, its semantic limitations hinder
its use in complex environments. To overcome these shortcomings, the paper proposes an extended CWM
framework that incorporates ontologies, machine learning, and knowledge re-injection policies. This new
framework introduces additional layers and components, such as a ’learning package’ and advanced knowl-
edge mapping, to improve semantic interoperability, adaptability and usability. The research also explores
the integration of hybrid AI systems that use both inductive and deductive methods to facilitate knowledge
discovery and improve decision making.

1 INTRODUCTION AND
RESEARCH QUESTIONS

The increasing complexity of data warehouse projects
requires robust architectures capable of effectively
managing and exploiting the knowledge embedded
in data. Traditional data warehouse systems excel
at handling structured data but struggle to meet the
semantic depth and dynamic requirements of mod-
ern organizations. The Common Warehouse Meta-
model (CWM) provides a standardized framework
for metadata management, promoting interoperabil-
ity and governance. However, its limited semantic
expressiveness poses challenges in representing com-
plex relationships and domain-specific rules, which
are essential for advanced knowledge integration and
decision-making.

Recent advances in ontology-based modeling
and Artificial Intelligence (AI), particularly machine
learning, have created new opportunities to improve
knowledge discovery, representation, and utilization
within data warehouses. Ontologies provide a struc-
tured approach to capturing domain knowledge and
semantic relationships, while machine learning tech-
niques facilitate adaptive, data-driven insights. By in-
tegrating these methodologies into CWM-based ar-
chitectures, we aim to address long-standing chal-
lenges in metadata and knowledge management, such
as heterogeneity, scalability, and performance opti-

mization.
This paper addresses the challenge of integrating

knowledge reinjection policies and machine learning
into CWM-based data warehouses to enhance meta-
data management. To achieve this, we explore the fol-
lowing key research questions: 1. How can the CWM
framework be extended to improve semantic expres-
siveness and adaptability? 2. What methodologies
best support the integration of machine learning for
knowledge reinjection and metadata enhancement?

To answer these questions, we propose an ex-
tended CWM framework incorporating ontologies,
machine learning, and systematic knowledge reinjec-
tion policies. This new approach introduces addi-
tional layers and components—such as a Learning
Package and advanced knowledge mapping mecha-
nisms—to enhance semantic interoperability, adapt-
ability, and usability. The research also explores the
integration of hybrid AI systems, combining inductive
and deductive learning methods to facilitate knowl-
edge discovery and improve decision-making.

The rest of the paper is structured as follows:
• Section 2 reviews the state of the art in knowledge
integration, ontology-based systems, and machine
learning applications in data warehouses. • Section 3
describes the proposed methodology and framework,
detailing the CWM extension and knowledge reinjec-
tion policies. • Section 4 presents results.

By addressing these aspects, this work contributes
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to the evolution of knowledge-driven data warehouse
architectures, enhancing their ability to manage com-
plex and heterogeneous data.

2 STATE OF THE ART AND
RELATED WORKS

2.1 Incorporation of Ontologies in Data
Warehouse

Ontology-based modeling has gained significant at-
tention as a means to enhance semantic expressive-
ness in data warehouses. Ontologies provide a struc-
tured representation of domain knowledge, enabling
improved metadata management, semantic interoper-
ability, and knowledge reasoning.

Several studies have explored ontology integration
into data warehouses (Falquet et al., 2011; Olsina,
2021). These approaches aim to bridge the gap be-
tween structured data models and semantic knowl-
edge representation. For instance, (Zayakin et al.,
2021) proposed an ontology-based methodology for
analytical platforms in data-intensive domains, em-
phasizing the traceability of metamodel evolution to
maintain semantic relevance. Similarly, (Antunes
et al., 2022) reviewed various ontology classifications
applicable to data warehouses, highlighting their po-
tential for enhancing data governance and metadata
structuring.

However, despite their benefits, these ontology-
based approaches often lack dynamic knowledge rein-
jection mechanisms. They primarily focus on static
ontology integration, without addressing how newly
acquired knowledge can be reinjected into metadata
management systems dynamically. This limitation
reduces their adaptability in environments requiring
continuous knowledge updates.

2.2 Combining Machine Learning and
Ontology

The integration of machine learning (ML) and on-
tologies is a growing area of research, aimed at en-
hancing knowledge discovery and automated reason-
ing. (Ghidalia et al., 2024) conducted a system-
atic review of hybrid AI systems combining induc-
tive learning (ML-based inference) with deductive
reasoning (ontology-driven approaches). Their work
categorizes hybrid AI applications into: • Learn-
ing-Enhanced Ontologies: Using ML to automate
ontology construction and maintenance. • Seman-
tic Data Mining: Leveraging ontological knowledge

to enhance ML-based data mining. • Learning and
Reasoning Systems: Combining symbolic reasoning
with ML to emulate human-like cognitive processes.

These studies demonstrate the potential of hybrid
AI approaches for adaptive knowledge management.
However, they do not provide a formalized method
for metadata management in CWM-based architec-
tures. Most existing works focus on either ML-driven
knowledge extraction or ontology-based reasoning,
but lack a comprehensive framework for continuous
knowledge reinjection and metadata evolution within
data warehouses.

2.3 CWM Extensions

The CWM is a widely adopted standard for metadata
management in data warehouses, providing a struc-
tured framework for interoperability, governance, and
data lineage tracking. While CWM offers a robust
foundation, its limited semantic expressiveness hin-
ders its application in complex knowledge-driven en-
vironments.

Several studies have proposed CWM extensions
to enhance knowledge discovery and management
(Gomes et al., ; Midouni et al., ; da Silva et al., ; Tavac
and Tavac, ). Among them, (Thavornun, 2015) intro-
duced an RDF-based metadata management approach
for knowledge discovery, extending the Core (Object
layer) and Transformation and Data Mining (Analysis
layer) packages with three key classes: Evidence –
Extracted knowledge patterns; UserAction – User in-
teractions for adaptive learning; DataProperty – Re-
lationships between extracted knowledge elements.

Recent research has explored CWM extensions
to incorporate ontology-based capabilities. For in-
stance, (Ralaivao et al., 2024) proposed extending
CWM with a new knowledge layer (2), introducing:
1. Acquired and Explicit Knowledge – Capturing
technical knowledge and operational statistics. 2. Do-
main Knowledge and Ontology – Structuring spe-
cialized domain-specific metadata. 3. Metadata and
Knowledge Mapping – Managing transformations
and semantic linkages within CWM.

(Ralaivao et al., 2024) proposed Core package ex-
tension to enable compatibility with the ODM meta-
model. The addition of the class AnnotatedElement
is proposed, would inherit directly from ModelEle-
ment and serves as the parent class for Ontology
and OntologyElement, as depicted in Figure 1. This
proposed extension aims to enhance the CWM meta-
model’s capacity for knowledge representation and
integration, particularly in data-intensive domains.

While these efforts enhance semantic metadata
representation, they do not fully address the integra-
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Figure 1: Elements structuring the ODM metamodel and extending Core Package.

tion of dynamic knowledge reinjection policies.

Figure 2: New layer integrated in CWM metamodel.

3 METHODOLOGY AND
CONTRIBUTION

3.1 Research Methodology

This research addresses knowledge integration, ontol-
ogy enhancement, and machine learning incorpora-
tion into CWM. While CWM supports classical data
mining, it lacks dynamic knowledge reinjection and
adaptive metadata management. Our approach fol-
lows three key steps:1. Extending CWM – Defin-
ing a structured knowledge reinjection policy to en-
sure continuous metadata evolution (Ralaivao et al.,
2024). 2. Integrating AI-driven Metadata Manage-
ment – Leveraging ontology-based machine learn-
ing for adaptive semantic enrichment. 3. Evaluating
the Framework – Assessing performance through
benchmarks and real-world use cases. Key challenges
include metamodel complexity, heterogeneous data
integration, and business-aligned reinjection policies.
Future research should refine automated knowledge

discovery and reinjection to enhance adaptability.

3.2 Contribution of this Paper

This paper extends CWM with a structured knowl-
edge reinjection process and AI-driven enhance-
ments, addressing limitations in existing ontology and
machine learning-based approaches. • AI-Enhanced
CWM – Introducing a Learning Package for adap-
tive metadata enrichment. • Structured Knowledge
Reinjection – Ensuring continuous, validated knowl-
edge updates. • Optimized Query Processing –
Leveraging reinjected knowledge to improve seman-
tic search and decision support.

This hybrid AI and ontology-based framework en-
ables scalable, real-time metadata management with
enhanced semantic expressiveness.

4 RESULTS

4.1 Knowledge Reinjection Policy

4.1.1 General Reinjection Framework

Unlike the traditional approach of simply extracting
knowledge from data, this research aims to take the
knowledge derived from the data, reclassify it, vali-
date it and then recode it in the form of actionable
constraints. These constraints are intended to be used
at the data level, particularly in the form of enriched
metadata, to optimise data management and decision-
making processes.
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For instance, in the healthcare domain, the reinjec-
tion process detects inconsistencies in patient data and
updates metadata dynamically. Suppose an AI model
identifies a new correlation between symptoms and
diagnoses. The system classifies this as new knowl-
edge, validates it with existing ontologies, and rein-
jects it into the metadata layer for future queries.

The proposed knowledge reinjection process in-
volves several key strategies:

1. Optimization of Query Structure The charac-
teristics of a variable—such as its probability distribu-
tion and parameters—can enhance query performance
in a data warehouse. By leveraging these characteris-
tics, you can refine the order in which predicates are
applied within query selections. This strategic appli-
cation can lead to significant improvements in query
efficiency; 2. Uncovering Hidden Functional De-
pendencies The process also involves the discovery
of non-explicit functional dependencies within large
volumes of data. These dependencies, often over-
looked, can be leveraged to optimize the design and
organization of the data warehouse schema, ensuring
a more efficient and effective structure.; 3. Enrich-
ing Knowledge and Data Structures The validated
knowledge, once refined, becomes accessible to Com-
plex Data Warehouse administrator. This knowledge
can be used to: • Enrich the Ontology: Identify and
add new concepts, uncover relationships between ex-
isting concepts, and challenge or refine existing on-
tological links; • Reformulate Queries: Use newly
discovered knowledge to revise queries, incorporat-
ing newly identified concepts, more relevant calcula-
tion rules, and optimized query formulations; • Reor-
ganize Complex Data Warehouse Structures: In-
troduce new hierarchies or reorganize schema di-
mensions, update CWM’s ”Business Nomenclature”
layer, or develop new transformation and deduction
rules to reflect new insights; • Adjust Administra-
tion Parameters: Optimize the administration of the
Complex Data Warehouse, including adjusting ETL
scheduling, process management, and aligning pro-
cesses with the ”Warehouse Process” and ”Warehouse
Operation” layers within CWM, ensuring smoother
and more effective operations.

Once the knowledge has been validated, it is an-
notated and supported by the “Knowledge” layers of
the extended CWM, in particular the “MD & K Map-
ping” package. Depending on the annotation attached
to each piece of knowledge, the latter is responsible
for transcribing it and distributing it to the various
layers concerned (as new knowledge, obsolete knowl-
edge or modified knowledge).

4.1.2 Reinjection Process

The knowledge reinjection process (Figure 3) fol-
lows a structured workflow to ensure that new knowl-
edge is effectively classified, validated, and integrated
into the system. It consists of the following steps:
1. Knowledge Extraction: Identify new patterns
from the data warehouse using machine learning tech-
niques. 2. Validation: Compare extracted knowl-
edge with existing ontologies to ensure consistency.
3. Metadata Update: Integrate new insights into the
metadata management layer. 4. Query Optimiza-
tion: Adapt the query engine to leverage enriched
metadata.

Each new knowledge entry is categorized as either
confirmed, tentative, or rejected, ensuring robust con-
trol over metadata evolution.

Figure 3: Knowledge reinjection procedure.

If it is decided to transform the knowledge into
metadata, the ‘MD & K’ layer is responsible for this
transformation and for injecting it into the layer(s)
concerned. If it is decided to keep it in the form of
knowledge, the same ‘MD & K’ layer is responsible
for transmitting it to the ‘Ontology’ layer. This in turn
decides whether to update the Tbox or Abox bases of
the ontology in DL. This then updates the layers con-
cerned in the same way as the metadata. Note that in
this second case, it is mainly the new layers resulting
from the CWM extension that are most involved.

4.2 CWM Learning Integration

We propose to take the classifications defined by
(Ghidalia et al., 2024) and transform them into the
concept of classes for possible integration into the
CWM metamodel. And we propose to extend the
Analysis layer by adding a Learning package (Figure
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4). This new package will work in conjunction with
the Knowledge layer to improve knowledge manage-
ment and governance.

To further clarify the role of machine learning
within our extended CWM framework, we categorize
its functions into three main strategies:

Table 1: ML Strategies for Knowledge Reinjection.

Strategy Objective Algorithms

Knowledge
Discovery

Extract patterns
and new insights
from raw data.

Decision Trees,
Random Forest,
Autoencoders

Ontology
Enrichment

Automatically
update and refine
ontology struc-
tures.

Word2Vec for
semantic similar-
ity, Graph Neural
Networks

Reinjection
Optimiza-
tion

Decide when and
how to reinject
new knowledge.

Reinforcement
Learning, Bayesian
Networks

By formalizing these strategies, our framework
ensures that machine learning contributes effectively
to metadata enhancement and knowledge manage-
ment.

4.2.1 The MLModel Component

MLModel represents the abstract concept unifying
the three components and uses the AnnotedElement
concept from extended Core Package. It defines
common attributes like reasoningType and knowl-
edgeBase and methods like dataIntegration(), train-
Model(), and infer().

Properties are characterised as follows: 1. rea-
soningType influences how knowledge is processed
to derive new insights or verify existing information.
It shapes the system’s reasoning strategy, tailored to
its specific application domain and desired outcomes.
Common reasoning types can be : Deductive, In-
ductive, Abductive, Ontological or Hybrid reasoning.
2. knowledgeBase serves as the factual and logical
foundation that enables the AI system to comprehend
its domain and reach informed conclusions. It ensures
the system has access to reliable and organized infor-
mation. The components of a KnowledgeBase can be
: T Box, ABox, Logical Rules or Data Sources.

The methods are designed as follows: 1. dataIn-
tegration() method unifies and prepares disparate
data sources to create a cohesive dataset for analy-
sis and learning. It links raw data with ontologi-
cal knowledge, ensuring semantic alignment and data
consistency. 2. trainModel() method trains a ma-
chine learning model using integrated and pre-pro-
cessed data. It uses domain-specific knowledge from

ontologies to enhance the training process, ensuring
that the model effectively learns patterns and relation-
ships relevant to the target domain. 3. infer() method
applies the trained model to new data, performing in-
ference tasks by integrating knowledge from both the
ontology and the learned model. It generates predic-
tions and explanations based on data patterns and on-
tological rules.

Classes like LearningEnhancedOntology,
SemanticDataMining, and LearningAndReason-
ingSystem are abstracted under MLModel, with
relevant relationships to supervised, unsupervised,
and neural techniques.

4.2.2 The LearningEnhancedOntology
Component

The LearningEnhancedOntology component auto-
mates the extraction and classification of ontological
concepts. For instance, in an e-commerce system, this
module can dynamically classify new product cate-
gories based on customer interactions and reinject this
knowledge into the search engine’s metadata to en-
hance recommendations. It includes attributes like
ontologyType and ruleset.

1. ontologyType defines the specific type of ontol-
ogy used in the system. Examples include domain on-
tology, task ontology and parent ontology. This clas-
sification helps the system to understand the focus and
scope of the ontology and facilitates the adaptation
of learning processes to the type of ontology. In the
education domain, the ontology type could be called
”curriculum ontology”, which includes courses, pre-
requisites and learning objectives. 2. ruleset defines
the logical rules and constraints that govern the on-
tology. It provides a deductive framework for reason-
ing and knowledge inference, while ensuring compli-
ance with domain-specific rules. 3. conceptualMap-
ping indicates whether an ontology supports connec-
tions between various knowledge structures, such as
schemas or ontologies. This capability facilitates in-
teroperability and data integration, allowing for se-
mantic alignment across multiple data sources and
systems. In a multilingual educational platform, con-
ceptual mapping links equivalent concepts across dif-
ferent language-specific ontologies.

1. ontologyCreation() method automates the de-
velopment of new ontologies by extracting concepts,
relationships and properties from existing data. This
streamlines the design process and minimises man-
ual effort, ensuring that the resulting ontologies are
data-driven and accurately represent the domain. It
can extract data from both structured and unstruc-
tured sources, identifying key concepts and relation-
ships using machine learning algorithms such as clus-
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Figure 4: Extensible Learning Package for extending CWM Analysis layer.

tering and neural networks. The extracted knowledge
is then formalised in ontology formats such as OWL
or RDF. 2. ontologyMaintenance() function updates
and refines the ontology to ensure its relevance and
accuracy over time. It keeps the ontology synchro-
nised with changes in the domain or data, support-
ing the dynamic evolution of knowledge structures. It
can monitor domain changes or new data input and
automatically add, modify or delete concepts and re-
lationships. Updates are validated using domain-spe-
cific rules or expert feedback. 3. optimizeReason-
ing improves the reasoning process by incorporating
machine learning techniques, resulting in faster and
more accurate reasoning. It also reduces the compu-
tational complexity of ontology-based reasoning, al-
lowing reasoning engines to adapt to real-time appli-
cations. The processes can be : • Identify bottle-
necks: Recognise the limitations of traditional rea-
soning methods, such as long inference times. • Ap-
ply Machine Learning Models: Use models such
as Recursive Reasoning Networks or heuristic opti-
mizations to increase efficiency. • Validate results:
Ensure accuracy by comparing results against estab-
lished ontological rules. This approach can improve
the system’s ability to predict the optimal course se-
quence for students based on their learning history.
4. mapOntologies() effortlessly aligns disparate on-
tologies, paving the way for seamless data integration
and interoperability. It fuses knowledge from differ-
ent sources to present a unified view, while resolving
any annoying semantic inconsistencies. First things
first: identify common or equivalent concepts across
ontologies. We use sophisticated algorithms such as
Random Forest or Word2Vec to align concepts and

their relationships. Once we’ve mapped them, we val-
idate the relationships to ensure everything is consis-
tent and accurate.

4.2.3 The SemanticDataMining Component

SemanticDataMining ocuses on feature engineer-
ing, algorithm design, domain knowledge integration,
and model explanation. It includes attributes like
dataRepresentation and embeddingMethod.

1. dataRepresentation defines how data is struc-
tured before it enters the machine learning pipeline.
It ensures that the data is compatible with both the
data mining algorithms and the associated ontologi-
cal framework. This process determines whether to
use raw data, semantic embeddings or ontologically
annotated data. In short, effective data representation
is critical to harnessing the power of machine learning
technologies. A use case could be ”Learning Activity
Features with Ontological Annotations”. 2. embed-
dingMethod transforms data into a format rich in se-
mantic knowledge. This process enables data mining
algorithms to effectively utilize ontological informa-
tion. By integrating these techniques, we can enhance
the capabilities of our data analysis and improve de-
cision-making processes. We propose ”Word2Vec for
Learning Object Metadata” as an example. 3. seman-
ticConstraints refers to the application of semantic
rules during the data mining process. This feature en-
sures that machine learning models follow the specific
rules and relationships outlined by the underlying on-
tology, thereby maintaining domain relevance and in-
tegrity.
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1. featureEngineering() function enhances, se-
lects or extracts features from raw data by incor-
porating ontological knowledge. This process im-
proves the relevance and representation of data for
the machine learning pipeline. The types of Feature
Engineering are : a) Feature Augmentation: Adds
additional semantic features derived from the ontol-
ogy b) Feature Selection: Identifies the most rele-
vant features based on ontological rules c) Feature
Extraction: Transform raw data into meaningful fea-
tures using ontology-based embeddings. The fea-
ture engineering process includes the following steps
: a) Extract raw features from the dataset. b) Us-
ing the ontology to add, reduce or transform fea-
tures. c) Outputting a semantically enriched feature
set. By following these steps, we can create a more
effective and informative dataset for machine learn-
ing applications. 2. designAlgorithm() function de-
signs or adapts data mining algorithms to incorpo-
rate ontological knowledge, aligning the logic and
behaviour of the algorithm with domain-specific se-
mantics. Types of Ontology-Enhanced Algorithms
are like a) Ontology-based decision trees: These use
decision nodes that exploit semantic relationships.
b) Ontology-based neural networks: The layers or
architecture of these networks are influenced by on-
tological hierarchies. c) Ontology-based probabilis-
tic graphical models: In these models, relationships
are driven by ontology constraints. Identifying the
data mining problem (e.g. classification or cluster-
ing). Adapting an existing algorithm or creating a
new one that incorporates ontology-driven rules. Val-
idating the performance of the algorithm on semanti-
cally enriched data sets. 3. integrateDomainKnowl-
edge() incorporates domain-specific knowledge from
an ontology into the data mining pipeline. This ap-
proach ensures that machine learning models benefit
from structured and contextual information. Steps to
Implement: a) Load Domain Ontology: Import the
relevant domain ontology associated with the dataset.
b) Identify Key Concepts: Recognize essential con-
cepts, relationships, and constraints that need to be
integrated. c) Apply Ontological Insights: Utilize
the identified insights to inform preprocessing, model
training, and validation. This structured approach
enhances the machine learning process by ground-
ing it in relevant domain knowledge. 4. explain-
Model() improves model interpretability by linking
predictions or decisions to ontological concepts and
relationships. It increases the transparency and trust-
worthiness of machine learning models by providing
domain-relevant justifications for model outputs. The
steps are to analyse the model’s predictions or deci-
sion paths, map these outputs to relevant ontologi-

cal concepts and rules, and generate explanations that
align the predictions with domain knowledge.

4.2.4 The LearningReasoningSystem Component

The LearningReasoningSystem leverages hybrid AI
techniques to dynamically adjust its reasoning rules.
For example, in a financial risk assessment system,
it can detect fraudulent patterns by cross-referencing
new transactional data with historical fraud cases,
thereby refining its predictive accuracy in real-time.

It combines learning and reasoning capabilities
with scalability and neuro-symbolic integration. It in-
cludes attributes like modelArchitecture and methods
like dynamicAdaptation() and realTimeReasoning().

The properties are crucial for the efficiency and
adaptability of hybrid AI. These properties include:
1. modelArchitecture: This defines the structure of
the learning model used within the system. It could be
neural networks, decision trees, or a hybrid approach.
The modelArchitecture directly impacts how the sys-
tem processes data and performs reasoning, ensur-
ing it’s well-suited for the application’s complexity.
For example, in a dynamic recommendation system,
a ”Recurrent Neural Network with Ontology-Based
Constraints” architecture could optimize suggestions
by considering semantic relationships between items.
2. reasoningMechanism: This specifies the reason-
ing framework used to infer knowledge or validate
decisions. This could involve rule-based, probabilis-
tic, or hybrid reasoning. The reasoningMechanism
guides decision-making by leveraging domain-spe-
cific logic and combining data-driven learning with
deductive reasoning. For instance, in a financial fraud
detection system, a ”Probabilistic Reasoning with
Bayesian Networks” mechanism could evaluate sus-
picious transactions by considering the probabilities
of fraudulent behavior. 3. dynamicKnowledgeBase:
This indicates whether the system’s knowledge base
is dynamically updated with new information. A dy-
namicKnowledgeBase allows the system to adapt to
evolving domains and learn in real-time. A medi-
cal diagnostic system that continuously updates its
knowledge base with the latest research and treat-
ment recommendations is a good example, ensuring
more precise and relevant analyses. These proper-
ties a powerful and adaptable tool. It can evolve with
changing contexts, improve the quality of decisions,
and provide a deeper understanding of the domains it
models.

The LearningReasoningSystem combines learn-
ing models with reasoning engines to improve
decision-making, adaptability, and scalability. It re-
lies on four key methods:

1. buildDynamicKnowledge() integrates machine
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learning with reasoning engines to create a hybrid
system. Machine learning detects patterns, while rea-
soning engines refine predictions using rules or ontol-
ogy-based logic. This improves accuracy and explain-
ability. For example, in a tutoring system, it predicts
student knowledge gaps and adjusts recommenda-
tions based on prerequisite rules. 2. buildDynamic-
Knowledge() keeps the knowledge base up to date by
integrating new data and insights. The system contin-
uously monitors input, updates validated information,
and ensures consistency. In healthcare, it adds new
treatments and diseases dynamically, ensuring diag-
nostic models stay current. 3. scaleReasoning() en-
hances the system’s ability to process large and com-
plex datasets efficiently. Optimization techniques,
such as heuristic algorithms and parallel computing,
improve reasoning performance. In urban planning,
this method analyzes traffic data from sensor net-
works to suggest optimal routes. 4. integrateNeu-
roSymbolicApproaches() combines neural networks
with symbolic reasoning for better decision-making.
Neural networks handle unstructured data, while sym-
bolic reasoning refines predictions for more reliable
results. In legal document analysis, it classifies docu-
ments with AI and validates classifications using le-
gal rules. These methods make the LearningRea-
soningSystem more adaptive, scalable, and capable
of delivering precise and interpretable decisions.

5 CONCLUSION

The CWM framework offers a standardized approach
to metadata management, yet its limited semantic
expressiveness restricts its applicability in complex,
heterogeneous environments. This paper proposes
an extended CWM framework that incorporates on-
tologies, machine learning, and knowledge reinjec-
tion policies to address these limitations. By in-
troducing new layers and components, such as the
”Learning Package” and advanced knowledge map-
ping mechanisms, the framework enhances the se-
mantic interoperability, adaptability, and usability of
data warehouse systems. The research explores the
integration of hybrid AI systems, combining induc-
tive and deductive techniques, to improve knowl-
edge discovery and decision-making. With the ex-
tension of the CWM mentioned in (Ralaivao et al.,
2024) and the present extension, we obtain an ex-
tended CWM framework capable of discovering and
managing knowledge. As a way forward, we pro-
pose experimentation and benchmarking on simple
and knowledge-based queries. Future work will fo-
cus on refining the reinjection mechanism with adap-

tive learning techniques and evaluating its applica-
bility across various domains, such as education and
learning, healthcare, finance, and smart cities.
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