
A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE
42020:2019

Gustavo S. Melo a and Michel S. Soares b

Federal University of Sergipe, Department of Computing, São Cristóvão, Brazil

Keywords: ATAM, ISO/IEC/IEEE 42020:2019, Software Architecture Evaluation.

Abstract: The evaluation of software architecture is a critical activity for ensuring system quality and alignment with
business goals. The Architecture Tradeoff Analysis Method (ATAM) offers a systematic approach to iden-
tifying, prioritizing, and resolving tradeoffs within architectural decisions. In contrast, the ISO/IEC/IEEE
42020:2019 standard provides a structured framework for the design, evaluation, and documentation of
software architectures in various domains. This paper presents a comparative analysis of ATAM and
ISO/IEC/IEEE 42020:2019, highlighting their strengths and limitations. One conclusion is that it is important
to note that the broader scope of ISO/IEC/IEEE 42020:2019 does not diminish the value of specialized meth-
ods like ATAM. Rather, it suggests a complementary relationship in which targeted evaluation techniques can
be integrated into a more comprehensive framework. By examining their different approaches to architectural
evaluation, this study aims to provide insights into their applicability to different contexts and implications for
software architecture practices.

1 INTRODUCTION

Correct and timely decision-making for software ar-
chitecture is crucial for the success of a software
project (van Vliet and Tang, 2016). Architectural
decisions, reviewed throughout the software lifecy-
cle, must be based on a thorough analysis to en-
sure the selection of the most appropriate solutions
(Chaves Costa and Soares, 2023a). Consequently,
identifying quality attributes and accurately mapping
usage scenarios are essential steps to avoid inefficien-
cies in time and resources (Agerwala and Bass, 2024).

An assessment of software architecture is a cor-
nerstone of the development lifecycle, allowing teams
to assess their planning and understanding of a
project’s requirements (Kaur et al., 2021). This pro-
cess, conducted at various stages of the software life-
cycle, helps mitigate risks, identify quality require-
ments, and evaluate proposed architectural solutions
(Rocha et al., 2023). Assessment of software archi-
tecture anticipates potential failure points, preventing
them from evolving into critical issues (Silva et al.,
2023).

Proper evaluation of software architecture plays a
key role in the development of robust and efficient

a https://orcid.org/0009-0007-8141-2064
b https://orcid.org/0000-0002-7193-5087

software (Banijamali et al., 2019). Documenting and
evaluating software architectures involves complex
processes that require collaboration between multi-
ple activities and stakeholders (França et al., 2017)
(Santos et al., 2020). Effective communication of ar-
chitectural elements such as layers, tools, decisions,
components, patterns, and processes is vital to ensure
that designs are understandable to different audiences
(Ribeiro et al., 2017) (Kaur et al., 2021).

Several methods have been developed to analyze
and validate the quality attributes of software systems.
Notable among these are the Architecture Tradeoff
Analysis Method (ATAM) and the ISO/IEC/IEEE
42020 standard, along with others such as SAAM,
SACAM, and SBAR.

Each method provides mechanisms for document-
ing and assessing the architecture, ensuring alignment
with project requirements, adaptability to change, and
achievement of business objectives. The choice of an
assessment method typically depends on factors such
as the domain of the system, prioritized quality at-
tributes, and specific characteristics of the project. In
many cases, it is necessary to combine or adapt dif-
ferent approaches to achieve a comprehensive and ef-
fective analysis.

This paper focuses on a comparative analysis
of two widely recognized approaches, ATAM and

Melo, G. S. and Soares, M. S.
A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE 42020:2019.
DOI: 10.5220/0013351800003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 37-46
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

37



the ISO/IEC/IEEE 42020:2019 standard, highlighting
their strengths, limitations, and applicability in soft-
ware architecture assessment. Therefore, one can aim
to provide insights into how these approaches for soft-
ware evaluation support decision-making processes
and contribute to architectural robustness.

2 THEORETICAL REFERENCE

ATAM (Architecture Tradeoff Analysis Method) is a
structured method designed specifically for analyz-
ing and evaluating architectural tradeoffs. The cen-
tral point of the ATAM approach is to identify risks
and make informed decisions throughout the software
development lifecycle (Kazman et al., 2000; Müller,
2020; ISO, 2015). The idea is to refine the multi-
ple attributes and architectural decisions according to
the needs of the project, to prevent hasty observations
from jeopardizing the development of the product.

ATAM has its roots in three distinct areas: the fun-
damental principles of architecture, the communities
dedicated to analyzing quality attributes, and its direct
predecessor, SAAM (Software Architecture Analysis
Method). Although it shares similarities with ATAM,
SAAM’s main objective is to determine which archi-
tectures best meet quality requirements, taking into
account the specific context of software development
(Kazman et al., 1994; Müller, 2020).

There are risk assessment models that focus
on unitary requirements, for example, performance,
availability, and modifiability, which can skew the
software product since a study focused on a single re-
quirement can cause other requirements to be left out
or go unnoticed. Using ATAM, the analysis is based
on multiple requirements, making it clear which ar-
eas have trade-offs and which areas need attention for
a better balance (Kazman et al., 2000; Müller, 2020).

By applying ATAM, organizations can explore in
depth how architectural decisions have an impact on
achieving the quality attributes that are essential to the
success of the final product. ATAM contains phases
defined as preparation, evaluation and consolidation
of results, promoting a detailed evaluation of architec-
tures at different stages of development, using tech-
niques such as scenarios, allowing potential risks to
be identified and mitigated before they become con-
crete problems (Saldana et al., 2019).

ATAM consists of nine steps:

1. Present the ATAM. The person responsible for
the evaluation describes the evaluation method to
the assembled participants, defines their expecta-
tions in line with the project’s objectives, and an-
swers the participants’ questions.

2. Present Business Drivers. A project spokesper-
son describes what business goals are motivating
the development efforts and hence what will be
the primary architectural drivers.

3. Present Architecture. The architect will describe
the proposed architecture through the level of de-
tail collected during the previous two steps, focus-
ing on how it addresses the business drivers.

4. Identify Architectural Approaches. Identifica-
tion of the best architectural approaches by the ar-
chitect and the team for the system to be devel-
oped.

5. Generate a Quality Attribute Utility Tree. The
quality factors that comprise system “utility”
(e.g., availability, security, modifiability, usabil-
ity) are elicited, specified to the level of scenarios,
annotated with stimuli and responses, and priori-
tized.

6. Analyze Architectural Approaches. Based on
high-priority factors identified in Step 5, the ar-
chitectural approaches that address those factors
are elicited and analyzed. For this step, architec-
tural risks, sensitivity points, and trade-off points
are identified.

7. Brainstorm and Prioritize Scenarios. A larger
set of scenarios is elicited from the entire group
of stakeholders. This set of scenarios is priori-
tized through a voting process involving the entire
stakeholder group.

8. Analyze Architectural Approaches. This step
reiterates the activities of Step 6 but uses the
highly ranked scenarios from Step 7. Those sce-
narios are considered test cases to confirm the
analysis performed so far. This analysis may un-
cover additional architectural approaches, risks,
sensitivity, and trade-off points, which are then
documented.

9. Present Results. Based on the information col-
lected in ATAM (which may include approaches,
scenarios, attribute-specific questions, risks, the
utility tree, sensitivity points, and tradeoffs), the
ATAM team presents the findings to stakeholders.

The ISO/IEC/IEEE 42020:2019 standard comple-
ments processes related to ISO/IEEE 15288:2015 in
the field of Systems Engineering, offering a more
comprehensive approach to architecture practices.
In addition, the ISO/IEC/IEEE 42020:2019 standard
improves and complements the procedures estab-
lished in ISO/IEC/IEEE 12207:2017 and ISO/IEC
15704:2019, effectively integrating them (ISO, 2019;
ISO, 2015).

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

38



The ISO/IEC/IEEE 42020:2019 standard is in-
trinsically linked to ISO/IEC/IEEE 42010:2011 and
ISO/IEC/IEEE 42030:2019, which are, respectively,
standards for Architecture Description and Architec-
ture Evaluation (Martin, 2018; Chaves Costa and
Soares, 2023b). These related standards contribute
to a consistent understanding and practice within the
field of software architecture.

ISO/IEC/IEEE 42020:2019 is articulated through
six main processes: Governance, Management, Con-
ceptualization, Evaluation, Elaboration, and Enable-
ment. Each of these processes is designed to
strengthen architecture practices and promote effec-
tive implementation. Together, they form a robust
framework that not only improves architectural prac-
tices but also ensures successful project development
by providing a solid foundation for governance, strat-
egy, and efficient execution.

Chapter 9 of ISO/IEC/IEEE 42020:2019 provides
general guidelines for managing software architecture
assessments, without delving into a specific method-
ology. It sets out principles and processes that can be
applied in different organizational contexts and soft-
ware projects. Rather than prescribing a step-by-step
approach, ISO/IEC/IEEE 42020:2019 emphasizes the
importance of adaptation to the specific needs of
the project, collaboration between stakeholders and
proper documentation of the assessment results.

Table 1 shows the functions of each process.
The Architecture Evaluation Process, as described

in Chapter 9 of ISO/IEC/IEEE 42020:2019, aims to
determine the suitability of one or more architectures
to achieve the needs and objectives of stakeholders.
Clause 9 is crucial for answering fundamental ques-
tions about the proposed architecture:

1. Is the architecture suitable for the intended uses
and operational situations?

2. Is the architecture flexible and extensible enough
to meet future needs?

3. Is the quality of the architecture acceptable?

4. Does the architecture address the concerns of
stakeholders?

5. Does the architecture achieve its stated objec-
tives?

6. Can the architecture be implemented success-
fully?

These questions are essential to ensure successful
execution. The process is structured into 10 specific
tasks, detailed in the standard, which guide the ar-
chitecture assessment in a systematic objective way.
Tasks of clause 9 are listed as follows:

Table 1: Architecture Process ISO/IEC/IEEE 42020:2019.

Process Description
Governance Provides direction and guid-

ance on the architectures
developed by the company
and are usually decisions
that come from the business
level.

Management Responsible for implement-
ing the directives coming
from governance is a pro-
cess that requires continuous
communication with gover-
nance, transmitting the de-
fined strategies and progress
towards achieving the objec-
tives.

Conceptualization Determines the appropriate
solutions that must meet the
needs arising from gover-
nance.

Evaluation Determines the extent to
which one or more of the ar-
chitectures developed meet
the needs of the stakehold-
ers, guaranteeing linear de-
velopment in line with the
defined objectives.

Elaboration Responsible for document-
ing the architecture(s) in a
sufficiently complete man-
ner for its intended use.

Enablement Provides the necessary facil-
itators to carry out activities
efficiently and intelligently.

9.1 Prepare and plan the architecture assessment ef-
fort.

9.2 Monitor, evaluate and control architecture as-
sessment activities.

9.3 Determine evaluation objectives and criteria.

9.4 Determine evaluation methods and integrate
them into the evaluation objectives and criteria.

9.5 Establish measurement techniques, methods and
tools.

9.6 Collecting and reviewing evaluation-related in-
formation.

9.7 Analyze architectural concepts and properties
and assess value for stakeholders.

9.8 Characterize the architecture based on the eval-
uation results.

9.9 Formulate conclusions and recommendations.

A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE 42020:2019

39



9.10 Capture and communicate the results of the as-
sessment.

3 COMPARISON BETWEEN
ATAM AND ISO/IEC/IEEE
42020:2019

Two widely known approaches for evaluating soft-
ware architectures are ATAM and Chapter 9 of
ISO/IEC/IEEE 42020:2019, each with its character-
istics, similarities, and differences.

3.1 Similarities Between ATAM and
ISO/IEC/IEEE 42020:2019

By correlating ATAM and ISO/IEC/IEEE
42020:2019, several similarities can be high-
lighted. The first is the flexibility in the order of
the stages. Although numbered and sequential, both
approaches allow the steps to be carried out as the
architecture team and stakeholders decide to proceed.
Constant communication between stakeholders and
business drivers is essential for both approaches.
From this communication and initial planning, the
most important functional requirements, technical,
economic, management constraints, key stakeholders,
and business objectives are defined.

Stakeholder involvement is a feature present from
the outset in both ATAM and the ISO/IEC/IEEE
42020:2019 guidelines. Stakeholders must maintain
continuous communication and be involved during re-
finements throughout the development of the project,
ensuring that their objectives are aligned and can be
achieved. Both approaches emphasize the impor-
tance of continually evaluating the software architec-
ture to ensure that it meets the quality requirements
and project objectives.

Both ATAM and ISO/IEC/IEEE 42020:2019 em-
phasize the importance of proper documentation that
contains all the objectives, requirements and possible
scenarios, allowing stakeholders to have a complete
understanding of the project.

ATAM and the ISO/IEC/IEEE 42020:2019 guide-
lines identify possible architectural approaches to be
followed. In ATAM, the identification is performed
in an initial phase, followed by the generation of the
quality attribute tree and a thorough evaluation to
correlate which architectures meet the most require-
ments with the best quality, according to prioritiza-
tion. ISO/IEC/IEEE 42020:2019 guidelines establish
techniques, methods, and tools to assist in the inves-
tigation of architectural alternatives, followed by an

analysis of the architectural properties that best meet
the requirements, highlighting the favourite choices.

Finally, both approaches highlight the importance
of adapting to the project, with alignment meetings
from the beginning of the product’s conception to en-
sure that the main objectives are accepted by the ma-
jority of stakeholders.

3.2 Differences Between ATAM and
ISO/IEC/IEEE 42020:2019

ATAM is a specific method for analyzing and eval-
uating architectural trade-offs, focused on identify-
ing risks, sensitivity points, and making informed
decisions during the software development process.
In contrast, Chapter 9 of ISO/IEC/IEEE 42020:2019
provides general guidelines for managing architecture
assessments, without delving into a specific method-
ology.

The ATAM evaluation scope focuses on evalu-
ating a system’s architecture in terms of quality at-
tributes and identifying possible points of sensitivity
between these attributes. ISO/IEC/IEEE 42020:2019
addresses the lifecycle management of software archi-
tecture evaluations, including the definition of evalu-
ation criteria, the selection of appropriate evaluation
methods, and the integration of evaluation results into
the development process.

Although ATAM and ISO/IEC/IEEE 42020:2019
address quality attributes as an essential pillar, they
do so in different ways. ATAM is highly effective
in creating a comprehensive tree of quality attributes
by systematically evaluating architectural decisions
against multiple attributes such as performance, se-
curity, modifiability, and usability. This helps stake-
holders understand the trade-offs involved in different
architectural choices and their impact on system qual-
ities. For example, ATAM can be used to determine
the balance between performance and modifiability,
highlighting architectural risks and their priorities. In
contrast, ISO/IEC/IEEE 42020:2019 provides general
guidelines for defining and managing the architecture
of software-intensive systems, including guidance on
architectural documentation, architectural description
management, and business-oriented architecture plan-
ning.

When comparing the tasks of each method, there
are some significant differences. ATAM consists of
9 tasks, while ISO/IEC/IEEE 42020:2019 defines 10
tasks. One notable difference is that ATAM’s first task
involves presenting the method, setting expectations,
and clarifying any doubts the meeting may have. In
contrast, ISO/IEC/IEEE 42020:2019 begins by noting
the level of effort required for the architecture assess-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

40



ment, without involving a detailed initial discussion
with stakeholders.

The approach to the existing architecture is an-
other point of difference. In ATAM, after defining the
business drivers, the responsible team drafts the ar-
chitecture to be followed, which will be discussed and
adjusted as necessary. ISO/IEC/IEEE 42020:2019, on
the other hand, works directly with the identification
of possible architectures that can meet the demand,
without the need to write a preliminary architectural
sketch.

Another distinguishing factor is brainstorming
and prioritization of scenarios, which in ATAM in-
volves bringing together all stakeholders to discuss
possible scenarios that could occur. These scenarios
are classified as use case scenarios and change sce-
narios, which can be subdivided into growth and ex-
ploratory scenarios. Growth scenarios help to iden-
tify strengths and weaknesses, while exploratory sce-
narios identify points of sensitivity in the software.
ISO/IEC/IEEE 42020:2019 does not specify this level
of detail for prioritization of scenarios.

ATAM structure is divided into three phases:
preparation, evaluation, and consolidation, using
techniques focused on quality attributes, scenarios
and sensitivity points to conduct the evaluation. In
contrast, Chapter 9 of ISO/IEC/IEEE 42020:2019
takes a more generic approach, focusing on documen-
tation of the assessment and stakeholder collaboration
throughout development.

Regarding the focus on risks, ATAM highlights
risk mapping as a priority, helping the team to identify
and mitigate these risks from the earliest stages of the
project. ISO/IEC/IEEE 42020:2019, even tough rec-
ognizes the importance of risks, does not specifically
focus on them during the architecture assessment.

4 A PROCESS TO COMPARE
ATAM AND CHAPTER 9 OF
ISO/IEC/IEEE 42020:2019

Based on systematic literature reviews presented be-
fore (Silva et al., 2023; Banijamali et al., 2019; Ah-
madi et al., 2019; Abrahão and Insfran, 2017), the
methods were analyzed to generate ideas on how to
compare ATAM with the aforementioned guidelines
from Chapter 9 of the ISO/IEC/IEEE 42020:2019
standard. Through the ideas collected, a process and
a comparison of the evaluation criteria referred to the
construction of a software architecture is carried out
from its initial phase. Through this classification, it is
possible to predict the sustainability (in the sense of

durability) of the software architecture designed with
these tools (Koziolek, 2011).

Figure 1: Article development process

The due diligence process in this article is sum-
marized in six steps, as illustrated in Fig. 1.

The first step is to define the objective: to carry
out a comparison between the ATAM architecture as-
sessment methodology and the guidelines presented
in Chapter 9 of ISO/IEC/IEEE 42020:2019, to iden-
tify their differences, similarities, and the evolution
that has occurred over the 19 years that separate them.

The second step consists of reviewing the litera-
ture, looking for works that can guide and serve as a
basis for the development of the article, also investi-
gating evaluation criteria that can be used in the com-
parison.

The third step is to collect the evaluation criteria
found in the literature. The fourth step is the thorough
selection of tangible and intangible criteria, aiming to
describe their similarities and differences.

The fifth step is the validation of the criteria
to verify whether both ATAM and ISO/IEC/IEEE
42020:2019 meet the selected criteria. Finally,
the sixth step is the comparison between ATAM
and ISO/IEC/IEEE 42020:2019, describing the crite-
ria presented and highlighting the improvements of
ISO/IEC/IEEE 42020:2019 compared to ATAM.

Eliciting functional and non-functional require-
ments is the first process of Requirements Engineer-
ing. Through it, it is possible to understand and
identify the needs of interested parties (Akram et al.,
2024). The software architect is responsible for deter-
mining the technologies that should be used to build
the software, selecting architectures appropriate to the

A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE 42020:2019

41



context in which they are applied, and choosing archi-
tectural styles.

Architectural styles provide general patterns for
organizing system components’ and defining how
they interact with each other. Choosing the right ar-
chitectural style facilitates system maintenance, scal-
ability, and adaptability, ensuring that it meets spec-
ified requirements efficiently and effectively (Power
and Wirfs-Brock, 2019; Marzooni et al., 2021). These
crucial points such as requirements elicitation, tech-
nology selection, choice of appropriate architectures,
and definition of architectural styles are addressed in
both ATAM and ISO/IEC/IEEE 42020:2019, high-
lighting the importance of addressing these aspects to
ensure the development of software architectures that
are robust and effective.

Design patterns are reusable conceptual solutions
to common software design problems throughout the
development cycle, providing a construction pattern
that developers can follow. The application of a de-
sign pattern varies depending on the problem to be
solved, making some patterns more or less suitable
for certain cases (Uludağ and Matthes, 2020; Eigler
et al., 2023), a point addressed by both.

The discussion and detailing of scenarios are im-
portant points covered in different ways by ATAM
and ISO/IEC/IEEE 42020:2019. Both approaches in-
volve discussing possible scenarios with stakehold-
ers, and refining the main ideas that should be incor-
porated into the project. However, the detailing of
scenarios is an exclusive feature of ATAM, as it is
a scenario-based methodology, while ISO/IEC/IEEE
42020:2019 addresses this issue in a more generic
way.

Table 2: Comparison of Requirements & Design between
ATAM and ISO/IEC/IEEE 42020:2019.

Criteria ATAM ISO 42020
Functional Requirements ✓ ✓

Non-Functional Requirements ✓ ✓
Technical Selection ✓ ✓

Architecture Selection ✓ ✓
Architecture Style ✓ ✓

Design Patterns ✓ ✓
Possible Scenarios ✓ ✓
Scenario Details ✓

Adopting CI/CD (Continuous Integration and
Continuous Delivery) practices plays a crucial role in
new software development standards, allowing devel-
opers to reduce product release cycles and detect fail-
ures more quickly. However, despite its significant
contributions, using CI/CD in practice can be labo-
rious and generate new challenges for development
teams (Zampetti et al., 2023). Monitoring and man-
agement of logs is a process that is intrinsically linked

to risk mitigation. In a software architecture they
are essential for monitoring and recording system
behaviour, facilitating error detection, performance
analysis and maintenance (Cândido et al., 2021). The
selection of development tools, which will be used in
conjunction with the support technologies chosen for
the design of the software architecture, is a concern
addressed exclusively by ISO/IEC/IEEE 42020:2019.

Table 3: Comparison of Development Tools between
ATAM and ISO/IEC/IEEE 42020:2019.

Criteria ATAM ISO 42020
CI/CD Tools ✓

Logging Tools ✓
Versioning Tools ✓

Dependency Manager ✓
IDE Tools ✓

Two crucial topics, addressed by both ATAM and
ISO/IEC/IEEE 42020:2019, are infrastructure and
platform choices. These are fundamental in soft-
ware development, as they directly influence effi-
ciency, scalability, and maintenance. Selecting the ap-
propriate infrastructure can facilitate the implementa-
tion of robust architectural standards and ensure sys-
tem adaptability to changing technology and business
needs. These decisions impact not only the immedi-
ate performance of software but also its evolution and
ability to integrate with other technological solutions
(Garcia et al., 2021).

Mapping security strategies is crucial to the suc-
cess and reliability of software. Security processes,
based on CIA principles (Confidentiality, Integrity,
Availability), need to be discussed from the initial
stages of software architecture design (Zarour et al.,
2020). Software scalability is an irrefutable and nec-
essary feature of software architectures. As the num-
ber of users of a piece of software grows, it becomes
more likely that the system will be overloaded.

If the hardware used in conjunction with the soft-
ware developed does not support this exponential
growth, then the software could fail, revealing flaws
in the design of the software architecture. Therefore,
software scalability must be considered from the out-
set of its design to avoid future problems, mainte-
nance costs, and even the loss of customers due to
not being able to serve them (Amorim et al., 2014).

Table 4: Comparison of Infrastructure & Platform between
ATAM and ISO/IEC/IEEE 42020:2019.

Criteria ATAM ISO 42020
Infra. Management ✓ ✓
Platform Services ✓ ✓

Recovery and fault tolerance strategies, also
present in ATAM and ISO/IEC/IEEE 42020:2019,

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

42



Table 5: Comparison of Strategic Issues between ATAM and ISO/IEC/IEEE 42020:2019.

Criteria ATAM ISO 42020
Flexibility ✓ ✓

Stakeholder Involvement ✓ ✓
Continuous Evaluation ✓ ✓

Architecture Alternatives ✓ ✓
Recovery & Fault Tolerance ✓ ✓

Maintenance & Support ✓
Monitoring ✓

Alignment Meetings ✓ ✓
Testing Strategies ✓ ✓
Communication ✓ ✓

Type Specific method General guidelines
Evaluation Scope Quality attributes Lifecycle management
Quality Attributes Tree of QA Architecture documentation
Number of Tasks 9 10

Preliminary Architecture Sketch ✓
General Structure Prepare, evaluate & consolidate Documentation & collaboration

Risk Focus Priority No specific focus

are crucial concerns in new software development
models. High-performance software developed to-
day seeks to have as many errors as possible due to
the brutal competition imposed by the software in-
dustry. Small errors are enough for companies to suf-
fer huge losses (Parchman et al., 2016). Maintenance
and support strategies are fundamental in the devel-
opment of a software architecture, as they guarantee
the longevity, efficiency, and adaptability of systems.
Maintenance allows software to evolve as user needs
and market conditions change, fixing bugs, improving
performance, and implementing new features. Sup-
port, in turn, ensures that users receive the help they
need to solve problems and use the software effec-
tively. Together, these strategies aim to achieve cus-
tomer satisfaction, reduce costs in the long term and
prevent failures that could compromise software exe-
cution (Hinrichs and Prifti, 2022).

Testing strategies are crucial steps in software de-
velopment, by enabling exhaustive testing to identify
bugs, flaws, and incorrectly implemented processes.
These tests ensure software quality and reliability, in-
creasing end-user satisfaction, and reducing costs as-
sociated with post-deployment fixes (Costa and Teix-
eira, 2018; Duarte et al., 2024). Effective com-
munication and coordination strategies are necessary
in software development, especially in distributed or
multidisciplinary teams.

Clear and consistent communication facilitates
the exchange of information, rapid problem resolu-
tion, and informed decision making, ensuring that all
team members are aligned with project objectives and
deadlines. Project management tools, regular meet-
ings and detailed documentation are essential for co-
ordinating activities, distributing responsibilities and
monitoring progress. Good cooperation also helps to

minimize rework and conflicts, improving efficiency
and productivity (Kalogiannidis, 2020) (Muller et al.,
2019). Both are concerns explained by ATAM and
ISO/IEC/IEEE 42020:2019.

5 GUIDELINES FOR FUTURE
WORK

For future work, we propose three possible research
projects.

First, the development of a software architecture
assessment framework based on the guidelines in
Chapter 9 of the ISO/IEC/IEEE 42020:2019 standard.
This framework would aim to:

1. Integrate the strengths of focused evaluation
methods like ATAM with the comprehensive ap-
proach of ISO/IEC/IEEE 42020:2019.

2. Provide practical guidelines for implementing the
standard’s recommendations in real-world soft-
ware development contexts.

3. Incorporate emerging trends in software architec-
ture, such as microservices, cloud-native applica-
tions, and AI-driven systems.

Such a framework would contribute to the on-
going evolution of software architecture assessment
methods, helping practitioners navigate the increasing
complexity of modern software systems while adher-
ing to international standards.

Second, research on the development and further
integration of software tools that help and facilitate
the use and application of architectural processes.
Software tools for architecture description and eval-
uation are rarely employed in practice, as such tools
are too primitive (simply storing and describing data)

A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE 42020:2019

43



or too expensive to be used in small to medium-size
companies, which are the vast majority in the soft-
ware industry (da Costa Junior et al., 2019). In ad-
dition, the inclusion of emerging technologies, such
as techniques of machine learning with the aforemen-
tioned tools to increase efficiency and effectiveness in
decision-making in the field of software architecture,
as well as the continued exploration of best practices
and evolving standards in architectural frameworks
and modelling languages, which remain key to keep-
ing up with advances in the industry.

Third, develop a standardized set of metrics and
automation mechanisms for architecture evaluation
methodologies. This research direction would focus
on:

1. Creating quantifiable metrics to measure the ef-
fectiveness of different architecture evaluation
methods in various contexts.

2. Developing automated tools for collecting and an-
alyzing these metrics during the evaluation pro-
cess.

3. Establishing benchmarks and comparative anal-
yses between different evaluation methodologies
based on empirical data.

4. Investigating the correlation between architecture
evaluation results and actual project outcomes.

This research would help organizations make
more informed decisions about which evaluation
methodology to use based on concrete data, while
also providing a foundation for continuous improve-
ment of these methodologies through automated feed-
back and measurement systems. The automation as-
pect would address the current challenge of manual-
intensive evaluation processes, making architecture
evaluation more accessible and efficient for organiza-
tions of all sizes.

6 CONCLUSION

This comparative study between ATAM and
ISO/IEC/IEEE 42020:2019 reveals significant ad-
vancements in software architecture evaluation
methodologies over the past two decades. ATAM
continues to be a valuable tool in the software in-
dustry, the emergence of ISO/IEC/IEEE 42020:2019
represents a more comprehensive approach to
software architecture development and assessment.

The analysis highlights several key improvements
embodied in ISO/IEC/IEEE 42020:2019:

1. Broader Scope. The standard encompasses a
wider range of aspects in software architecture

development, extending beyond evaluation to in-
clude crucial elements such as tool selection and
development processes.

2. Integration of Modern Practices.
ISO/IEC/IEEE 42020:2019 incorporates contem-
porary software development practices, including
continuous integration and delivery (CI/CD) and
systematic logging for failure analysis.

3. Emphasis on Maintenance and Monitoring.
The standard places greater emphasis on long-
term aspects of software architecture, including
maintenance strategies and monitoring practices.

4. Comprehensive Task Framework.
ISO/IEC/IEEE 42020:2019 outlines a more
extensive set of tasks for the design and eval-
uation of software architectures, reflecting
the increased complexity of modern software
systems.

5. Enhanced Stakeholder Collaboration. The
standard emphasizes the importance of docu-
mentation and collaboration with stakeholders
throughout the architecture development process.

These advancements reflect the Software Engi-
neering community, evolving understanding of the
complexities involved in designing and evaluating
software architectures. The shift from ATAM’s
focused approach on quality attribute tradeoffs to
ISO/IEC/IEEE 42020:2019’s holistic view of archi-
tecture development demonstrates the field’s maturity.

However, it is important to note that the broader
scope of ISO/IEC/IEEE 42020:2019 does not di-
minish the value of specialized methods such as
ATAM. Rather, it suggests a complementary relation-
ship where targeted evaluation techniques can be in-
tegrated into a more comprehensive framework.

REFERENCES

Abrahão, S. and Insfran, E. (2017). Evaluating Software Ar-
chitecture Evaluation Methods: An Internal Replica-
tion. In Proceedings of the 21st International Confer-
ence on Evaluation and Assessment in Software Engi-
neering, EASE ’17, pages 144—-153, New York, NY,
USA. Association for Computing Machinery.

Agerwala, G. and Bass, L. (2024). Teaching Software Ar-
chitecture Design - Building Intuition. In Proceedings
of the 1st International Workshop on Designing Soft-
ware, Designing ’24, pages 27—-33, New York, NY,
USA. Association for Computing Machinery.

Ahmadi, H., Farahani, B., Aliee, F. S., and Motlagh, M. A.
(2019). Cross-layer Enterprise Architecture Evalua-
tion: An Approach to Improve the Evaluation of TO-
BE Enterprise Architecture. In Proceedings of the

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

44



International Conference on Omni-Layer Intelligent
Systems, COINS ’19, pages 223––228, New York,
NY, USA. Association for Computing Machinery.

Akram, F., Ahmad, T., and Sadiq, M. (2024). Recommen-
dation Systems-based Software Requirements Elicita-
tion Process—a Systematic Literature Review. Jour-
nal of Engineering and Applied Science, 71.

Amorim, S. d. S., Almeida, E. S. d., and McGregor, J. D.
(2014). Scalability of Ecosystem Architectures. In
2014 IEEE/IFIP Conference on Software Architec-
ture, pages 49–52.

Banijamali, A., Heisig, P., Kristan, J., Kuvaja, P., and Oivo,
M. (2019). Software Architecture Design of Cloud
Platforms in Automotive Domain: An Online Survey.
In 2019 IEEE 12th Conference on Service-Oriented
Computing and Applications (SOCA), pages 168–175.

Chaves Costa, J. E. and Soares, M. S. (2023a). A Review
on the Capacities of the ISO/IEC/IEEE 42020:2019
Standard for Architecture Elaboration of Software and
Systems. In Proceedings of the XIX Brazilian Sympo-
sium on Information Systems, SBSI ’23, pages 412–
–418, New York, NY, USA. Association for Comput-
ing Machinery.

Chaves Costa, J. E. and Soares, M. S. S. (2023b). A Review
on the Capacities of the ISO/IEC/IEEE 42020:2019
Standard for Architecture Elaboration of Software and
Systems. In Proceedings of the XIX Brazilian Sympo-
sium on Information Systems, pages 412—-418, New
York, NY, USA. Association for Computing Machin-
ery.

Costa, A. and Teixeira, L. (2018). Testing Strategies for
Smart Cities applications: A Systematic Mapping
Study. In Proceedings of the III Brazilian Symposium
on Systematic and Automated Software Testing, SAST
’18, pages 20—-28, New York, NY, USA. Association
for Computing Machinery.

Cândido, J., Aniche, M., and van Deursen, A. (2021). Log-
based Software Monitoring: A Systematic Mapping
Study. PeerJ Computer Science, 7:1–38.

da Costa Junior, A. A., Misra, S., and Soares, M. S. (2019).
ArchCaMO - A Maturity Model for Software Archi-
tecture Description Based on ISO/IEC/IEEE 42010:
2011. In Misra, S., Gervasi, O., Murgante, B.,
Stankova, E. N., Korkhov, V., Torre, C. M., Rocha, A.
M. A. C., Taniar, D., Apduhan, B. O., and Tarantino,
E., editors, Computational Science and Its Applica-
tions - ICCSA 2019 - 19th International Conference,
Saint Petersburg, Russia, July 1-4, 2019, Proceedings,
Part V, volume 11623 of Lecture Notes in Computer
Science, pages 31–42. Springer.

Duarte, Y., Durelli, V., Nardi, P. A., and Endo, A. T. (2024).
Exploratory Testing Strategies for Video Games: An
Experience Report. In Proceedings of the 22nd Brazil-
ian Symposium on Games and Digital Entertainment,
SBGames ’23, pages 46—-55, New York, NY, USA.
Association for Computing Machinery.

Eigler, T., Huber, F., and Hagel, G. (2023). Tool-Based
Software Engineering Education for Software Design
Patterns and Software Architecture Patterns - a Sys-
tematic Literature Review. In Proceedings of the 5th

European Conference on Software Engineering Edu-
cation, ECSEE ’23, pages 153—-161, New York, NY,
USA. Association for Computing Machinery.

França, J. M. S., de S. Lima, J., and Soares, M. S. (2017).
Development of an Electronic Health Record Appli-
cation using a Multiple View Service Oriented Archi-
tecture. In Hammoudi, S., Smialek, M., Camp, O.,
and Filipe, J., editors, ICEIS 2017 - Proceedings of
the 19th International Conference on Enterprise In-
formation Systems, Volume 2, Porto, Portugal, April
26-29, 2017, pages 308–315. SciTePress.

Garcia, J., Mirakhorli, M., Xiao, L., Zhao, Y., Mujhid, I.,
Pham, K., Okutan, A., Malek, S., Kazman, R., Cai,
Y., and Medvidović, N. (2021). Constructing a Shared
Infrastructure for Software Architecture Analysis and
Maintenance. In 2021 IEEE 18th International Con-
ference on Software Architecture (ICSA), pages 150–
161.

Hinrichs, M. and Prifti, L. (2022). Visualizing Maintenance
Data to Support Decisions on Strategic Maintenance
Planning. In Proceedings of the 15th International
Conference on PErvasive Technologies Related to As-
sistive Environments, PETRA ’22, pages 473––479,
New York, NY, USA. Association for Computing Ma-
chinery.

ISO (2015). Systems and Software Engineering — System
Life Cycle Processes.

ISO (2019). Enterprise, Systems and Software — Archi-
tecture Processes. Final Draft International Standard
(FDIS).

Kalogiannidis, S. (2020). Impact of Effective Business
Communication on Employee Performance. Euro-
pean Journal of Business and Management Research,
5(6).

Kaur, K., Khurana, M., and Manisha (2021). Impact of Ag-
ile Scrum Methodology on Time to Market and Code
Quality – A Case Study. In 2021 3rd International
Conference on Advances in Computing, Communica-
tion Control and Networking (ICAC3N), pages 1673–
1678.

Kazman, R., Bass, L., Abowd, G., and Webb, M. (1994).
SAAM: A Method for Analyzing the Properties of
Software Architectures. In Proceedings of 16th Inter-
national Conference on Software Engineering, pages
81–90. IEEE.

Kazman, R., Klein, M., Clements, P., Northrop, L., and Mc-
Gregor, J. (2000). ATAM: Method for Architecture
Evaluation. In Proceedings of the 22nd international
conference on Software engineering, pages 478–487.
ACM.

Koziolek, H. (2011). Sustainability Evaluation of Software
Architectures: A Systematic Review. In Proceedings
of the Joint ACM SIGSOFT Conference – QoSA and
ACM SIGSOFT Symposium – ISARCS on Quality of
Software Architectures – QoSA and Architecting Crit-
ical Systems – ISARCS, QoSA-ISARCS ’11, pages 3–
–12, New York, NY, USA. Association for Computing
Machinery.

Martin, J. N. (2018). Overview of an Emerging Standard on
Architecture Processes — ISO/IEC/IEEE 42020. In

A Process to Compare ATAM and Chapter 9 of ISO/IEC/IEEE 42020:2019

45



2018 Annual IEEE International Systems Conference
(SysCon), pages 1–8, Vancouver, BC, Canada. IEEE.

Marzooni, H. H., Motameni, H., and Ebrahimnejad, A.
(2021). Architecture Style Selection using Statistics
of Quality Attributes to Reduce Production Costs. In-
ternational Arab Journal Of Information Technology,
18(4):513–522.

Müller, H. (2020). Software Architecture Evaluation Meth-
ods and Tools: Analyzing Methods and Tools for
Evaluating Software Architectures to Ensure Adher-
ence to Quality Attributes and Design Principles. Dis-
tributed Learning and Broad Applications in Scientific
Research, 6:1–14.

Muller, M., Fussell, S. R., Gao, G., Hinds, P. J., Oliveira,
N., Reinecke, K., Robert, L., Siangliulue, K. P., Wulf,
V., and Yuan, C.-W. (2019). Learning from Team
and Group Diversity: Nurturing and Benefiting from
our Heterogeneity. In Companion Publication of the
2019 Conference on Computer Supported Coopera-
tive Work and Social Computing, CSCW ’19 Compan-
ion, page 498–505, New York, NY, USA. Association
for Computing Machinery.

Parchman, Z. W., Vallee, G. R., Naughton, T., Engel-
mann, C., Bernholdt, D., and Scott, S. L. (2016).
Adding Fault Tolerance to NPB Benchmarks Using
ULFM. In Proceedings of the ACM Workshop on
Fault-Tolerance for HPC at Extreme Scale, FTXS ’16,
pages 27—-34, New York, NY, USA. Association for
Computing Machinery.

Power, K. and Wirfs-Brock, R. (2019). An Exploratory
Study of Naturalistic Decision Making in Complex
Software Architecture Environments. In Bures, T.,
Duchien, L., and Inverardi, P., editors, Software Ar-
chitecture, ECSA 2019, volume 11681 of Lecture
Notes in Computer Science, pages 55–70. Univ Lille;
I Site ULNE; Inria; CNRS, Miss Femmes; CNRS,
GDR, Genie Programmation Logiciel; CNRS, UMR,
CRIStAL Comp Sci Lab; Spirals Res Grp. 13th Euro-
pean Conference on Software Architecture Engineer-
ing (ECSA), Paris, FRANCE, SEP 09-13, 2019.

Ribeiro, Q. A. D. S., Ribeiro, F. G. C., and Soares, M. S.
(2017). A Technique to Architect Real-time Embed-
ded Systems with SysML and UML through Multiple
Views. In Hammoudi, S., Smialek, M., Camp, O.,
and Filipe, J., editors, ICEIS 2017 - Proceedings of
the 19th International Conference on Enterprise In-
formation Systems, Volume 2, Porto, Portugal, April
26-29, 2017, pages 287–294. SciTePress.

Rocha, F. G., Misra, S., and Soares, M. S. (2023). Guide-
lines for Future Agile Methodologies and Architecture
Reconciliation for Software-Intensive Systems. Elec-
tronics, 12(7).

Saldana, Y. P., Toribio, G. G., Hernandez, M. J. S., Mora,
J. J. H., Bautista, H. N., Alegria, J. A. H., Ordonez,
C. A. C., Davila, L. M., and Gutierrez, N. A. (2019).
Evaluation of the Modifiability of an Evolution Sys-
tem Using the ATAM Method. International Journal
of Science and Research (IJSR), 8(2):1772–1779.

Santos, V. M., Misra, S., and Soares, M. S. (2020). Ar-
chitecture Conceptualization for Health Information
Systems Using ISO/IEC/IEEE 42020. In Gervasi, O.,

Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar,
D., Apduhan, B. O., Rocha, A. M. A. C., Tarantino,
E., Torre, C. M., and Karaca, Y., editors, Computa-
tional Science and Its Applications - ICCSA 2020 -
20th International Conference, Cagliari, Italy, July
1-4, 2020, Proceedings, Part VI, volume 12254 of
Lecture Notes in Computer Science, pages 398–411.
Springer.

Silva, S., Tuyishime, A., Santilli, T., Pelliccione, P., and
Iovino, L. (2023). Quality Metrics in Software Archi-
tecture. In 2023 IEEE 20th International Conference
on Software Architecture (ICSA), pages 58–69.

Uludağ, O. and Matthes, F. (2020). Large-Scale Agile De-
velopment Patterns for Enterprise and Solution Archi-
tects. In Proceedings of the European Conference on
Pattern Languages of Programs 2020, EuroPLoP ’20,
New York, NY, USA. Association for Computing Ma-
chinery.

van Vliet, H. and Tang, A. (2016). Decision Making in Soft-
ware Architecture. Journal of Systems and Software,
117:638–644.

Zampetti, F., Tamburri, D., Panichella, S., Panichella, A.,
Canfora, G., and Di Penta, M. (2023). Continuous
Integration and Delivery Practices for Cyber-Physical
Systems: An Interview-Based Study. ACM Trans.
Softw. Eng. Methodol., 32(3).

Zarour, M., Alenezi, M., and Alsarayrah, K. (2020). Soft-
ware Security Specifications and Design: How Soft-
ware Engineers and Practitioners Are Mixing Things
Up. In Proceedings of the 24th International Confer-
ence on Evaluation and Assessment in Software Engi-
neering, EASE ’20, pages 451––456, New York, NY,
USA. Association for Computing Machinery.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

46


