
VP-IAFSP: Vulnerability Prediction Using Information Augmented
Few-Shot Prompting with Open Source LLMs

Mithilesh Pandey a and Sandeep Kumar b

Department of Computer S Technology, Roorkee, India
{mithilesh p, sandeep.garg}@cs.iitr.ac.in

Keywords: Software Vulnerability Prediction, Large Language Models, Prompt Enhancement, Information
Augmentation, Few-Shot Prompting.

Abstract: Software vulnerabilities can cause significant damage to the organization and the user. This makes their timely
and accurate detection pivotal during the software development and deployment process. Recent trends have
highlighted the potential of Large Language Models for software engineering tasks and vulnerability predic-
tion. However, their performance is often inhibited if they rely solely on plain text source code. This overlooks
the critical syntactic and semantic information present in the code. To address this challenge, we introduce VP-
IAFSP(Vulnerability Prediction using Information Augmented Few Shot Prompting). Our approach improves
the LLMs’ efficiency for vulnerability prediction through Prompt Enhancements by augmenting information
related to the code and integrating graph structural information from the code to utilize Few-shot Prompting.
To assess the proposed approach, we conduct experiments on a manually labeled real-world dataset. The
results reveal that the proposed methodology achieves between 2.69% to 75.30% increase in F1-Score for
function-level vulnerability prediction tasks when compared to seven state-of-the-art methods. These findings
underscore the benefits of combining Information Augmentation with Few-shot Prompting while designing
prompts for vulnerability prediction.

1 INTRODUCTION

Software vulnerabilities are weaknesses in software
systems or implementation strategies that can be ex-
ploited by malicious actors to compromise the sys-
tem’s integrity, privacy, and/or availability. These vul-
nerabilities when unaddressed pose significant risks
leading to unauthorized access, data breaches, and
other security damages. Traditional methods for vul-
nerability detection like manual code reviews and au-
tomated static analysis tools are usually expensive,
inaccurate, and limited in scope. Therefore, recent
years have seen a significant rise in the development
of machine learning techniques for vulnerability pre-
diction(Nguyen et al., 2022). Deep learning models
have shown promising results in recognizing patterns
of vulnerabilities across large codebases(Hanif and
Maffeis, 2022), (Fu and Tantithamthavorn, 2022).

Despite these advances, traditional deep-learning
approaches come with limitations. They generally
rely on supervised learning and require substantial la-

a https://orcid.org/0000-0002-8756-0582
b https://orcid.org/0000-0002-3250-4866

beled data to train and generalize. This imposes data
collection and annotation dependencies. They can
also be very time-consuming, as (Li et al., 2021) men-
tion that it took them 9 days and 23 hours to process
data and conduct training on the (Fan et al., 2020)
dataset. Also, the model’s adaptability to new types
of vulnerabilities or code structures without retraining
on new data is restricted. Few-shot Prompting offers
a novel paradigm to address these issues and has been
used across various domains(Zhou et al., 2022). It
allows LLMs to make predictions based on provided
examples within the input prompt. This reduces the
need for retraining or modification of the model’s pa-
rameters(Ma et al., 2023). This approach is partic-
ularly appealing for vulnerability prediction as it al-
lows the model to adapt to new contexts and patterns
using only a handful of examples. This bypasses the
need for massive labeled datasets or complex training
procedures.

Few-shot Prompting also holds advantages over
traditional fine-tuning. Fine-tuning LLMs is com-
putationally expensive and requires extensive re-
sources(H. Fard, 2024). Fine-tuning can also lead
to overfitting and the model may become highly spe-

592
Pandey, M. and Kumar, S.
VP-IAFSP: Vulnerability Prediction Using Information Augmented Few-Shot Prompting with Open Source LLMs.
DOI: 10.5220/0013346600003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 592-599
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

cialized to the fine-tuned task at the cost of general-
ization. Few-shot prompting facilitates adaptability
without changing the model’s weights. This makes
it more efficient and cost-effective. Using Few-shot
prompting the model works efficiently for tasks where
frequent updates or new data are expected like vulner-
ability prediction.

To this reason, we conduct a study on open-source
LLMs using various prompts and explore how infor-
mation augmentation and few-shot prompting can be
used for effective vulnerability prediction. By exam-
ining different LLMs under diverse scenarios we as-
sess their performance in identifying software vulner-
abilities.

Based on our findings, we introduce VP-IAFSP
for vulnerability prediction to leverage the advantages
of LLMs. VP-IAFSP aims to improve the LLMs’ un-
derstanding of vulnerabilities by providing clear task
definitions with augmented information on vulnera-
bilities, and adding illustrative examples of both vul-
nerable and non-vulnerable functions. This approach
uses the LLM’s ability to process natural language in-
structions and apply the provided knowledge to code
vulnerability prediction. Through VP-IAFSP, we pro-
vide a balance between ease of implementation and
the potential for revealing vulnerabilities in source
code.

Through a comprehensive evaluation of our
methodology on a real-world dataset (Zhou et al.,
2019), we address the following three research ques-
tions:

• RQ1: How effective is VP-IAFSP for vulnerabil-
ity prediction?

• RQ2: Which open-source LLM performs best to
utilize VP-IAFSP for vulnerability prediction?

• RQ3: How do different prompts impact the per-
formance of various open-source LLMs in the
task of Vulnerability Prediction?

2 RELATED WORKS

Traditional rule-based methods like
Flawfinder(Ferschke et al., 2012), RATS, and
Checkmarx rely on manually crafted patterns to
identify vulnerabilities in code. Machine Learning
(ML) based methods have emerged as an alternative
to automate the process of vulnerability detection.
These techniques can be further categorized as
sequence-based and graph-based approaches.

Sequence-based methods like SySeVR(Li et al.,
2021), and VulDeePecker(Li et al., 2018) treat code

as a token sequence and use Natural Language Pro-
cessing (NLP) techniques to extract features and clas-
sify vulnerable or non-vulnerable code. VulDeeP-
ecker uses a bidirectional Long Short-Term Memory
(LSTM)(Zhou et al., 2016) network to analyze se-
quences of code. SySeVR extracts both semantic and
syntactic code features and employs a bidirectional
Gated Recurrent Unit (BGRU) network for vulner-
ability prediction. It also incorporates program de-
pendence graph (PDG) analysis and program slicing
in its analysis to improve its performance. (Russell
and et al., 2018) use a custom C/C++ lexer to con-
vert source code into a simplified token sequence.
This captures the essential meaning of the code to re-
duce the vocabulary size and enable transfer learning
across different datasets. Then they employ Convolu-
tional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to extract features from the embed-
ded token sequences.

Graph-based methods like IVDetect(Li et al.,
2022) and Devign(Zhou et al., 2019) use graph neu-
ral networks to capture the structural information
present in code. Devign uses a composite graph
representation that integrates Abstract Syntax Trees
(ASTs), Control Flow Graphs (CFGs), and PDGs
to learn comprehensive program semantics. It em-
ploys gated graph recurrent layers to capture both
node semantics and structural features. IVDetect
provides fine-grained interpretations by highlighting
PDG subgraphs, statements, and dependencies rele-
vant to detected vulnerabilities. It focuses on learn-
ing context-aware representations of vulnerable code.
ReVeal(Chakra et al., 2022) utilizes Code Property
Graphs (CPGs) which are a rich graph-based repre-
sentation of source code that captures both semantic
and syntactic relationships between code elements. It
then makes use of a GGNN to analyze these graphical
representations to detect software vulnerabilities.

The recent emergence of LLMs has opened new
opportunities for vulnerability detection(Jiarpakdee
et al., 2020). BurpGPT(Teyar, 2023) uses ChatGPT
and BurpSuite together for detecting vulnerabilities
in web applications. GRACE(Lu et al., 2024) is an
example of an LLM-based approach that leverages
graph structural information and in-context learning
to improve vulnerability detection.

3 METHODOLOGY

In this section, we outline the design rationale and ar-
chitecture of our proposed methodology.

VP-IAFSP: Vulnerability Prediction Using Information Augmented Few-Shot Prompting with Open Source LLMs

593

3.1 Prompt Enhancements

Prompt Enhancements involve embedding informa-
tion and relevant examples within a prompt to help
an LLM better understand the task’s context and the
expected output. In a setup where the LLMs as-
sess a code for vulnerability, the prompt P includes
both contextual information C and code snippets X as
shown by:

fP,C(X) =

{
1 if X = vulnerable,
0 if X = non-vulnerable.

A series of labeled examples (vulnerable and non-
vulnerable code samples) are incorporated in the
prompt to guide the LLM’s understanding of what ex-
actly constitutes a vulnerable code pattern. When the
LLM receives a new code input, the examples given
in the prompt help it evaluate the code with a consis-
tent interpretation of vulnerability. This increases the
reliability of the model.

Role-based prompting assigns specific roles to
the language model to guide its behavior during
the execution of the task. By explicitly defining
roles like ”security analyst” the model can generate
more contextually relevant and precise outputs. This
technique structures responses according to domain-
specific needs and improves the model’s behavior
with the task’s requirements. This is particularly ef-
fective where tasks require domain expertise and role-
driven outputs. Prompt P1, given in Table 1 is an ex-
ample of Role-based Prompting.

Table 1: Prompt Enhancements.
Prompt Prompt Type Prompt Description
P1 Task + Role

Definition
You are a security professional with
expertise in finding software vulner-
abilities. Check if the code [X] is
vulnerable or not.

P2 P1 + Domain
Information

This is a C/C++ code from the Prod-
uct P. You are a ... Check if the code
[X] is vulnerable or not.

P3 P2 + Code Sum-
mary

This is a C/C++ code from the Prod-
uct P. You are a ... Check if the code
[X] is vulnerable or not.

P4 P3 + one vul-
nerable sample

You are a ...vulnerable code: [E].
You are a ... Check if ...

P5 P3 + two vul-
nerable, one
non-vulnerable

You are a ...vulnerable
code:[E1,E2], non-vulnerable
code:[E3] ... Check if ...

Information-augmented prompting supplements
the language model with additional contextual data
to improve the reasoning and decision-making of the
model. By embedding relevant facts and context into
the prompt, the model gains access to the informa-
tion it might otherwise lack. Information Augmented
Prompting can be seen in Prompts P2 and P3 in Table
1. This approach is critical for applications requiring

up-to-date knowledge or specific domain details. This
enables the model to generate informed and accurate
responses while reducing hallucination risks.

Few-shot prompting provides the language model
with examples within the prompt to demonstrate the
desired behavior of the model(Nashid et al., 2023).
By showing input-output pairs, the model can infer
patterns and generalize them to similar tasks with lim-
ited data. This method is highly effective for tasks in-
volving classification or generating content in a spe-
cific style. Few-shot prompting uses the model’s pre-
trained knowledge and minimizes the need for exten-
sive fine-tuning. Prompts P4 and P5 described in Ta-
ble 1 are examples of Few-shot Prompting.

3.2 VP-IAFSP

The ensemble of role-based, information-augmented,
and few-shot prompting leverages the distinct
strengths of each approach and gives more insightful
results. Information-augmented prompting provides
necessary external knowledge and context to fill po-
tential information gaps. Few-shot prompting then
aids in guiding the model’s reasoning by using input-
output examples. This enables the model to gener-
alize patterns effectively. Each prompting technique
has its weaknesses but the ensemble mitigates these
limitations. Information-augmented prompting relies
heavily on the quality of supplementary data while
Few-shot prompting risks overfitting if the examples
are too narrow(Ye and Durrett, 2022). By combin-
ing these approaches the ensemble creates prompts
that are contextually informed and well-structured.
This enables the model to handle complex tasks like
software vulnerability prediction with improved accu-
racy.

Figure 1 illustrates the proposed methodology. It
comprises basically two modules- Information Aug-
mentation, and Few-Shot Selection.

3.2.1 Information Augmentation

Since we are asking the model to check if a code is
vulnerable or not, it is important to provide the model
with a concise and standard definition of a vulnerabil-
ity. For this purpose, we use the definition of vulner-
ability provided by NVD: ”A vulnerability is a weak-
ness in the computational logic ... when exploited, re-
sults in a negative impact to confidentiality, ...” (John-
son et al., 2011). This increases not only the model’s
vocabulary but also its comprehension of vulnerabili-
ties.

For the LLMs to perform better on a given task
we need to provide it with information related to that
particular task. The incorporation of file names in the

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

594

Figure 1: VP-IAFSP architecture and its sub-modules: Information Augmentation and Few-Shot Selection.

prompt can significantly improve the effectiveness of
LLMs(Li et al., 2023). We include the project infor-
mation and the language in which the code is written
in the prompt for every input code to help the model
understand the code better.

Finally, we provide the final Prompt with a sum-
mary of the code generated by an LLM itself. Var-
ious approaches have been proposed for code sum-
marization through LLMs (Yun et al., 2024) (Kumar
and Chimalakonda, 2024). For the purpose of this re-
search, we use the same LLM for creating a summary
of the code and supplying it to another prompt for the
final prediction task.

3.2.2 Few Shot Selection

GRACE(Lu et al., 2024) uses few-shot prompting but
does not employ CFGs and PDGs while finding the
most similar code to include in the prompts. This re-
duces the quality of the examples that are used in few-
shot prompting since these graph structures signify
the code’s model execution flows, and control and
data-flow information respectively(Wu et al., 2021).
We use various graph-based representations including
ASTs, PDGs, and CFGs to identify similar functions
from a set of code samples. By extracting these rep-
resentations for both the input function and the candi-
date functions we compute similarity scores based on
structural and semantic characteristics. This allows
for a more detailed comparison and enables the iden-
tification of functions that share similar behavior even
if their syntax differs.

After extracting the graph representations of the
input code we generate embeddings using Graph
Convolutional Networks(GCNs). These embeddings

serve as compact representations of the graph struc-
tures and help capture essential features to facilitate
similarity comparison. Similar graph representations
are extracted and embedded for each function in the
code samples. The forward pass through a two-layer
GCN is defined as follows:

1. First Convolution Layer:

H(1) = ReLU(AXW1) (1)

Where: - A is the adjacency matrix, X is the feature
matrix of nodes, W1 is the weight matrix for the first
convolution layer.

2. Second Convolution Layer:

H(2) = AH(1)W2 (2)

Where: - W2 is the weight matrix for the second con-
volution layer.

The final graph embedding is:

hG = mean(H(2)) (3)

For ASTs comparison to calculate Syntactic Sim-
ilarity, we use a metric called Jaccard Similarity. The
Jaccard similarity coefficient is used to compare the
similarity between two graphs based on their nodes,
edges, and attributes. The formula for the Jaccard
similarity is given by:

J(G1,G2) = w1 · Jnodes +w2 · Jedges

+w3 · Jnode attributes +w4 · Jedge attributes
(4)

Where:

Jnodes =
|N1 ∩N2|
|N1 ∪N2|

(5)

Jedges =
|E1 ∩E2|
|E1 ∪E2|

(6)

VP-IAFSP: Vulnerability Prediction Using Information Augmented Few-Shot Prompting with Open Source LLMs

595

Jnode attributes =
1

|N1 ∩N2| ∑
n∈N1∩N2

1attributes match (7)

Jedge attributes =
1

|E1 ∩E2| ∑
e∈E1∩E2

1attributes match (8)

We use PDGs and CFGs for the calculation of Se-
mantic Similarity. The Euclidean distance between
two embeddings e1 and e2 is calculated as:

d(e1,e2) =

√
n

∑
i=1

(e1,i − e2,i)2 (9)

Where e1 = (e1,1,e1,2, . . . ,e1,n) and
e2 = (e2,1,e2,2, . . . ,e2,n) are the two embedding
vectors.

To compute similarity, the distance is transformed
using an exponential decay function:

Sim(e1,e2) = exp(−d(e1,e2)) (10)

Once the Syntactic and Semantic Similarities are
calculated, the final Similarity Score is calculated as :

Similarity Score = w ·Syntactic Similarity
+(1−w) ·Semantic Similarity

(11)

After the Similarity Score between the Input Code
and the Code Samples is calculated, the code samples
with the highest Similarity Scores are added to the
Prompt.

4 RESULTS AND COMPARATIVE
ANALYSIS

4.1 System Settings

We employ 13th Gen Intel(R) Core(TM) i9-13900
with 62Gi RAM and 16 GB Quadro RTX 5000 GPU
running on Ubuntu 24.04 LTS operating system for
experimentation.

We use Joern for parsing the code into its graph
representations and Python’s Pytorch library for cre-
ating graph embeddings. To access the LLMs we use
the Ollama API and the Python’s langchain ollama li-
brary. Another Python library used is scikit learn for
evaluation.

4.2 Dataset

(Zhou et al., 2019) is a manually labeled dataset
compiled from two open-source C projects: FFmpeg
and Qemu. It is a balanced dataset that consists of
10,067 vulnerable functions, alongside 12,294 non-
vulnerable functions.

4.3 Evaluation

The performance of the proposed approach is evalu-
ated using Accuracy, Precision, Recall, and F1-Score.
Accuracy provides an overall measure of correctness,
while Precision evaluates the model’s ability to avoid
false positives. Recall assesses the detection of true
positives. F1-Score balances Precision and Recall to
offer a comprehensive performance metric.

4.4 Experimentation

As described in Figure 1, we start by augmenting
information about the software vulnerabilities to the
prompt. First, we tell the prompt the domain infor-
mation about the code- what language it is written in
and what Project is the code from. Next, we incor-
porate the vulnerability definition into the prompt to
give the prompt a clear definition. To sum up the In-
formation Augmentation part of the approach we pro-
vide the Prompt with an LLM-generated summary of
the code to add additional context. Detailed method-
ology for augmenting contextual information is given
in Section 3.2.1.

To select the examples to include in the prompt,
we make use of the Few-Shot Selection module
shown in Figure 1. The exact methodology used is
given in Section 3.2.2. By calculating the similari-
ties between the input code and the code samples we
find the most similar codes to input to the prompt.
Next, we experiment with five state of the art Open
Source LLM models- Llama3.2:2b, Gemma2:27b,
Llama3.1:70b, CodeLlama:7b, and Codestral:22b.
We make use of Ollama API to access these models
and input the curated prompts.

4.5 Results

In this subsection, we present the results of our
methodology with respect to the proposed research
questions.

4.5.1 RQ1: How Effective Is VP-IAFSP for
Vulnerability Prediction?

As shown in Table 2, the proposed methodology out-
performs all the compared methods in Recall and
F1-Score. VP-IAFSP achieves an increment be-
tween 2.69% and 75.30% in the F1-score as com-
pared to state-of-the-art approaches. With respect to
accuracy, VP-IAFSP outperforms two state-of-the-art
sequence-based learning approaches (Li et al., 2018)
and (Li et al., 2021). The low value of accuracy is
due to the LLM’s limited knowledge about software

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

596

vulnerabilities and code in general. VP-IAFSP tries to
overcome this limitation by providing more context to
the models by augmenting information related to the
code and few-shot scenarios to increase the model’s
understanding of the task.

Table 2: Overall performance of VP-IAFSP using different
open source LLMs compared to state-of-the-art vulnerabil-
ity prediction models.

Model Accuracy Precision Recall F1-
Score

(Li et al.,
2018)

49.91 46.05 32.55 38.14

(Russell and
et al., 2018)

57.60 54.76 40.72 46.71

(Li et al.,
2021)

47.85 46.06 58.81 51.66

(Zhou et al.,
2019)

56.89 52.50 64.67 57.95

(Chakra
et al., 2022)

61.07 55.50 70.70 62.19

(Li et al.,
2022)

57.26 52.37 57.55 54.84

(Lu et al.,
2024)

59.78 53.94 82.13 65.11

VP-IAFSP
(Llama-3.2)

51.22 50.63 98.41 66.86

VP-IAFSP
(Llama-3.1)

44.41 41.23 51.57 45.82

VP-IAFSP
(Gemma 2)

56.42 52.24 55.89 53.46

VP-IAFSP
(CodeLlama)

49.91 46.05 77.55 57.79

VP-IAFSP
(Codestral)

56.21 55.32 61.29 58.15

4.5.2 RQ2: Which Open-Source LLM Performs
Best to Utilize VP-IAFSP for Vulnerability
Prediction?

The performance of various LLMs on different
prompts is described in Table 3. The conducted ex-
periments show that LLama3.2:2b outperforms other
LLMs for Recall and F1-Score. Gemma2:27b shows
the greatest accuracy(56.42%) among the LLMs for
vulnerability prediction. Codestral:22b(56.21%) per-
forms almost similarly to Gemma2 on accuracy and
Codestral has the highest value for Precision among
the studied LLMs. Codestral gives a Precision
of 55.32%. It is worth mentioning that though
Llama3.2’s high Recall value is advantageous in rec-
ognizing nearly all potential vulnerabilities, there is
still a challenge in mitigating the number of false
positives. This is a characteristic challenge of using
LLMs in vulnerability prediction as previously ob-
served by (Çetin et al., 2024) for GPT-3.5. Though
this trade-off may be acceptable in security contexts
where addressing potential vulnerabilities is crucial,
balancing these metrics can help ensure a robust se-
curity management system.

4.5.3 RQ3: How Do Different Prompts Impact
the Performance of Various Open-Source
LLMs in the Task of Vulnerability
Prediction?

Experiments performed on various prompts show that
by augmenting information about the code and vul-
nerability definition, the performance of the LLMs in-
creases, as shown in Table 3. The careful selection of
examples to append to the prompt increases the over-
all efficiency of the LLMs for vulnerability prediction
tasks. We also find that the efficiency of the models
increases as we append more examples in prompt P5
than P4 and provide the model with concrete exam-
ples of what vulnerable and non-vulnerable functions
look like.

To conduct investigations beyond Vulnerability
Prediction, we test VP-IAFSP’s capability for Vulner-
ability type classification. For this purpose we extract
a dataset from (Fan et al., 2020) that spans multiple
vulnerability classes between 2002 and 2019. The
resulting dataset is a compilation of functions corre-
sponding to 91 different vulnerability types. We com-
pare our method with two state-of-the-art methods for
Vulnerability Type Classification- (Zhou et al., 2019)
and (Chakra et al., 2022) and the results are shown
in Table 4. The results are obtained by calculating
Accuracy and weighted F1-score for each model. To
calculate the Weighted F1-score we calculate the F1-
score for every class and the weights are calculated
through the relative frequency of every class present
in the dataset.

4.6 Discussion

The improvement of VP-IAFSP over the existing
works can be attributed to the additional information
and the examples appended to the Prompt. By adding
the information about the code to be assessed, we pro-
vide the model with the information needed to make it
perform better. While telling the model to assess if a
code is vulnerable or not, it is imperative to suggest it
as to what a vulnerability really is. Similarly, provid-
ing the model with the domain information increases
the performance of the model. This can be seen in
Table 3, where the performance of Prompts with aug-
mented information is better than the Prompts that are
only provided the Task Description.

We utilize Few-shot Prompting to help the model
make better decisions by supplying it with examples
of vulnerable and non-vulnerable code snippets. By
carefully selecting the most similar examples to ap-
pend to the Prompt the model can efficiently distin-
guish the vulnerable code from the non-vulnerable.

VP-IAFSP: Vulnerability Prediction Using Information Augmented Few-Shot Prompting with Open Source LLMs

597

Table 3: Detailed Performance Analysis for Selected Mod-
els.

Model Pro. Acc. Prec. Rec. F1-
Score

Llama3.2

P1 41.77 41.31 96.33 57.82
P2 43.26 42.73 93.72 58.70
P3 47.85 46.71 91.47 61.84
P4 47.34 47.82 95.42 63.71
P5 51.22 50.63 98.41 66.86

Gemma2

P1 48.73 46.50 51.53 48.89
P2 50.96 47.55 52.05 49.70
P3 51.18 47.54 52.14 49.73
P4 52.97 48.81 54.56 51.53
P5 56.42 52.24 55.89 53.99

Code-Llama

P1 41.71 42.68 68.71 52.65
P2 42.48 42.57 69.55 52.81
P3 45.77 46.36 71.26 56.17
P4 47.69 47.28 74.31 57.79
P5 49.91 46.05 77.55 57.79

Codestral

P1 51.49 48.24 57.41 52.43
P2 51.98 50.24 58.21 53.93
P3 54.27 51.74 57.96 54.67
P4 54.77 52.19 59.64 55.67
P5 56.21 55.32 61.29 58.15

Llama3.1

P1 41.36 39.71 46.25 42.73
P2 42.08 40.21 44.83 42.34
P3 43.88 42.63 47.24 44.82
P4 44.23 42.87 48.79 45.64
P5 44.41 41.23 51.57 45.82

Table 4: VP-IAFSP for Vulnerability Classification.

Model Accuracy Weighted F1
(Zhou et al., 2019) 19.69 46.71

(Chakra et al., 2022) 28.36 49.22
VP-IAFSP 31.27 50.38

Table 2 highlights the effectiveness of our method
when compared to other state-of-the-art approaches
for vulnerability prediction.

We used various open-source LLMs in our study
and found that they can be efficiently used for Vulner-
ability Prediction without any need for fine-tuning. It
is important to mention that though LLMs beat the
state-of-the-art methods on various metrics using the
proposed methodology, their limited knowledge of
code still poses as a hurdle for their extensive use for
vulnerability prediction tasks, and for software engi-
neering tasks in general.

5 CONCLUSIONS

In this paper, we have proposed a method for vulnera-
bility prediction using Information Augmentation and
Few Shot Prompting. The proposed method utilizes
CFGs, PDGs, and ASTs to find similar code samples
to input to the prompt along with the Input Code that
needs to be verified. This enhances the LLM’s capa-

bility to adapt to a particular task.
We consider various Open Source LLMs and uti-

lize them for the vulnerability prediction task. The
experimental results show that the proposed method-
ology is effective in distinguishing vulnerable and
non-vulnerable codes without any need for data
preparation or supervised training. This work can
be extended by constructing even more appropriate
prompts for vulnerability prediction or using tech-
niques like attention steering(Zhang et al., 2024).

REFERENCES

Chakra, S., Krishna, R., Ding, Y., and Ray, B. (2022). Deep
learning based vulnerability detection: Are we there
yet? IEEE Transactions on Software Engineering,
48(9):3280–3296.

Fan, J., Li, Y., Wang, S., and Nguyen, T. N. (2020). A c/c++
code vulnerability dataset with code changes and cve
summaries. In Proceedings of the 17th International
Conference on Mining Software Repositories, pages
508–512.

Ferschke, O., Gurevych, I., and Rittberger, M. (2012).
Flawfinder: A modular system for predicting qual-
ity flaws in wikipedia. In CLEF (Online Working
Notes/Labs/Workshop), pages 1–10.

Fu, M. and Tantithamthavorn, C. (2022). Linevul: A
transformer-based line-level vulnerability prediction.
In Proceedings of the 19th International Conference
on Mining Software Repositories, pages 608–620.
ACM.

H. Fard, F. (2024). Technical briefing on parameter effi-
cient fine-tuning of (large) language models for code-
intelligence. In Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineer-
ing: Companion Proceedings, ICSE-Companion ’24,
page 434–435, New York, NY, USA. Association for
Computing Machinery.

Hanif, H. and Maffeis, S. (2022). Vulberta: Simplified
source code pre-training for vulnerability detection. In
2022 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE.

Jiarpakdee, J., Tantithamthavorn, C. K., Dam, H. K.,
and Grundy, J. (2020). An empirical study of
model-agnostic techniques for defect prediction mod-
els. IEEE Transactions on Software Engineering,
48(1):166–185.

Johnson, A., Johnson, A., Dempsey, K., Ross, R., Gupta,
S., and Bailey, D. (2011). Guide for security-focused
configuration management of information systems.
Technical report, US Department of Commerce, Na-
tional Institute of Standards and Technology.

Kumar, J. and Chimalakonda, S. (2024). Code summariza-
tion without direct access to code: Towards exploring
federated llms for software engineering. In Proceed-
ings of the 28th International Conference on Evalua-
tion and Assessment in Software Engineering, pages
100–109.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

598

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,
D., Mou, C., Marone, M., and et al. (2023). Star-
coder: May the source be with you! arXiv preprint
arXiv:2305.06161.

Li, Y., Wang, S., and Nguyen, T. N. (2022). Vulnerabil-
ity detection with fine-grained interpretations. In Pro-
ceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 292–
303. ACM.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. (2021).
Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on De-
pendable and Secure Computing, 19(4):2244–2258.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S.,
Deng, Z., and Zhong, Y. (2018). Vuldeepecker: A
deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681.

Lu, G., Ju, X., Chen, X., Pei, W., and Cai, Z. (2024).
Grace: Empowering llm-based software vulnerability
detection with graph structure and in-context learning.
Journal of Systems and Software, 212.

Ma, H., Zhang, C., Bian, Y., Liu, L., Zhang, Z., Zhao,
P., Zhang, S., Fu, H., Hu, Q., and Wu, B. (2023).
Fairness-guided few-shot prompting for large lan-
guage models. In Advances in Neural Information
Processing Systems, volume 36, pages 43136–43155.

Nashid, N., Sintaha, M., and Mesbah, A. (2023). Retrieval-
based prompt selection for code-related few-shot
learning. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE), pages 2450–
2462. IEEE.

Nguyen, V.-A., Nguyen, D. Q., Nguyen, V., Le, T., Tran,
Q. H., and Phung, D. (2022). Regvd: Revisiting graph
neural networks for vulnerability detection. In Pro-
ceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceed-
ings, pages 178–182. ACM.

Russell, R. and et al. (2018). Automated vulnerability de-
tection in source code using deep representation learn-
ing. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages
757–762, Orlando, FL, USA.

Teyar, A. (2023). Burpgpt: Chatgpt powered automated
vulnerability detection tool. https://burpgpt.app/#faq.

Wu, Y., Lu, J., Zhang, Y., and Jin, S. (2021). Vulnerabil-
ity detection in c/c++ source code with graph repre-
sentation learning. In 2021 IEEE 11th Annual Com-
puting and Communication Workshop and Conference
(CCWC), pages 1519–1524. IEEE.

Ye, X. and Durrett, G. (2022). The unreliability of expla-
nations in few-shot prompting for textual reasoning.
Advances in Neural Information Processing Systems,
35:30378–30392.

Yun, S., Lin, S., Gu, X., and Shen, B. (2024). Project-
specific code summarization with in-context learning.
Journal of Systems and Software, 216.

Zhang, Q., Singh, C., Liu, L., Liu, X., Yu, B., Gao, J., and
Zhao, T. (2024). Tell your model where to attend:

Post-hoc attention steering for llms. arXiv preprint
arXiv:2311.02262.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. (2022). Con-
ditional prompt learning for vision-language models.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 16816–
16825.

Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., and Xu,
B. (2016). Attention based bidirectional long short-
term memory networks for relation classification. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short
Papers), pages 207–212.

Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. (2019). De-
vign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural
networks. Advances in Neural Information Process-
ing Systems, 32.

Çetin, O., Ekmekcioglu, E., Arief, B., and Hernandez-
Castro, J. (2024). An empirical evaluation of large
language models in static code analysis for php vul-
nerability detection. Journal of Universal Computer
Science, 30(9):1163–1183.

VP-IAFSP: Vulnerability Prediction Using Information Augmented Few-Shot Prompting with Open Source LLMs

599

